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ABSTRACT

A dynamic model, based on mass transport and reaction rate laws of biomass and substrate
for a membrane bioreactor (MBR), was successfully developed. Furthermore, an empirical
model for flux prediction was used. Key kinetic model parameters were estimated via non-
linear fitting of the model predictions to experimental data obtained from current and previ-
ous works. The performance of the MBR was evaluated with different vacuum-to-backwash
time ratio. Permeate flux dynamics were shown to be sensitive to the backwash scheduling
scenario. The proposed model will enable optimization of MBR operation in an attempt to

minimize membrane fouling.
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1. Introduction

One of the main challenges in membrane bioreactor
(MBR) operation is membrane fouling [1,2]. The foul-
ing layer blocks the membrane pores, decreases perme-
ate flux, increases pressure drop across the membrane,
reduces permeate production, and biodegrades the
membrane. The severity of fouling is determined by a
combination of various physical, chemical, and biologi-
cal operating factors [3]. Also it is the phenomena
responsible for increasing the membrane hydraulic
resistance which is referred to as permeate flux or per-
meability through the membrane pores [4]. Many
attempts were made to minimize and control fouling
such as backwash and aeration [5-8]. Backwash is
effective in removing fouling due to pore blocking and
removing the loosely attached accumulated foulants on
the membrane surface (cake layer). Other methods to

*Corresponding author.

clean and regenerate the membrane include intermit-
tent filtration, chemical cleaning, and air cleaning.
Optimization of frequency and duration of back-
wash scheduling is essential to reduce energy and per-
meate consumption and to control membrane fouling.
The importance of this optimization arises from the
fact that very frequent backwashing may damage the
pump and membrane, also it may affect the net volume
of permeate. Conversely, less frequent backwashing
leads to severe membrane fouling. Many researchers
(Yigit et al. [5], Jiang et al. [8], and Aidan et al. [9])
investigated the significant association between back-
wash time and filtration time for an MBR system. They
evaluated different scenarios and investigated their
effects on the permeate flux. All three studies revealed
that longer backwash time was an effective method for
fouling control. Simultaneously, they agreed that less
frequent backwash was more efficient because of the
role of accumulation in the cake layer. The cake layer
acts as a pre-filter preventing direct contact of fine par-
ticles (colloidal and solutes) with the membrane and
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reduces membrane pore blocking (irreversible fouling).
Results revealed an increase in both vacuum and back-
wash pressures as flux decreases. The increase in vac-
uum indicates a decrease in pressure across the
membrane during filtration, causing the decline in flux
and the presence of membrane fouling. Conversely, the
increase in backwash pressure throughout the back-
wash period also indicates the increase in the severity
of fouling and possibly the occurrence of irreversible
fouling. Therefore, a higher backwash pressure will be
required to clean the membrane. It was concluded that
less fluctuation in backwash pressure through opera-
tion indicated optimum backwash scheduling ratio.
The reported optimum was to conduct less frequent
but longer backwash period with vacuum-to-backwash
ratio of 10 min vacuum to 2 min backwash [9].

Based on the above observations, there is a need to
study dynamic behavior of MBR with different operat-
ing scenarios in order to optimize its performance.
However, this task can be very expensive and labori-
ous since it needs trial experimentation on the actual
process. Therefore, it is imperative to develop a
detailed physical model that mimics the process. The
model simulation numerical results will then be used
in prediction of the process behavior under different
conditions, which can be utilized in optimization and
control of MBR.

Several modeling approaches were proposed to
model membrane performance. Redkar and Davis [10]
have obtained excellent experimental results for vari-
ous combinations of transmembrane pressures, back-
pulsing, and forward filtration times. Although the
theory they have developed is qualitatively useful,
quantitative predictions are far from acceptable as
pointed by Mallubhotla and Belfort [11], who pro-
posed a semi empirical model of cross-flow filtration
with periodic back-pulsing. Tien and Bai [12] pro-
posed and assessed a model based on a conventional
cake filtration theory model. The complexity of their
proposed model structure can be very prohibitive for
any optimization and control studies.

In the present study, we examined the accuracy
and viability of the continuity mass balance equations,
reactions kinetics laws, and flux empirical correlations
in predicting the dynamic behavior of MBR. The
model was validated by collecting experimental data
from a prototype apparatus with different numbers of
scheduling scenarios and comparing these data with
predictions from the developed model. The compari-
sons include permeate flux, biomass growth rate, and
biomass concentration transient behavior. Based on
the numerical simulation results, one can optimize a
scheduling procedure for MBR without the need to
perform experimentation on the actual process.

2. Mathematical modeling

Sludge characteristics are directly affected by MBR
operating parameters including the sludge retention
time (SRT), hydraulic retention time (HRT), food to
microorganism ratio (F/M), dissolved oxygen (DO),
dilution rate, and organic loading rate (OLR). In con-
trast, the operating conditions are characterized by the
substrate concentration, temperature, aeration, back-
washing, and chemical cleaning. Additionally, trans-
membrane pressure (TMP) is another major factor that
affects membrane fouling. TMP is directly related to
the permeate flux. High TMP operation increases the
transport of foulants to the membrane and increases
the permeate flow.

Mathematical model was developed on the aerobic
MBR shown in Fig. 1. The system consisted of two
inputs and three outputs. The inputs were the influent
(i.e. wastewater), and the air from the aerator. The
outputs were the effluent or permeate (i.e. treated
water with low biomass concentrations), the decayed,
floating biomass removed by overflow, and the waste
(i.e. accumulated sludge). The representative mathe-
matical model was derived by applying a material
balance on three major parameters: substrate concen-
tration (S), biomass concentration (X), and oxygen
concentration (O,) according to the following assump-
tions: (1) reactor volume was constant due to the over-
flow; (2) reactor contents were well combined; (3) no
biomass in the effluent stream on account of the mem-
brane was impermeable to biomass; (4) no substrate in
the overflow, dead biomass stream; and (5) biomass
growth rate follows mid-range concentrations kinetics.

Substrate mass balance:
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Fig. 1. MBR block flow diagram.
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Biomass mass balance:

dX
VE = QinXin - (QWXW + QdXd) + rgV (2)

Oxygen consumption mass balance:

o, X
F_DS(Sin_S)_ E (3)

where f is the conversion factor of biomass to COD
and Dg (time!) is the constant dilution rate. The
kinetics of the aerobic MBR was described in terms of
the rate of substrate utilized for microorganism
growth (ry,), the rate of microorganism growth (ry)
consumed or dead (rg), and the rate of oxygen uptake
for microorganism respiration (ro,). Furthermore,
using Monod-specific biomass growth rate [13], the
rate of substrate utilization is

Fmay | SX
= — 4
sy <Ybio>KS TS (4)
The rate of biomass generated is,
SX
Te = Hmax <KS+S> — kX (5)

and the rate of oxygen uptake is,
o, = —rsu — 1.42r, (6)

where 1.42 is the COD of cell tissue (mg substrate/mg
biomass). Hence, Eqs. (4)—(6) require the estimation of
four kinetic parameters using experimental data.
These parameters are maximum specific biomass
growth rate (umax), Monod constant (Ky), net biomass
yield (Yyi,), and endogenous decay coefficient (kg). An
empirical flux model was developed to represent the
flux decline as a function of time. Nevertheless, a
more representative flux model was required to relate
the flux to other design or operating parameters.
Darcy’s law correlates the flux with both the mem-
brane permeability (L,) in (L/m*daykPa) and pres-
sure gradient (AP) or TMP across the membrane in
(kPa). SRT is defined as the ratio of biomass accumu-
lated in the MBR to the amount of biomass removed
per day. Hence at steady state, from Eq. (2):

B XV
QWXW + QdXd
Controlling SRT is essential in order to obtain an

acceptable MBR operation. Long SRT reduces the
biomass activity while short SRT results in washout

SRT (7)

condition. The washout condition is obtained from Eq.
(7), when QuX,, + QqXq is greater than XV. Alterna-
tively, long SRT operation indicates the biomass gen-
eration rate is greater than the biomass removal rate.
As a result, high sludge viscosities are attained which
minimize the oxygen transfer rate (OTR) and thus
deactivates the biomass. HRT is defined as the ratio of
the volume to the influent volumetric flow rate or the
reciprocal of dilution rate. It is also one of the process
control parameters that affect membrane fouling. A
short HRT or high dilution rates result in high mem-
brane fouling rates due to the production of filamen-
tous bacteria [14]. On the other hand, a long HRT
requires a larger MBR volume because of the high
influent flow rates. F/M is defined as the ratio of
COD or BOD entering the MBR to the Mixed Liquor
Suspended Solids (MLSS) concentration in the MBR
(mg biomass/mg biomass day) [15]. OLR is defined as
the amount of soluble and particulate organic matter
fed to the MBR per unit volume (kg biomass/m> day).
High OLR and fluctuation in the OLR lead to unstable
process, poor filtration performance, and severe foul-
ing rates. Constant dissolved Oxygen concentration is
required to obtain efficient operation in the MBR.
Maximizing the OTR between the injected air bubbles
and biomass cells is essential to maintain high bio-
mass activity. The following correlation represents the
OTR in the MBR.

OTR = Q0,X = (Yo,/x)7eX (8)

Where: Yo, /x is the oxygen transfer yield in (gO0./g
biomass).

To AO,
Y = =2 = —
O Ty, T AX ©)

Assuming mid-range concentration kinetics

(A0, SX
ot~ (%) = (r35) ~+x

3. Experimental work

The MBR experiments were performed at ambient
temperature and pressure. The synthetic wastewater
was prepared in order to achieve the best microorgan-
ism activity inside the MBR. The feed was prepared
in a 25-L holding tank T-101 and its composition is
shown in Table 1. The experimental setup of the MBR
is depicted in Fig. 2. The MBR specifications and the
membrane characteristics are shown in Table 2. The
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Table 1
Synthetic wastewater composition

Component Concentration (g/L)

Acetic acid 31.6
NH,C1 8.8
KH,PO, 1.3
FeCl36H,0O 0.1
CaCl, 0.2
MgSO, 0.2
KCl 0.2
NaCl 0.2
NaHCO; 49.8

system utilized an air diffuser, a DO measuring probe,
control valves, a compressor, and three pumps: piston
pump (P-101), vacuum pump (P-102), and backwash

189

pump (P-103). The synthetic wastewater feed was pre-
pared in tank (T-101), and then pump P-101 was used
to pump the feed (stream 1) into the MBR tank (T-
102). Tank T-102 consisted of a submerged flat sheet
membrane and an air diffuser. The air (stream 5) was
compressed through the compressor C-101 and was
fed to the MBR through the implemented air diffuser.
The treated water (stream 2) was drawn out of the
membrane through the vacuum pump P-102. A split
stream (stream 3) was taken from the treated water
through the backwash pump P-103 and back to the
membrane, hence, reversing the direction of water
flow through the membrane and cleaning and regen-
erating the membrane. The remaining treated water
(stream 4) was collected in tank T-103. Finally, the
accumulated sludge (stream 6) was removed from the
bottom of tank T-102.

colle
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Fig. 2. Membrane bioreactor experimental set-up.
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Table 2
The MBR specifications and the membrane characteristics
MBR Material of Acrylic
construction
Dimensions 15cm x 3cm x 30cm
Effective volume 1L
Water depth 30cm
Membrane Material of Ceramic
construction
Model Flat sheet membrane
Frame dimensions 12cm x 12cm
Pore size 0.2 pm
Total surface area 0.048 m? (from all
sides)

Four control schemes were utilized as shown in
Fig. 2. The first was the level controller (LC). An on-
off level controller of a float and contactor type was
used. As the desired liquid level in the MBR was
attained, the LC sent a signal to switch off the feed
pump P-101. The second control scheme was the dis-
solved oxygen control. The DO concentrations were
measured through the DO probe utilizing a dissolved
oxygen indicator controller (DOIC), which maintained
the DO at a setpoint value of 7mg/1. The DO probe
was submerged in the MBR tank T-102 and was con-
tinuously monitored through the PC. If the dissolved
oxygen concentrations decreased, the PC would send
a signal to open valve V-104 in order to increase the
aeration rate. The third control scheme was the pres-
sure control across the membrane. Two pressure
gages PG1 and PG2 were placed on streams 2 and 3,
respectively. The pressure gages were direct indicators
of membrane fouling. A decrease in vacuum pressure
gage (PG1) implied high filtration pressures and mem-
brane fouling. Therefore, the pressure indicator con-
troller (PIC) sent a signal to switch off pump P-102
and switch on pump P-103 and perform a backwash.
As the pressure gage PG2 was stabilized indicating
stable operation with no membrane fouling, the PIC
controller sent a signal to switch off the backwash
pump P-103 and switch on the vacuum pump P-102;
hence, filtration was resumed. The fourth control
scheme was the total suspended solids controller
(TSSC). The TSS concentrations represented the accu-
mulated sludge concentrations. As the TSS level
increased, the TSSC transmitted a signal to open valve
V-105 that discharged the excess accumulated sludge.
The significance of this control scheme represented
that an excess of sludge accumulation may block part
of the membrane and decreased the membrane selec-
tivity. In addition, a high level of accumulated sludge

might block the air diffuser and thus, effect the overall
MBR operation.

Four liters of biomass was prepared by adding
two capsules of polyseed (Bioscience Inc.) that con-
tained a mixed culture of microorganisms into dis-
tilled water. The mixture was fed with 10g sugar/
day. Then the biomass was incubated for 24h under
aeration by oil-free compressed air through an air dif-
fuser. The preparation of biomass was performed sep-
arately before mixing it with the synthetic wastewater
feed. The backwash scheduling was performed by
applying different vacuum-to-backwash time scenarios
and observing the flux decline. The optimum ratio
was concluded for the scenario in which the minimum
flux decline was observed. Minimum flux decline
indicates stable operation and low fouling rates.
Another approach was to observe the backwash pres-
sure change. A nearly constant backwash pressure
operation indicated low fouling rates.

Experiments were performed utilizing two control
schemes. The first scheme was a float and contactor-
level controller. The second was a pressure controller
scheme utilizing two control valves (Castel Italy) V-
102 and V-103. The pressure controller scheme was
connected to Siemens LOGO computer software. The
software was connected to a contactor to which the
power supply of both pumps and control valves were
connected. A timer was programmed within the soft-
ware to specify the vacuum-to-backwash operation
scheduling. The software was operated with 10, 20, or
30min vacuum (or filtration) duration. At the end of
each period, the vacuum pump P-102 was switched
off and backwash pump P-103 was switched on for 1
or 2min applying backwash. This procedure was
repeated continuously for 90 days duration. After each
15-day interval, a different vacuum-to-backwash time
scenario was performed. For the duration, both vac-
uum and backwash pressures, as the permeate flux,
were recorded. Also based on the unit productivity,
the permeability was calculated. The turbidity, NH,—
N, and DO were monitored throughout the experi-
ment duration. The turbidity was measured through
turbid meter, NH,~N, was analyzed by Direct Ness-
lerization, and DO concentrations were measured
through a DO probe. Furthermore, the results of the
biomass concentration decay during filtration period
were recorded and further used in biomass mass bal-
ance solution methods.

4. Results and discussion

Inevitably membrane filtration performance
decreases with filtration time due to fouling. The per-
meate flux decline is a direct indication of membrane
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fouling phenomena. It is determined by several fac-
tors, such as substrate composition, membrane prop-
erties (geometry, configuration, pore size, and
material of construction), and operation conditions
(HRT, aeration rate, TMP, etc.). Moreover, the perme-
ate flux behavior is observed as a sharp flux decline at
the beginning, followed by a gradual decline due to
reversible fouling and concentration polarization, and
finally steady-state operation is obtained due to irre-
versible fouling. This behavior was also demonstrated
in our previous work, Aidan et al. [9]. Fig. 3 shows an
exponential decline of the flux during the MBR opera-
tion at different backwash scheduling. The flux started
to decline from an initial or pure water flux across the
membrane (7.3L/m?h) where there was no accumula-
tion of foulants on the membrane. The flux behavior
was obtained under different backwash scheduling
scenarios. The different vacuum time (vac) durations
were 10, 20, and 30 min, while the backwash durations
(bw) were 1 and 2min. Each vacuum time was tested
with both backwash durations.

Mallubhotla et al. [11] suggested a flux empirical
model that might describe such phenomena. By defin-
ing the initial water flux as J,, the following model
was suggested.

t

The function f(t) in Eq. (11) defines the time constants
of the flux. The sharper the flux decline, the higher
the order of the function f(t). Assuming the function
to be a linear first order, the following flux empirical
model was obtained.

J()) = J, - e (12)
where A is time constant for cake growth in (days)
and B is the cake growth constant. The flux model in
Eq. (11) agrees with the observed flux behavior in
terms of the exponential decline and the steady-state
behavior. The steady-state behavior may be obtained
from Eq. (12) at long operation period as follows:
Ast — 00f(00) — ] - €7 (13)
The flux from Eq. (13) reflects a constant value indicat-
ing the steady-state flux. It consists of two constant
terms the initial flux (J,) and the exponential term with
respect to the cake growth constant (B). Nevertheless,
the derived flux empirical model in Eq. (12) explains
the flux behavior with respect to operation time.
Hence, a more representative flux model is required to
express the flux in terms of other operation parameters

JH) =7, - P0) (11)  such as TMP and vacuum-to-backwash time ratio.
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Fig. 3. Flux decline curve for various vacuum-to-backwash times.
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Table 3

Kinetic parameters estimation

Umax (g new biomass/ g biomass day) 185

Yyio (g biomass/ g phenol) 0.0195

Ks (g phenol/m3) 1.01 x 10°
k4 (g dead cells/g cells day) 0.165

More experiments were performed using the opti-
mum backwash-to-vacuum time ratio obtained from
this work and previous works, i.e. 10min vacuum to
2min backwash (Aidan et al. [9]). The COD concentra-
tions in both influent and effluent were used in kinetic
parameters estimation. The developed kinetic model
requires the estimation of four kinetic parameters,
namely: the maximum specific biomass growth rate
(Umax), the Monod constant (K), the net biomass yield
(Ybio), and the endogenous decay coefficient (kg). The
kinetic model parameters were estimated by reconcil-
ing the model output with data obtained from the
experimental work. The kinetic parameters were cal-
culated using nonlinear regression. The estimated
kinetic model parameters are summarized in Table 3
and kinetic model was compared to the data as shown
in Fig. 4.

Fig. 4 is a plot of kinetic model calculation of
microorganism growth (rs,) vs. experimental data
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with a regression of 0.83. There is reasonable agree-
ment between the experimental data and the model
estimation which may indicate that the assumption of
middle-range concentration kinetics for biomass
growth is valid. Moreover, Fig. 4 shows the decline of
substrate utilization rate with time. This is attributed
to the high substrate consumption rates in biomass
growth. After estimating the kinetic parameters, the
biomass dynamic model was solved and validated to
experimental data. The biomass dynamic model in Eq.
(2) was solved with the following assumptions: (1)
X3 < Xy, 2) X;5, 20 (no biomass in the feed); and (3)
K¢>S (see Table 3). Solving the dynamic biomass
model yielded the following equation.

X=X, {exp(— <"I‘2> S—D, + kd> t]
S

D,, in Eq. (14) represents the waste dilution rate. It is
defined as the ratio of the waste volumetric flow rate
to the MBR volume (D,,=Q,,/V). The waste dilution
rate was estimated using the obtained experimental
data. Nonlinear regression was utilized for the dilu-
tion rates estimation. The influent dilution rate (Dj,)
was found to be 361day ' and the effluent dilution
rate (D,,) was 65day . The results indicated a higher
influent flow compared to effluent flow. The lower
effluent dilution rate may be attributed to membrane

(14)
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Fig. 4. Kinetic model prediction of microorganism growth (r,) vs. experimental data.
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Fig. 5. Model prediction of biomass concentration dynamics vs. experimental data.

fouling or pore blocking. Furthermore, the transient
biomass concentration was calculated from Eq. (14)
using both the estimated waste dilution rate and the
estimated kinetic parameters. It was further plotted
with the corresponding experimental data as in Fig. 5.
A reasonable agreement was obtained with a coeffi-
cient of determination of 0.932.

Fig. 5 shows the transient biomass concentration
declines with time. The transient decline of biomass
concentration indicates high biomass removal rates.
As more foulants were retained by the highly selective
membrane, the accumulated fouling layer thickness
increased. The growing fouling layer enhances the fil-
tration performance as it acts as a pre-filter. Further-
more, Fig. 5 demonstrates a decent affiliation of the
biomass model to experimental data. This verifies
both the estimated kinetic parameters and the devel-
oped biomass process model. The flux empirical
model in Eq. (12) requires the estimation of two
parameters A and B using experimental data. The
obtained experimental data give the flux decline as a
function of time for different backwash-to-vacuum
time scheduling scenarios. The two parameters were

estimated for each run using nonlinear regression.
Flux parameters estimation results are summarized in
Table 4 and are plotted in Fig. 6 with an average
regression of 0.96.

As illustrated in Fig. 6, the flux empirical model
shows a reasonable conjunction to experimental data
at different backwash scheduling scenarios (15days
interval). Nevertheless, the estimated flux parameters
in Table 4 varied significantly at different operating
conditions (i.e. different backwash scheduling). Thus,
any changes in the MBR operating conditions (i.e. due
to disturbance) will require re-calculation of both
parameters (A and B). Consequently, the indicated
empirical model was neither accurate nor representa-
tive to the flux dynamics in the MBR. Hence, a more
representative dynamic flux model is needed. The flux
model should relate the flux to different operation
variables such as vacuum pressure, backwash pres-
sure, and backwash scheduling. Darcy’s law describes
the flux as a function of pressure gradients. However,
observing the flux behavior in Fig. 6 indicates the
large effect of backwash scheduling on the flux
decline.

Table 4

Flux empirical model parameters estimation

Ratio (vacuum minutes to backwash minutes) 10 to 1
A (days) 23.2

B (days) 0.517

20to 1 30to1 10 to 2 20to 2 30 to 2
16.1 10.1 69.0 22.1 23.7
—0.221 0.005 2.28 0.173 —0.769
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Fig. 6. Model prediction vs. experimental data of flux dynamics.

5. Conclusions

The proposed dynamic model captured the
dynamic behavior of the MBR. The flux empirical
model had reliable estimates of the flux at different
backwash scheduling scenarios. However, the flux
empirical model parameters estimation was found to
be sensitive to different operating conditions. The gen-
erated numerical simulation results will be employed
in future work to develop a black-box model such as
artificial neural networks (ANNSs) that will correlate
flux to backwash and vacuum times in order to opti-
mize and control membrane fouling.
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