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A B S T R AC T

The present work has focused on the modeling of C.I. Direct Red 16 (DR16) decolorization using 
Fentonic reagents in a batch reactor. The reactor was equipped with an air bubbling for mixing 
and a water-fl ow coil for temperature regulating. Dye concentration was analyzed by measur-
ing its absorbance at λmax = 526 nm. An artifi cial neural network (ANN) model was developed 
to predict the behavior of the process. Six operational parameters and decolorization effi ciency 
were employed as inputs and output of the network, respectively. A three layer feed-forward 
network with back-propagation algorithm was developed. Application of 10 neurons in the hid-
den layer and 300 iterations for the network calibration prevents overfi tting by the model. The 
K-fold cross-validation method was employed for performance evaluation of the developed 
ANN model. The results showed high correlation coeffi cient (R2 = 0.9984) and low mean square 
error (MSE = 1.56 × 10−4) for testing data. Sensitivity analysis indicates the order of operational 
parameters relative importance on the network response as: pH ≈ time > [H2O2] > [Fe(II)] > 
[DR16]0 > temperature.

Keywords:  Fenton process; Direct Red 16; ANN modeling; Feed forward; Cross-validation; 
Sensitivity analysis

1. Introduction

Artifi cial neural networks (ANNs) are composed of 
simple elements operating in parallel. These elements 
are inspired by biological nervous systems. As in nature, 
the connections between elements largely determine the 
network function. They consist of a large number of pro-
cessing elements with their interconnections [1]. ANNs 
learn by examples of data inputs and outputs presented 
to them so that the subtle functional relationships among 
the data are captured, even if the underlying relation-
ships are unknown or the physical meaning is diffi cult to 

explain [2]. In contrast to most traditional empirical and 
statistical methods, ANNs do not need prior knowledge 
about the nature of the relationships among the data. 
This is one of the main benefi ts of ANNs when com-
pared with most empirical and statistical methods [3]. 
Feed-forward ANNs are most often used to map input-
output relationships [4]. A diagram of a multilayer feed-
forward ANN is given in Fig. 1. This fi gure shows that 
these ANNs are organized in layers that contain neurons 
(also called nodes). The number of neurons in input and 
output layers corresponds to the number of input and 
output variables, J and L, respectively. The number of 
“hidden” neurons, K, can be chosen freely, and deter-
mines the complexity that can be modeled [5].
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For treatment of pollutants, advanced oxidation pro-
cesses (AOPs) have been proposed and employed since 
the 1990s. In the so-called AOPs, highly reactive species, 
mainly hydroxyl radicals, are used as primary oxidants 
which are a highly reactive and non-selective oxidant, 
able to oxidize organics [6,7]. It has been documented 
that between 1% and 20% of the total world production 
of azo dyes is lost during the dyeing processes and pro-
viding major wastewater pollution in wastewaters [8]. 
The presence of even small amounts of dyes (below 1.0 
mg l−1) is clearly visible and infl uences the water quality 
considerably [9,10]. Among AOPs, oxidation with Fen-
ton’s reagent has been considered to be a promising and 
attractive treatment technology for decolorization and 
effective degradation of textile dyes [11–13]. In addition, 
it has been applied to a wide range of organic pollut-
ants, because of its simplicity and ease of implementa-
tion, running under mild conditions of temperature and 
pressure [14]. The Fenton reaction involves several reac-
tions, which can be described by Eqs. (1)–(6) [15]:

Fe(II) H O Fe(III) OH OH2 2O+ →H O2O + +OH• −OH +OH  (1)

Fe(II) OH Fe(III) OH+ →OH +• −OH Fe(III)→OH +  (2)

• + →OH organics products (3)

• •+ → +OH H O H O HO2 2O 2 2+O HO  (4)

• •+ →•OH OH H O2 2O  (5)

Fe(III) H O Fe(II) H HO2 2O 2+ →H O2O + H+ •HO  (6)

These reactions show that hydrogen peroxide may 
be consumed when it reacts with Fe(II), as shown in 
Eq. (1), producing hydroxyl radicals that will degrade 
organic compounds through Eq. (3). This catalytic 
reaction is propagated from Fe(II) regeneration, which 
mainly takes place as a result of the reduction of Fe(III) 
species with H2O2 [16].

Wastewater treatment by applying AOPs is, in gen-
eral, quite complex. Since the process depends on several 
factors, the modeling of these processes involves many 
problems, i.e., we are dealing with a multivariate system. 
It is evident that these problems cannot be solved by 
simple linear multivariate correlation. In this case apply-
ing ANNs can be a good alternative. Following are some 
examples of recent done works in the case of ANN mod-
eling of AOPs in water and wastewater treatments.

Monteagudo et al. [17] applied ANN for prediction 
of the values of kinetic degradation rate constants for 
homogenous ferrioxalate-assisted solar photo-Fenton 
degradation of Orange II aqueous solutions. Duran et al. 
[18] described the application of ANN for simulation of 
photo-Fenton degradation of Reactive Blue 4 in water. 
Khataee and Mirzajani [19] used ANN for modeling of 
key factors in the UV/S2O8

2-oxidation of C. I. Basic Blue 
3. In another case, Salari et al. [20] have applied ANNs for 
modeling of the treatment of wastewater contaminated 
with methyl tert-butyl ether (MTBE) by UV/H2O2 process.

Modeling of a Fentonic decolorization process is a 
rather new study and not much information is avail-
able in literatures. The oxidation effi ciency of the Fen-
ton’s process for a given wastewater or parent substrate 
concentration depends on several variables, namely pH 
of the reaction medium, temperature, time of the reac-
tion (for a batch system), hydrogen peroxide dosage and 
amount of the Fentonic catalysts. The present research 
involves developing a three layered feed-forward neural 
network model to predict the effect of the above opera-
tional parameters (as input variables) on the decolor-
ization effi ciency (DE) of C.I. Direct Red 16 (DR16) as 
a model pollutant from aqueous solution by Fentonic 
AOP treatment. The K-fold cross validation method 
is applied for assessment the reliability of the desired 
ANN and using the results, sensitivity analysis is done 
for indicating the relative importance of each opera-
tional parameter on the ANN responses.

2. Experimental

2.1. Materials

All materials were used as received without fur-
ther purifi cation. The azo dye, DR16, C26H17N5Na2O8S2

(C.I. 27680, MW 637.26) was purchased from Alvan Sabet 
company, 99% pure. Fig. 2 displays the structure of this 
dye. H2O2 (30%, w/w), FeSO4·7H2O, K2S2O8, H2SO4 and 

Fig. 1. General overview of a feed-forward artifi cial neural 
network [16].
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NaOH were all purchased from Merk company. Distil-
lated water was used throughout this study.

2.2. Reactor structure

Experiments were performed in a stainless steel 
rectangular cubic vessel with 3.3 l capacity. A micro-air 
compressor bubbled air through a distributor from the 
reactor bottom into the solution for well content mix-
ing. The reactor was equipped with a stainless steel 
water-fl ow coil for regulating the temperature by means 
of an external circulating fl ow of a thermostat bath 
(OPTIMA-740, Japan) with an accuracy of ±0.1°C.

2.3. Procedure and analysis

In order to perform each run, 3 l of the solution con-
taining initial concentration of 30 mg l−1 of the dye (about 
5 × 10−5 M) which is within the range of typical concen-
tration in textile waste-waters [21] was prepared and 
transferred into the reactor. The pH was adjusted to the 
desired values (2, 2.45, 3, 3.5, 4, 4.35 and 6) by means of a 
pH meter (Denver, UB-10) using dilute H2SO4 or NaOH 
solutions. After adjusting temperature (which maintained 
constant during all experiments), appropriate amount of 
Fentonic reagents [Fe(II) and H2O2] were added. Samples 
(4.0 ml) were taken at regular times (0, 4, 6, 10, 15, 20, 25 
and 30 min). The dye concentration was analyzed using a 
spectrophotometer (Perkin Elmer, 55 OSE) by measuring 
the absorbance at λmax= 526 nm, and using the appropri-
ate calibration curve. DE in the Fentonic AOP treatment 
can be calculated as:

DE = −[ ]DR16 [ ]DR16
[ ]DR16

0

0

t  (7)

where [DR16]0 and [DR16]t are the initial and the appro-
priate concentration at any time, t, respectively. Because 
the reaction was continued after sampling, measuring 
the absorbance were done in the less than 15 s.

2.4. ANN strategy

Since three-layer feed-forward networks can poten-
tially learn virtually any input-output relationship, this 
performance was developed in this study. The network 
consists of an input layer, a hidden layer and an output 

layer. The input variables to the network were initial 
concentration of the dye, pH, H2O2 initial dosage, Fe(II) 
initial dosage, temperature and time of reaction. The DE 
was the experimental result and introduced to the net-
work as output variable (network response). The number 
of neurons in the hidden layer and network calibration 
iteration are chosen as design variables in the network 
structure development. Choosing the proper algorithm 
and transfer function are vital jobs in designing a desir-
able ANN model; otherwise the output result will not be 
reliable. Various functions such as ‘‘poslin”, “tansig” and 
“satlin” were tested as transfer functions in the hidden 
layer; also “purelin” and “tansig” functions were applied 
in this order in the output layer. Different algorithms 
were used to train the network. The optimum numbers 
of hidden layer neurons and calibration iteration were 
found using simple and commonly practiced trial and 
error method in all the applications herein. MATLAB 
software (version 2008a) was used in the work and all 
programs were run on a personal computer.

3. Results and discussion

3.1. Finding the best training and transfer functions

Experimental data sets at different operational con-
ditions were used to train and test the ANN model. 
Different operational parameters ranges (input/output 
variables) are given in Table 1.

All algorithms and transfer functions may not be 
applicable for all processes. The appropriate train-
ing algorithm and transfer function are very sensitive 
parameters for network design. If the model does not 
comply with the experimental results, then the out-
put value from water treatment plant will be haphaz-
ard and it will be diffi cult to control the plant. It has 
been reported that 8–11 hidden layer neurons produce 
minimum value of mean square error (MSE) [22]. So, 
all models at this step were calibrated and tested with 
10 neurons, but with the best training and transfer

Fig. 2. Structure of the dye molecule.
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Table 1
The range of input and output parameters

Parameter Range

Input layer

pH 2–6

[Fe(II)]0 (mg l−1) 0.5–4

[H2O2]0 (mg l−1) 20–1000

[DR16]0 (mg l−1) 10–50

T (°C) 20–40

Reaction time (min) 0–30
Output layer

DE 0–1
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function the number of neurons in hidden layer will 
be optimized later. The literature offers little guidance 
in selecting the size of training and testing data. In our 
case for best validation of designed network reliability, 
the available data set (232 data) was randomized and 
then divided into the training and testing sets equally. 
Before training, it is often useful to scale the inputs and 
targets so that they always fall within a specifi ed range. 
Hence, all input data (Xi) were normalized in the 0–1 
range as:

x
X X

X Xi = i mX in

max mX in
 (8)

where Xi, Xmin and Xmax refer to the each, lowest and 
highest value of the ith input variables, respectively.

Thirty various model with different algorithms and 
transfer functions examined are given in Table 2. Each 
network run was repeated three times to avoid ran-
dom correlation due to the random initialization of the 
weights. Also the table shows the correlation coeffi cient 
and MSE parameters for training and testing sets. Con-
sidering the results reveals that the model number 2 
with the Levenberg–Marquardt (LM) back-propagation 
algorithm and tansig function in the both hidden and 
output layers gives most satisfactory results (lowest 
MSE value of 2.3 × 10–6, and the exact R2 value of 1.000) 
for training set and a completely appreciable MSE and 
R2 values (3.3 × 10–3 and 0.966) for testing set. Therefore 
this model can be selected among all for more develop-
ment; however, models with numbers of 7, 8, 25, 26 and 
30 give satisfactory results as well.

Table 2
Summary of trial and error method used for degradation effi ciency by the developed ANN model

Back–propagation 
algorithm

Training 
function

Transfer function R2 (Train) MSE × 103 

(Train)
R2 (Test) MSE × 103 

(Test)
Model 
number

Hidden layer Output layer

Levenberg–
Marquardt

trainlm tansig purelin
tansig

0.9973
1.000

0.2653
0.0023

0.3773
0.9663

62.51
3.320

  1
  2

poslin purelin
tansig

0.9658
0.9937

3.229
0.6035

0.8294
0.9353

15.65
6.106

  3
  4

satlin purelin
tansig

0.9694
0.9729

2.8924
2.4814

0.7562
0.7631

20.78
18.86

  5
  6

Polak–Ribiére 
conjugate gradient

traincgp tansig purelin
tansig

0.9956
0.9985

0.4311
0.1491

0.9648
0.9924

3.489
0.7023

  7
  8

poslin purelin
tansig

0.9767
0.9762

2.2274
2.2936

0.9083
0.9467

9.026
5.363

  9
10

satlin purelin
tansig

0.9846
0.9945

1.4715
0.5188

0.9082
0.931

8.621
6.034

11
12

One step secant trainoss tansig purelin
tansig

0.9888
0.9967

1.0852
0.3126

0.9214
0.7146

7.661
25.46

13
14

poslin purelin
tansig

0.9751
0.9965

2.3724
0.3422

0.7862
0.9866

18.82
1.292

15
16

purelin purelin
tansig

0.9757
0.9632

2.3143
3.3029

0.9162
0.6803

7.860
26.64

17
18

Resilient trainrp tansig purelin
tansig

0.988
0.9892

1.1516
1.0160

0.8972
0.9508

10.08
4.487

19
20

poslin purelin
tansig

0.9607
0.8639

3.7021
11.9326

0.8702
0.8167

12.09
16.98

21
22

purelin purelin
tansig

0.978
0.9435

2.0995
5.0068

0.8973
0.8246

9.611
14.61

23
24

Scaled Conjugate 
Gradient

trainscg tansig purelin
tansig

0.9954
0.9954

0.4432
0.4432

0.9656
0.984

3.356
1.518

25
26

poslin purelin
tansig

0.9805
0.9973

1.8625
0.2615

0.9369
0.9842

6.864
1.563

27
28

 
 

purelin
 

purelin
tansig

0.9774
0.9941

2.1491
0.5623

0.9234
0.9745

7.311
2.431

29
30
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 3.2. Optimization of neuron number and calibration iteration

Finding the optimum number of network calibration 
iteration (training epoch) and number of neuron in the 
hidden layer is an important step in the network design-
ing. The “universal function approximator” capabilities 
of many ANNs can also cause problems. A common 
issue is the problem of “overfi tting” that is caused by the 
usually large number of free coeffi cients inside an ANN. 
A different pattern arises when an independent data set 
is evaluated simultaneously. After a similar steep descent 
during the fi rst few numbers of iterations, the error starts 
to rise again; indicating a worsening performance of the 
ANN. Clearly, the optimization of the ANN is going away 
after a number of calibration iterations or hidden layer 
neurons, probably because the optimization is trying to 
minimize the objective function on noise and artifacts in 
the calibration (training) data. This adversely affects the 
generality of the model being implemented by the ANN 
and leads to an increasing error for the testing data set. It 
is therefore prudent not to execute many numbers of cal-
ibration iterations and neurons (in hidden layer) while 
training an ANN and limit the allowable numbers to a 
preset maximum (as optimum). A good approach is the 
one where training and testing data sets are evaluated 
simultaneously. The set of ANN coeffi cients where the 
testing error reaches to its lowest value is taken as the 
most optimal and used for practical applications [23].

Finding the optimum number of iteration for the 
network calibration and the number of neurons in the 
hidden layer was done which the results are depicted 
in Figs. 3 and 4 respectively. As these fi gures show, 
MSE for training set with increasing of the calibration 
iteration or the number of neurons in hidden layer is 
reduced continuously, while MSE for testing set reaches 
to a minimum value at the 300th iteration (Fig. 3) and 
using 10 neurons in the hidden layer (Fig. 4) and then 

is increased due to the occurrence of overfi tting. There-
fore, the best simulation of the Fentonic AOP treatment 
can be performed using a three layer feed forward ANN 
model compose of 6, 10 and 1 neurons in the input, hid-
den and output layers, i.e., 6:10:1 structure. In the case 
of network components; the LM algorithm and tansig 
as both training and transfer functions are the best. Also 
best testing results are attributed to the 300th calibration 
iteration. A schematic diagram of the developed ANN 
model is presented in Fig. 5.
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Fig. 3. Effect of iteration on MSE for training and testing data 
sets using 10 neurons in the hidden layer.

Fig. 4. Effect of the neuron numbers on MSE for training and 
testing data sets at 300th calibration iteration.
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Fig. 5. A schematic view of the developed ANN.
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3.3. Validation of the developed ANN using K-fold method

The cross-validation is a heuristic approach to bal-
ance complexity and accuracy [24]. In this research, the 
K-fold cross-validation method was applied to evaluate 
the performance of the developed ANN in the simula-
tion process. In our case, the total data set are subdivided 
into 23 roughly equal-sized parts, and then repeated the 
modeling process 23 times leaving one section out each 
time for validation purposes. Average accuracy of the 
estimation was expressed by correlation coeffi cient and 
MSE parameters. Fig. 6 shows a comparison between 
experimental and predicted output values for the test 
series data using the adopted ANN model. R2 and MSE 
values are 0.9984 and 1.56 × 10–4, which indicate good-
ness of the model performance.

Figs. 7–10 show the ability of the designed ANN in 
simulation of the Fentonic AOP treatment via a com-
parison between predicted and experimental values of 
the output variable (DE) as a function of solution pH, 
initial dosages of Fe(II) and H2O2, temperature and ini-
tial concentration of the DR16 respectively. These results 
confi rm that the ANN model could predict the Fentonic 
oxidative DE adequately well, within the experimental 
conditions adopted in the model fi tting.

3.4. Description of chemical aspects

As Fig. 7 shows, DE is drastically decreased from 
75.1% to only 5.0% after 30 min, when pH increases from 
3.5 to 6.0. It is due to the formation of ferrous and fer-
ric oxyhydroxides in pH values more than 4.0 which 

Fig. 6. Predicted output values for testing data sets using the 
adopted ANN model.

Fig. 7. Comparison between experimental (symbols) and the 
ANN predicted (dashed lines) values of DE as a function of 
pH at different times; [DR16]0 = 30 mg l−1, [H2O2]0 = 500 mg l−1, 
[Fe(II)]0 = 0.5 mg l−1 and T = 25°C.
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Fig. 8. Comparison between experimental (symbols) and the 
ANN predicted (dashed lines) values of DE as a function of 
initial concentration of H2O2 and [Fe(II)]0; [DR16] 0 = 30 mg l−1, 
pH = 6.0 and T = 25°C.
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inhibits the reaction between Fe(II) and H2O2 [25] and 
therefore, small amounts of •OH radical is generated. 
Also, decreasing pH from 3.5 to 2.0 will cause a great 
reduction in degradation effi ciency from 75.1% to 9.6%. 
The reason here is that when pH fi nds values less than 
3.5, H2O2 molecules will react with excessive H+ to form 
oxonium ion (H3O2

+) which is stable and can not react 
with Fe(II) to form  radicals [26]. At the same time, the 
generated  radicals may be scavenged by excess H+ 
ions [25]. Similar trend of variation for DE with pH has 
been reported in a previous research for azo dye acid 
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black 1 [27]. So, the optimum pH of 3.5 is relevant. The 
solution pH during the Fenton process was measured 
and only a variation of 0.1 was appropriate during 30 
min treatment.

The experimental data in Fig. 8 show the DE at differ-
ent dosages of ferrous and hydrogen peroxide reagents 
under pH 3.5 and after 30 min of the reaction progress. 
It is observed that the DE is signifi cantly infl uenced by 
H2O2 and Fe(II) dosages. At a constant amount of ferrous 
ions initial dosage, with increasing the initial dosage of 
hydrogen peroxide in the solution, the DE is raised up 
to a plateau region. This non–sensitive region is due 

to the hydroxyl radical consumption through various 
approaches, including the scavenging effects of H2O2 
and recombination of •OH radicals [26,27]. Therefore, the 
threshold concentration of the plateau region should be 
used as an optimum dosage of H2O2. Meantime, as Fig. 8 
demonstrates, for a constant initial amount of hydrogen 
peroxide, with increasing the ferrous ion initial dosage 
from 0.5 to 4.0 mg l−1, better results will be obtained. 
This is, because Fe(II) plays the role of catalyst that start 
the decomposition of H2O2 to generate the very reactive  
•OH radicals in the process. The most enhancing effect 
on DE, hence with respect to the added amount of Fe(II), 
belongs to the 1.0 mg l−1, after which, its effect is not so 
signifi cant. Considering this fact, and the environmen-
tal privilege of applying low catalyst concentration in 
wastewater treatments, 1.0 mg l−1 of Fe(II) which is ten 
folds lower than the standard allowable limit for total 
iron content in water effl uents [26,27] and 150 mg l−1 of 
H2O2, are considered as the most suitable amounts of 
Fentonic reagents for the process.

The empirical results shown in Fig. 9 indicate that 
the DE increases from 77.3% to 97.3% as a consequence 
of temperature increase from 20°C to 40°C after 30 min. 
As a case, 90% effi ciency can be achieved at 40°C after 
the short time of 10 min. When the temperature rises, 
the reaction rate between hydrogen peroxide and any 
form of the ferrous/ferric ions will be increased. This in 
turn leads to accelerate hydroxyl radical generation rate.

The experimental results of tests about the effect 
of DR16 initial concentration on the DE by the Fenton 
process have been shown in Fig. 10. The DE of DR16 is 
inversely proportional to its initial concentration. A DE 
of 94.51% can be achieved after 30 min when the initial 
concentration of DR16 is 10 mg l−1 and increasing the 
initial concentration to 50 mg l−1 results in the reduc-
tion of the about 24%. This matter is expectable, since 
with increasing the dye initial concentration, total con-
taminant load in the media is raised while the inherence 
potential of the media for the generation of hydroxyl 
radicals has been kept constant.

3.5. The model sensitivity analysis

Neural networks are black-box models that allow 
little insight into the relations that are used to predict 
hydraulic variables. Except for trivially small networks, 
it is almost impossible to describe the models in short and 
easy-to-understand equations, thus making the practical 
implementation of ANNs is diffi cult. Despite the black-
box nature of ANNs, something can be still learned from 
neural networks. It is possible to carry out sensitivity 
analysis with neural networks to indicate the infl uence 
of different input variables on the model’s results [28]. 
The developed ANN in this work provided the weights 
listed in Table 3. The level of infl uence of each input 

Fig. 9. Comparison between experimental (symbols) and the 
ANN predicted (dashed lines) values of DE as a function of 
reaction time for different temperatures; pH = 6.0, [H2O2]0 = 
150 mg l−1, [Fe(II)]0 = 1.0 mg l−1.
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variable concerning the modeling output variable can be 
obtained through the neural weight matrix.

The following equation was proposed based on the 
contribution of connection weights [29]:

I
W

j

mnWW ho
m
m Nh

=
×∑ = ( )W WjmWW jh

kmWWih
k
N∑ =( )1

k
k Ni

=∑ { }WmWW×( )WWkmWWih
kmWWih

k
N∑ = nn

ho
m
m Nh

=∑1

 (9)

where Ij is the relative importance of the jth input vari-
able on the output variable, Ni and Nh are the numbers 
of input and hidden neurons, respectively; W’s are con-
nection weights, the superscripts “i”, “h” and “o” refer to 
input, hidden and output layers, respectively; and sub-
scripts “k”, “m” and “n” refer to input, hidden and output 
neurons, respectively. The relative importance of various 
variables as calculated by Eq. (9) is shown in Fig. 11. 

As can be seen, under the used experimental conditions, 
all of the variables except the initial concentration of the 
dye and temperature have strong effects on the DE. How-
ever, the pH and reaction time with a relative importance 
of 24% appeared to be the most infl uential parameters in 
the Fentonic AOP treatment. The initial concentrations of 
H2O2 and Fe(II) fi nd the subsequent orders.

Low sensitivity to the substrate initial concentration 
implies the inherence potential of the process in the case 
of higher contaminants loadings. Of course this matter 
should be further studied to fi nd what extent the initial 
loading can be expanded. The low sensitivity to tem-
perature, on the other hand, shows that the employed 
process has nice fl exibility within the used temperature, 
i.e., under different ambient temperatures.

4. Conclusions

The performance of a Fentonic AOP on decoloriza-
tion of DR16 aqueous solutions was studied, focusing 
on the infl uence of key operational factors. The opti-
mum condition for a solution containing 30 mg l−1 of the 
dye can be introduced as: pH = 3.5; [Fe(II)]0 = 1 mg l−1;
[H2O2]0 = 150 mg l−1; T = 40°C. Under these conditions 
after 10 min, about 90% of the dye was removed. The 
treatment process was modeled adequately well using 
a three-layered feed forward ANN based on LM back-
propagation algorithm; including ten neurons in the 
hidden layer and with operation of tansig function in 
the both hidden and output layers. It was found that 
MSE for testing set of data reaches to its lowest value 
at 300th network calibration iteration. K-fold cross 
validation confi rmed that under different conditions, 
the developed ANN can effectively reproduce experi-
mental data and predict the behavior of the process. 

Table 3
Matrix of weights between input and hidden layers, W1, and between hidden and output layers, W2

Neuron W1 Bias 2 = 0.1275

time pH T [Fe(II)]0 [H2O2]0 [DR16]0 Bias 1 W2

  1 2.1709 0.4778 0.0571 −0.6202 −1.9314 −0.1997 0.3201 2.7163

  2 0.5944 0.4625 1.3088 2.1317 −0.2576 0.0019 −0.2789 −0.3046

  3 0.7069 −1.7207 −0.0505 0.0318 −3.0658 0.3329 −1.9715 −1.1352

  4 0.3773 2.6496 −1.0915 −1.1531 −0.3873 −1.3175 0.1740 0.4602

  5 0.8351 −0.9378 0.3128 0.8860 −0.0168 0.7803 1.2201 1.2727

  6 0.7826 0.4462 −0.1783 3.2150 −0.5210 −0.5954 2.4051 −0.2364

  7 −3.9116 0.9074 −0.7920 −0.3276 1.2990 1.6294 −1.2979 0.6124

  8 −0.3219 −3.6159 0.3560 1.3164 0.7004 0.0726 −0.1466 −1.3134

  9 3.7239 −1.7447 −0.6690 −1.5578 −1.1615 −0.0111 1.2077 0.2209

10 −0.8647 −1.3693 0.2605 0.7563 −0.3747 0.4560 −0.8797 0.6389

Fig. 11. Importance (%) of the input variables on the Fentonic DE.
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 Also, sensitivity analysis based upon the connection 
weights showed the importance of the input variables 
on the value of the DE in the order of: pH ≈ time > 
[H2O2]0 > [Fe(II)]0 > [DR16]0 > temperature.
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Symbols

DE — decolorization effi ciency
t — reaction time (min)
T — temperature (°C)
xi — ith normalized data
Xi — ith data
Xmin — minimum of the data
Xmax — maximum of the data
yi,predic — ith predicted data
yi,exp — ith experimental data
W1 — weight of the fi rst layer of the ANN
W2 — weight of the second layer of the ANN
b1 — biases of the fi rst layer of the ANN
b2 — bias of the second layer of the ANN
Ni — number of input neurons
N — number of total data
Ij — relative importance of jth input variable
Nh — number of hidden neurons
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