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A B S R AC T

Photocatalytic decolorization of an azo dye, ethyl orange in the presence of nano-titanium diox-
ide (99.9% anatase) suspensions at various buff er pHs 2, 5, 7, 9 and 11 under 400 W high pressure 
mercury lamp illumination under aerobic condition is described. Some important parameters 
such as nano-photocatalyst dosage, photoreaction time, buff er pH eff ect and initial concentra-
tion of dye in photo-reactor cell have been evaluated. Kinetics investigations are in agreement 
with pseudo-fi rst-order kinetic for dye degradation at all considered buff er pHs. Accordingly 
observed rate constant (kobs), photodegradation rate (kr) and adsorption constant KA are reported 
for all media based on Langmuir–Hinshelwood model. Finally spectrophotometric monitoring 
suggests that nearly complete degradation at pH 2 and 9 within considerable shorter reaction 
time than other used buff er pHs.
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1. Introduction

Azo compounds are compounds bearing the func-
tional group R–N=N–R’, in which R and R’ can be 
either aryl or alkyl. The azo compound class accounts 
for 60–70% of all dyes. Some azo dyes are toxic and 
may cause the carcinogenic eff ects [1,2]. On the other 
hand, these dyes have widely been used with textile, 
cosmetic, food colorants, printing, and pharmaceutical 
industries [3–5]. Therefore, organic pollutants includ-
ing azo dyes are very harmful from the environment 
and health points of view. In recent years, environmen-
tally and health friendly researcher have introduced a 
variety of methods for removal or elimination of non-
pleasant chemical matt er involving physical adsorption 
[6], advanced oxidation processes [7–9], biosorption 
[10,11]. Adsorption methods transfer the pollutants to 

other media leading to secondary pollution. Chemical 
oxidation methods are generally not economic due to 
the reagents that are used. On the other hand, biological 
based methods have been found that are ineff ective in 
some reports [12–14]. Therefore, developing the meth-
ods that minimize these disadvantages are in demand 
yet. Photocatalytic degradation is a good candidate for 
this mean. Some advantages of photocatalytic degrada-
tion with respect to other methods are cheapness and 
reusability, chemically and biologically inert, high effi  -
ciency, operating at ambient temperature and fi nally 
ideal to treat trace level pollutants. Because of these 
advantages, photocatalytic process as an eff ective and 
economic method has been used for complete mineral-
ization of many organic dyes [15–20]. Among various 
semiconductors acting as photocatalyst, titanium diox-
ide due to chemical stability, non-toxic nature, suitable 
band gap, high effi  ciency and low cost is preferred with 
respect to other ones [21]. To the best of our knowledge, *Corresponding author.
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despite many reports on photocatalytic degradation 
of methyl orange under diff erent conditions [22–26], 
except a report on degradation of its sodium salt [27], 
there is no report on photocatalyzed decolorization 
of non-salted ethyl orange (EO) at buff er media using 
nano-titanium dioxide. In this work, in continuation of 
previous reports on photodegradative removal [28–31], 
photocatalyst promoted EO decolorization in various 
buff er solutions using nano-titanium dioxide in a pho-
toreactor under 400 W high pressure mercury lamp illu-
mination is described and decolorization kinetics based 
on Langmuir–Hinshelwood model is presented.

2. Materials and methods

2.1. Chemicals and instuments

Chemicals such as NaOH, HCl and KCl (Merck 
company); K2HPO4 and KH2PO4 (Fluka company); 
Na2B4O7·10H2O and EO (Sigma–Aldrich company) were 
used as purchased. Nano-titanium dioxide, 70–140 nm 
(anatase) with surface area of 20–25 m2/g, and purity 
99.9% (from Sigma–Aldrich) was applied as photocata-
lyst. SEM and TEM of titanium dioxide were recorded 
on instruments of Hitachi Japan-S4160 and Philips 
CM-10 TEM microscope operated at 100 kV, respectively 
(Fig. 1). Photodegradation experiments were carried out 
at a photoreactor set involving 400 W high pressure 
mercury lamp. Dye concentration following was per-
formed by employing a JASCO V-570 UV–Visible spec-
trophotometer. A centrifuge was used for separation of 
photocatalyst from suspension. Buff er pH control was 
made by F60 pH-meter.

2.2. General photodecolorization experiment

A volume of 20 mL buff er solution (pH = 2, 5, 7, 
9 and/or 11) of EO with known concentration and a 
desired amount of nano-titanium dioxide as well as air 

bubbling through it, was placed in photoreactor cell 
and subjected to a 400 W high pressure mercury lamp. 
The reactor on the mixer was placed in the dark for 
10 min to reach sorption–desorption equilibrium on 
catalytic surface. The concentration of EO and decol-
orization percent of EO at each time was measured by 
use of UV–Visible spectrophotometer and by aid of 
calibration curves (Fig. 2) that are easily available from 
drawing of absorbance–concentration plots using pre-
pared standard buff er solutions of EO with pH 2, 5, 
7, 9 and 11 at relative maximum wavelengths at those 
pHs that are 508, 478, 472, 472 and 470 nm, respec-
tively. (The ethyl orange is also known as 4-[[4-(dieth-
ylamino)phenyl]azo] benzenesulfonic acid. It belongs 
to the weak organic acids and therefore is sensitive to 
pH meaning that it has various forms (acidic, neutral 
and anionic) that leads to diff erent absorbance of EO 
at various pHs).

3. Results and discussion

3.1. The eff ect of catalyst

For optimization of catalyst dosage at each buff er pH, 
a solution of EO at that pH was irradiated by high pres-
sure 400 W mercury lamp at room temperature. Fig. 3 

Fig. 2. Calibration curves of EO at various buff er solutions.

Fig. 1. TEM and SEM of the used nano-titanium dioxide.
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3.3. Eff ect of pH

Wastewater containing organic dyes may have dif-
ferent pHs; therefore it is important to study the role of 
pH on decolorization of dye. To study the eff ect of pH 
on the decolorization effi  ciency, experiments were per-
formed at various buff er pH values, ranging from acidic 
to basic media for constant dye concentration. pH has 
an important role on photocatalytic process due to its 
eff ects on catalyst surface charge. The surface charge of 
photocatalyst is variable in diff erent pH condition. The 
investigation of all aspects of pH eff ects on the photo-
catalytic decomposition process is not possible because 
of its multiple roles. First, it is related to the acid–base 
property of photocatalyst surface so that in acidic solu-
tion TiO2, surface is positive and in basic solution is neg-
ative while zero point charge for TiO2 surface is widely 
reported at 6.25–6.90 [34,35]. Also acid–base equilibrium 
constant of dye is aff ected by pH leading to dye adsorp-
tion on catalyst surface and fi nally on photocatalytic 
degradation. Also medium pH controls production of 
oxidizing agents. Fig. 5 illustrates a competition between 
degradation percentages of EO after 5 h in the presence 
of optimum amount of catalyst at each pH. As can see 
in this fi gure the highest degradation percents; 95% 
and 93.25% are related to pH 2 and 9. In addition to pH 
eff ects on surface charge changes as mentioned above, 
it is to be noted that in acidic pH, the higher amount of 
oxygen is adsorbed on the surface of photocatalyst and 
therefore the higher concentration of hydrogen peroxide 
is generated (Scheme 1). The hydrogen peroxide mol-
ecules can be converted to hydroxyl radicals as oxidiz-
ing agents under irradiation. On the other hand in basic 
media, high concentration of hydroxyl radial due to oxi-
dation of hydroxide anions by (h+(VB)) are responsible 
for dye decomposition.

These explanations may be the reason for high effi  -
ciency of photocatalytic degradation at pH 2 and 9.

illustrates the eff ect of catalyst dosage on photocatalytic 
decolorization at various buff er pHs after a constant irra-
diation time of 1.5 h. It is well seen that the absorbance of 
EO is decreased with an increase of photocatalyst amount 
and reached a minimum at 15 mg for buff er pH 5 and 
7; and 20 mg as optimum amounts of photocatalyst at 
pH 2, 9 and 11, respectively. The reason of this obser-
vation may be due to the fact that an increase of TiO2 
leads to more availability of active sites aff ecting decol-
orization of EO, while the additional higher quantities of 
TiO2 would not have more eff ect on the decolorization 
effi  ciency due to increased opacity of the suspension in 
large amount of catalyst leading to lower decolorization 
of dye [32,33].

3.2. Irradiation time eff ect

Fig. 4 depicts EO absorbance versus irradiation time. 
As the irradiation time increases the residual absor-
bance of solution was found to be decreased to reach 
nearly total decomposition for pH 2 and 9 after 6 and 
7 h. Decomposition percents at pH 5, 7, 11 were found 
to be 69.56%, 74.69% and 52.07% after 14, 16 and 18 h, 
respectively.

Fig. 3. Eff ect of the dosage of photocatalyst on the residual 
absorbance of EO after 1.5 h irradiation.

Fig. 4. Eff ect of irradiation time on photodecomposition 
of EO. Fig. 5. The eff ect of buff er pH on % photodegradation of EO.
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3.4. Kinetic investigation

Fig. 6 shows plots of Ln(C0/Ct) of EO versus irradia-
tion time (in which, C0 and Ct are initiated and concen-
tration at time t, respectively) for acidic (pH =2 and 5), 
neutral (pH = 7) and basic (pH = 9 and 11) media that 
found to be linear. Therefore, degradation of EO in buf-
fer solutions can be approximately modeled as pseudo-
fi rst-order kinetics similar to many other reports [36–40].

The observed rate constants (kobs) of photocatalytic 
process can be easily obtained from the slopes of Fig. 
6 plots. These evaluated rate constants have been col-
lected and presented in Table 1. Among these rate con-
stants, the highest values of kobs are related to pH 2 and 
9, respectively. This is in agreement with explanations 
of pH eff ects on degradation percent in previous sec-
tion. More kinetic investigation was performed based on 
Langmuir–Hinshelwood (L–H) kinetic model modifi ed 
to accommodate the reaction occurring at a solid–liq-
uid interface. The related surface catalytic reaction rate 
[41,42] can be expressed by:

A 01/ 1/ [ ] 1/r rR k K C k= +

where, kr is apparent rate constant at catalyst surface 
and KA equilibrium adsorption–desorption constant. If 
the diagram of 1/R versus 1/C0 at various buff er pHs 
(R = reaction rate and C0 is initial concentration) (Fig. 7) 
being drawn and found to be linear, the L–H kinetic 
model can be considered and therefore KA and kr can be 
extracted from the slope and intercept of plots. These 
parameters have been evaluated and summarized in 
Table 1. The maximum of kr values are related to pH 2 
and 9, respectively.

4. Conlcusion

In this work, photocatalytic decompositon of EO 
by nano-titanium dioxide in buff er solutions under 
irradiation by 400 W high pressure mercury lamp has 
been reported. The eff ect of photocatalyst amount, buf-
fer pHs and irradiation time on photocatalytic process 
were studied. Optimum amounts of photocatalyst were 
found to be 15 mg per 20 mL for pHs 5 and 7; and 20 mg 
per 20 mL for pH 2, 9 and 11. The dye was effi  ciently 
degraded within 6 and 7 h in pHs 2 and 9; and 14, 16 

Fig. 6. Plots of Ln(C0/Ct) of EO versus irradiation times at 
various buff er pHs.

Fig. 7. The plots of 1/R vs. 1/C0 at various pHs (Langmuir–
Hinshelwood kinetics model).

Table 1
Kinetic and thermodynamic parameters in photodegradation of EO at various buff er pHs

EO pH = 2 pH = 5 pH = 7 pH = 9 pH = 11

KA (L.mg-1) 4.37 × 10–2 4.72 × 10–2 2.9 × 10–1 6.0 × 10–2 1.16 × 10–1

kobs (h-1) 4.68 × 10–1 8.74 × 10–2 3.91 × 10–2 4.49 × 10–1 7.05 × 10–2

kr (mg min–1 L–1) 16.29 1.57 4.15 11.26 3.51

t1/2 (h) 1.48 7.93 17.23 1.54 9.83
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and 18 h in pHs 5, 7 and 11, respectively. Kinetic study 
of dye photocatalytic degradation at various buff er pHs 
2, 5, 7, 9 and 11 was performed. Pseudo-fi rst-order rate 
constants at various pHs were evaluated that are placed 
in the range of 3.91 × 10–2–4.68 × 10–1 h–1. Ultimately, L–H 
parameters including KA (adsorption constant) and kr 
(degradation rate constant at surface) were extracted 
from related plots for above buff er pHs that were in the 
spans of 4.37 × 10–2–2.9 × 10–1 L mg–1 and 1.57–16.29 mg 
min–1 L–1, respectively.
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