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ABSTRACT

This paper presents experimental and modeling data from a membrane-based wastewater
treatment (WWT) pilot plant. The effluents from various upstream steps of a can-
manufacturing plant were combined and subjected to a pretreatment process, which
consisted of coalescing filters, coagulation and gravity settling, and sand activated carbon
and polishing filtration, and a pressure-driven membrane process, such as reverse osmosis
(RO). The performance of the RO membrane was evaluated and experiments were
conducted using continuous wastewater flow. The complete membrane separation scheme
was validated with a closed loop cell through several experiments, in which the concentra-
tion of the antiscaling agent and the pH were varied to determine the optimal operational
conditions. Detailed parametric studies for these continuous flow experiments were
conducted, and the permeate flow rates in the RO membrane system were experimentally
measured. The experimental flow data were correlated and analyzed using an artificial neu-
ral network (ANN). A four-layer feed-forward network with a back-propagation algorithm
was used to train the ANN models. After the training process was completed, the experi-
mental flow data was used to assess the prediction capabilities of the networks based on
the RO permeate water flow rate. This research showed that the RO unit results in the
acceptable removal of 96.1% of the total dissolved solids and a maximum effluent recovery
close to 72%. The predicted and experimental flow data were well correlated, and a
determination coefficient between 0.97 and 0.99 was achieved.

Keywords: Pilot plant; Reverse osmosis membrane; Parametric study; Modeling; Artificial
neural network

1. Introduction

Every year, industries in Mexico and around the
world drain hundreds of thousands of cubic meters of
effluents from their processes. These effluents are due

*Corresponding author.

to a lack of reliable process models, a lack of imple-
mentation of water-saving techniques in discharges,
and the inefficient use of new biological, chemical,
and physicochemical treatments in combination with
new, more efficient and affordable technologies [1-7].
Artificial neural networks (ANN) has been applied
to predict the effluent quality as a function of the
wastewater quality parameters, to estimate the
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behavior of the system at different conditions, and to
predict the best operational conditions as a function of
the influent quality parameters, such as the chemical
oxygen demand (COD), the biological oxygen
demand, and the total suspended solids (TSS) [8-13].
According to the recent literature, there are not reports
using ANN to model an reverse osmosis (RO) mem-
brane as part of a pilot plant used to treat wastewater
from a can-manufacturing plant.

ANN is composed of a large number of single ele-
ments (neurons), which are connected to each other in
different ways forming various types of neural net-
works. The multi-layer feed-forward neural network
with a back-propagation algorithm for training is the
most popular ANN and was used in this work. The
neurons are arranged into three or more layers [14,
15]: input, hidden (which enable the network to
address non-linear and complex correlations), and out-
put layers [16].

The wastewater used in the experiments contained
significant quantities of total dissolved solids (TDS),
suspended solids, and grease. The current treatment
process of this wastewater, described by Reynolds and
Richards [17], exhibits low performance: only 40% of
the total treatment plant effluent is recovered and
reused.

In this work, pretreatment and membrane-based
processes were proposed to treat the effluent of a can
manufacturing plant. The pretreatment process
includes coalescing filters, coagulation and flocculation
reactor, settling tank, sand and activated carbon filters
and polishing filters. The membrane-based process
was using a pressure-driven membrane separation
involving RO.

An ANN model was used to describe the permeate
flow profiles at the RO system of the can-manufacturing
pilot plant under continuous flow and different oper-
ating conditions. Thus, the aim of this research was to
increase the reuse rate of wastewater by determining
improved conditions for the pretreatment processes at
the laboratory scale. In addition, these conditions will
be used for the operation of the pilot plant with an
RO membrane.

2. Materials and methods
2.1. Wastewater quality

Several effluent samples were collected from the
can manufacturing plant and analyzed (see Table 1)
using physical-chemical methods [18], such as
NMX-AA-093-SCFI-2000 for conductivity, NMX-AA-
008-SCFI-2000 for pH, NMX-AA-072-SCFI-2001 for
Calcium, Magnesium and total hardness, NMX-AA-
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Table 1
Quality characteristics of the raw effluent from the
can—manufacturing plant

Parameters Values
Conductivity, micro ohm/cm 2,467
pH 8.35
Total hardness, mg/L as CaCOj3 71.6
Calcium hardness, mg/L as CaCO; 36
Magnesium hardness, mg/L as CaCOj; 35.6
Silicon oxide, mg/L 258
Total solids, TS, mg/L 1862
Total dissolved solids, TDS, mg/L 1817
Total suspended solids, TSS, mg/L 45
Chemical oxygen demand, COD, mg/L 300

075-1982 for SiO,, NMX-AA-034-SCFI-2001 for total
solids (TS), TDS and TSS, NMX-AA-005-SCFI-2000 for
grease and oils, and NMX-AA030-1981 for COD.
Table 1 shows the quality characteristics of the raw
effluent, where high values are mainly due to the lack
of an effective filtration process in the current plant.
In particular, the high concentrations of silicon oxide
are due to the washing water used, which is obtained
from an underground water body. In contrast, the
high conductivity, TS and TDS values are related to
the application of chemical additives during the can
washing process. These quality characteristics of the
effluent indicate that it cannot be reused in other
washing steps or discharged through the drain with-
out an appropriated treatment.

2.2. Pretreatment

Fig. 1 shows the diagram of the current design of
the can-manufacturing wastewater treatment (WWT)
plant, which does not allow reaching a reuse rate
higher than 40%.

Fig. 2 shows the diagram of the proposed design
for the WWT plant. A pilot plant with a capacity of
908.40 L/h was built based on this design for test and
validation purposes. As can be seen this proposal
includes RO unit and polishing filters, which allow
reaching treated water with better quality characteris-
tics [19-22]. The wastewater is pretreated before it is
fed into the RO unit to reduce the values of some
parameters, such as conductivity, total hardness, sili-
con oxide, TDS, and COD. Both oil and grease are
removed from the wastewater through a coalescing fil-
ter system, which is the most efficient and cost-effec-
tive method to separate the surface and emulsified
hydrocarbons in the effluent.

Before the water stream enters the coagulation
reactor, a continuous feed flow of coagulant and
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Fig. 2. Flowchart of the proposed WWT pilot plant.

flocculant were added, and the pH was maintained at
5 by the addition of a 1.0 N HCI acid solution. Differ-
ent combinations of coagulant—flocculant were pro-
posed and analyzed using a jar test.

The operational conditions for the coagulant reac-
tor were determined during the same jar test using a
2" factorial design, in which four variables (initial pH,
coagulant concentration, stirring speed during floccu-
lant addition, and flocculant concentration) and two
levels for each variable (high and low) were consid-
ered. The best coagulant—flocculant combination was
chosen based on the response variables (turbidity,
absorptivity, and transmittance parameters).

The wastewater leaving the coagulation reactor is
fed into a settling tank with a volume capacity of

1,100L, where settling time was obtained using a
batch settling column test. Additionally, the flow is
fed into an array of two filters: a sand and gravel col-
umn and an activated carbon and anthracite column.
These filters remove most of the suspended particles
and organic compounds present in the effluent. Both
columns have a height of 1.52m and a total bed vol-
ume of 226.53 L.

After passing through the filter units, the effluent
flows into a transfer tank, where it is mixed with an
antiscaling  solution (VIATEC 4000) with a
concentration of 3.0 mg/L, and the pH is adjusted by
the addition of 1.0 N HCIL. The mixture is then fed to a
polishing filter system in a parallel configuration. Each
polishing column has a height of 0.53 m, a diameter of
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0.10m, and an area of 0.51 m? of poly propylene as
the filter media.

2.3. RO membrane

An organic polyamide membrane is used for the
RO. To avoid an excess solid load over the RO mem-
brane [23], the effluent is pretreated and filtered before
passing through the membrane. All of the RO mem-
branes used in the trials were procured from Nitto
Denko Company. The kind of membrane used in this
study had the following characteristics: maximum
operating pressure of 4.16 MPa, maximum chlorine
concentration lower than 0.1 mg/L, maximum opera-
tion temperature of 45°C, range of operating pH from
2 to 10, turbidity in water lower than 1.0 NTU,
minimum flux ratio concentrate/permeate of 5:1,
maximum pressure drop equal to 0.07 MPa, and filtra-
tion area of 37.16 m>.

2.4. Closed-loop RO membrane system

The RO membrane unit comprises a storage tank
of 2,000 L and a subsequent high-pressure reciprocat-
ing pump, which discharges directly to the RO mem-
brane and operates at a pressure of 1.87 MPa. The RO
membrane cylinder has two outputs: one for the
permeate flow and one for the recirculated flow
(concentrate). The recirculate flow has a drained outlet
(purge). The recirculated flow returns to the storage
tank of this process unit.

2.5. ANN modeling

The number of hidden layers and the number of
neurons in hidden layer are problem-specific and can
be selected through trial and error [24].

After training, two hidden layers with a particular
number of neurons resulted with less error prediction
and were thus selected for the network architecture,
which also included three input variables and one
output response. During the training of the neural
network, only 33% of the total collected data were
used. The complete data set consist of the following
inputs: silicon oxide inlet concentration, TDS inlet
concentration, and time. The output of the network is
the permeate flow and the Levenberg-Marquardt
algorithm was used for the training.

3. Results and discussion

This section is divided into four parts. In the first
part, the data from the main pretreatment processes
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are reported and discussed. The experimental data are
presented and discussed in the second part. In the
third part, an ANN was used to predict the flow data
for the RO membrane system under different condi-
tions. Finally, a comparison of the operational results
between the current WWT used in the can-manufac-
turing plant (original process design) and the WWT
pilot plant (new design proposal) is shown in the last
part.

3.1. Wastewater pretreatment

Although the overall pretreatment stage comprises
several processes, coagulation, flocculation, and sedi-
mentation are the most important because these can
have a direct influence on the performance of the RO
unit.

3.1.1. Coagulation/flocculation trials

Table 2 shows the combinations of coagulants and
flocculants used in these experiments. To determine
the optimal conditions for coagulation and flocculation
[25], a jar test [26] was performed at 22.6°C using the
experimental trials showed in Table 3, and considering
these results the best combination of coagulant and
flocculants was selected.

The best combination of chemicals in Table 2 was
found to be the number 2, with Al,(SO4); as the coag-
ulant and NALCO 9907 as the flocculant. This combi-
nation was tested in 16 trials, which were defined by
the 2* factorial design, with two levels (high and low)
for the initial pH, the coagulant concentration, the
flocculant concentration, and the stirring speed during
flocculant addition.

As shown in Table 3, the trial 16 was found to be
the best based on the improved turbidity, absorptivity,
and transmittance results, and the operating condi-
tions that provided the best results were the following:
pH controlled in 5, coagulant concentration of

Table 2
Coagulant—flocculant combinations used in the different
jars tests

Combination Coagulant Flocculant

1 CaO NALCO 9907
2 AL (SO4)3 NALCO 9907
3 FeCl; NALCO 9907
4 CaO NALCO 3249
5 Al (SO4); NALCO 3249
6 FeCl; NALCO 3249

*NALCO is a worldwide chemical water treatment company.
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Table 3
Jars testing results for case 2 with Al,(SO4); as coagulant and NALCO 9907 as flocculant
Initial ~ Coagulant Aly(SOy4); Cationic flocculant Final = Turbidity = ABS
Trial pH 10.0 mg/L (mL) RPM’s 45s NALCO 9907, 1 mg/L (mL) pH NTU (10"  T%
1 10 1.00 100.00 1 9.78 1.00 0.03 99.34
2 5 6.50 150.00 4 6.01 2.00 0.10 97.65
3 5 1.00 100.00 1 5.61 1.00 0.06 98.70
4 10 6.50 100.00 1 9.72 4.00 0.17 96.23
5 10 1.00 150.00 4 9.58 2.00 0.09 98.00
6 10 1.00 100.00 4 9.80 1.00 0.04 99.06
7 10 6.50 100.00 4 9.81 0.00 0.00 100.0
8 10 6.50 150.00 4 9.59 1.00 0.04 99.20
9 10 6.50 150.00 1 9.78  4.00 0.19 95.69
10 10 1.00 150.00 1 9.77 2.00 0.07 98.47
11 5 6.50 150.00 1 5.93 5.00 0.22 95.06
12 5 6.50 100.00 1 5.59 1.00 0.04 99.08
13 5 1.00 150.00 1 5.98 1.00 0.03 99.23
14 5 1.00 150.00 4 6.00 1.00 0.02 99.60
15 5 6.50 100.00 4 5.72 0.00 0.01 99.68
16 5 1.00 100.00 4 5.82 0.00 0.00 100.0
*NTU = Nephelometric Turbidity Unit, ABS = Absorptivity, and T% = Transmittance.
10.0 mg/L, stirring required during flocculant -~ 20%
addition of 100 min during 45 s, and flocculant - 40%
concentration of 1.0 mg/L. - 50%
§ o 0%
g
3.1.2. Batch settling column test a o 80%
- 90%

To achieve an effective separation of the sus-
pended solids after the coagulation-flocculation pro-
cess, it is important to determine the detention time in
the settling tank. Therefore, tests were performed in a
batch settling column to determine the percentage of
suspended solids in water samples withdrawn from
the column ports at different heights and at selected
times intervals [27]. The settling column, consist of an
acrylic pipe with a height of 330 cm, a diameter of
1524 cm, and six sampling ports located at 50 cm
intervals.

The amount of solid removal, which was expressed
as a percentage, was calculated for each sample based
on the initial concentration of suspended solids and
the concentration of solids in the withdrawn sample.
Fig. 3 shows the isopercentage curves representing the
removal of solids at different times and depths.

At a settling time of 60 min, 85.41% of the sus-
pended solids were removed and complete removal of
the suspended solids was experimentally confirmed
with a turbidity of 0.00 NTU after settling tank (same
turbidity value of trial 16 in jar test results shown in
Table 3). In the same way, chemical analysis taken off
after settling tank at the wastewater pilot plant con-
firmed that the total hardness was eliminated.

+ 86.41% (60 minutes)

0 10 20 30 40 50 60 70 80 90
Time, minutes

Fig. 3. Isopercentage curves for the calculation of the per-
centage removal of solids during the settling column test.

3.1.3. Antiscaling and pH adjustment

The effluent enters this transfer tank, where it is
mixed with an antiscaling solution (VIATEC 4000) at a
concentration of 3.0 mg/L and 1.0 N HCI, which is
used for pH adjustment.

To determine the optimal operational conditions
for the RO unit and to analyze the RO membrane foul-
ing, several experiments with different pH and anti-
scaling agent concentrations were performed
according to Table 4. Experiments 6 and 9 were per-
formed under the same conditions but in experiment
9 the RO membrane being used was backwashed with
a solution of 1.0 N HCI, whereas a new RO membrane
was used in experiment 6.

Once the optimal conditions for the RO system
were determined, several experimental runs were per-
formed, and the resultant data were collected and
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Table 4
Experimental analysis of the RO membrane system

Antiscaling agent (VIATEC 4000)

Experiment pH concentration (mg/L)

12
7
12
7

*

O 0O NI ONUl s WN —

1
1
3
3
1
3
1
3
3

B W W

“In this particular case, the RO membrane was previously cleaned
with HCI 1.0 N solution to reduce the pressure drop and increase
the permeate flow.

analyzed using the ANN tool box in MATLAB R2009b
[28-30].

3.2. Experimental data

Nine different runs were performed in the RO
membrane system, as shown in Table 5. These results
are shown in Figs. 4-8 for the nine different cases. As
shown in Fig. 4, the SiO, concentration at the inlet of
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the RO membrane in all cases ranges from 18 to
22 mg/L and it is almost the same in all of the runs.
Fig. 5 shows the SiO, concentration at the outlet of the
RO membrane, which is constant at 4.0 mg /L for all
cases, except for runs 1, 7, and 8.

Fig. 6 shows the TDS concentration at the RO
membrane inlet, which ranges from 1,315 to
1,365 mg/L and is almost the same in all of the runs.
Fig. 7 shows the TDS concentration at the outlet of the
RO membrane, which shows a good reduction in all
runs, but in cases 6 and 9 this TDS concentration
reduction is better and ranges from 58 to 80 mg/L.

Fig. 8 shows the permeate water flow at the RO
membrane for all runs and better performance is
shown in case 9, which ranges from 499.62 to
681.30 L/h with an average of 647.24 L/h.

Table 5 shows the performance of the RO mem-
brane after six days of continuous operation during
the nine different cases, which involved different pH
values and different concentrations of the antiscaling
agent VIATEC 4000. Each experiment was run until
the membrane became saturated, which caused the
pressure drop to increase.

The results obtained for case 9 showed that 92.63
and 78.94% of the silicon oxides were removed in the
treatment of the raw wastewater through the various
processes prior to the RO separation process and

Table 5
RO membrane performance under different operation conditions

Cases
Variable 1 2 3 4 5 6 7 8 9
pH 12 7 12 7 4 4 3 3 4
Antiscaling agent concentration (mg/L) 1 1 3 3 1 3 1 3 3
Inlet SiO2 concentration (mg/L) 18 20 21 19 20 20 20 20 19
Inlet TDS concentration (mg/L) 1,380 1,343 1,302 1,311 1,350 1,351 1,339 1,341 1,346
Permeate water flow (L/h) 39743 483.72 501.89 579.11 595.00 626.80 48826 510.98 647.24
Outlet SiO2 concentration (mg/L) 4 4 4 4 4 4 10 6 4
Outlet TDS concentration (mg/L) 165 171 152 156 111 72 185 175 71

-&- Casel
= Case 2
4 Case 3
—+- Case 4
# Case 5
-o- Case 6
= Case?7
& Case 8
-+ Case 9

0 20

40 60

80 100 120

Time (h)

Fig. 4. SiO, concentration variation at the RO membrane inlet.
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Fig. 5. 5iO, concentration variation at the RO membrane outlet.
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Fig. 6. TDS concentration variation at the RO membrane inlet.
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Fig. 7. TDS concentration variation at the RO membrane outlet.

through the RO membrane system, respectively, which
indicates a global removal percentage of 98.44%. Addi-
tionally, removal percentages of 25.92 and 94.72% of
the TDS were achieved in the same process steps,
which result in a global TDS removal percentage of
96.09%.

These results confirm the contribution of the RO
membrane system because TDS was not effectively
removed by the coagulation-flocculation process. As

shown in Table 5, the permeate flow shows a linear
growth with increasing concentration of the antiscal-
ing agent. In addition, decreasing the pH increased
the permeate flow to its maximum, which was
obtained at pH 4. In contrast, the TDS concentration
exhibits a coupled relationship between the pH and
the antiscaling agent concentration because it is not
directly influenced by a single variable. The best
behavior of the critical variables (permeate flow and



1184

A. Salgado-Reyna et al. | Desalination and Water Treatment 53 (2015) 1177-1187

Permeate flow
L/h

Fig. 8. Permeate water flow (L/h) at the RO membrane.

Table 6
ANN results for the experimental data obtained from all
of the cases used to study the RO membrane system

MSE Number of Determination coefficient
Case (x10% iterations (R% x 10)
1 72 181 9.87
2 171 143 9.75
3 322 21 9.56
4 7.34 574 9.97
5 5.78 29 9.98
6 2.38 171 9.98
7 242 56 9.86
8 345 55 9.64
9 5.55 27 9.97

TDS) was achieved at pH 4 and an antiscaling agent
concentration of 3 mg/L (case 9 shown in Table 5).
Thus, these conditions were used for the continuous
operation of the pilot plant.

Case 4
Case 5
Case 6
Case 7

Case 8

—#- Case9

80 100 120 140
Time (h)

3.3. ANN modeling

Using the MATLAB ANN tool box, 33% of the 144
operational data sets collected (48 sets of operational
data) were used for training, whereas 33% and 33%
were used for validation and testing, respectively.

Table 6 shows the ANN results, including the
mean square error (MSE), the number of iterations,
and the determination coefficient, for the experimental
data in the nine cases described in Table 5. For all of
the cases, three neurons in each of hidden layers were
considered, and the nets were trained using a Leven-
berg-Marquardt algorithm.

The goal of the training step is to minimize the
error between the output y/ obtained by the network
and the desired output, df. This error function, which
is represented by E”, is shown in Eq. (1):

1 M 2
B =S @) (1)

Input signals propagation

Input
data

Real net Wished

Y, | output output
P P
Yk di

P
EP = (1/2) e (dy— Vi)
— —~— -

Error

Error back propagation /

Fig. 9. Network architecture design used to obtain the best results for case 9.
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where EP = error function (see Figs. 2-8), df = the
expected output in output neuron k and y; = the real
net output in output neuron k.

As shown in Table 5, the case nine gave the high-
est permeate flow and the lowest concentrations of sil-
icone oxide and TDS at the RO membrane outlet after
six days of continuous operation. In addition, the case
nine results in one of the lowest MSE and one of the
highest determination coefficients.

Fig. 9 shows the feed-forward network used for
the analysis of the data obtained from case nine,
which comprises three input variables, two hidden
layers with four and three neurons, respectively (with
the sigmoid-tangent transfer function), and one output
response (with the sigmoid-logarithmic function).
Different configurations of the ANN model were
tested, with three neurons in the hidden layers, and
one output response (with sigmoid-logarithmic
function).

Table 7

ANN results using different networks for the experimental
data obtained during case 9 in the test of the RO
membrane system

Number Determination
MSE of coefficient
Run Network used (x10% iterations (R? x 10Y)
1 Feedforward 5.64 25 9.98
with Back
propagation
2 Fitness 2.38 170 9.75
approximation
3 Layered- 629 95 9.79
recurrent
4 Pattern- 2.81 25 Not
recognition determined
Table 8

ANN results using different network configurations for
the experimental data obtained during case 9 in the test of
the RO membrane system

Number of
neurons in the Determination
first hidden MSE  Number of Coefficient
Run layer () (x10% iterations (R? x 10")
1 3 5.64 25 9.98
2 4 2.83 250 9.98
3 5 3.45 160 9.98
4 6 4.54 45 9.98
5 10 4.97 33 9.98

“Second hidden layer with 3 neurons in all runs.
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Fig. 10. Predicted and experimental values of the permeate
water flow for all sets (case 9).

726.72

545.04

Predicted permeate flow
L)

454.20

454.20 567.75 681.30

Experimental permeate flow
(L)

Fig. 11. Predicted and experimental values of the permeate
water flow for all sets.

Table 7 shows the ANN results, including the net-
work used, the MSE, the number of iterations, and the
determination coefficient, for the experimental data
obtained in case nine. Table 7 also shows that the
feed-forward network selected (Newff) resulted in a
very low MSE and the highest determination coeffi-
cient. The performance obtained in the selected net-
work with different neural configurations is shown in
Table 8.

The experimental and predicted decrease in the
permeate flow at RO system is presented in Fig. 10.
Fig. 11 compares the predicted and the experimental
permeate flows and shows that the prediction is extre-
mely close to the real values with a determination
coefficient of 0.99.

3.4. Comparative analysis of the original and the proposed
designs

The comparison of the complete operation of the
WWT pilot plant (operation proposal) with the
Reynolds and Richards’s physical-chemical plant
(original operation of the WWT in the can-manufac-
turing plant) is shown in Table 9.
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Comparison of the operational results obtained with the WWTP in the can-manufacturing plant (original process) and

the WWT pilot plant (new design proposal)

Original process

Parameter Units (Reynolds and Richards) =~ WWT Pilot plant Improvement (%)
Conductivity Micro mho/em  119.70 65.80 45.02
pH pH units 7.30 4 -
Total hardness mg/L as CaCO; 30 0 100
Calcium hardness mg/L as CaCO; 19 0 100
Magnesium hardness mg/L as CaCO; 11 0 100
Silicon oxide mg/L 20 4 80
Total solids mg/L 122 71 41.80
Total dissolved solids (TDS) mg/L 122 71 41.80
Total suspended solids (TSS) mg/L 0 0 0
Chemical oxygen demand (COD) mg/L 50 <10 >80
Recovered and reused water flow % 40 71.25 31.25

Table 9 shows that the operation of the pilot plant
results in improvements in all of the reported
parameters.

The main reasons of these improvements are the
following: the use of coalescing filters, which maxi-
mized the elimination of grease and oils and
improved the removal of COD, the adjustment of the
pH to 4.0, which reduced bicarbonates and carbonates
from pretreated wastewater and antiscaling addition
helped to reduce the SiO, in the permeate water flow.
The selection of the optimal coagulant and flocculant
combination using jar test eliminated all types of hard-
ness in the permeate water flow.

The inclusion of an RO membrane process in the
pilot plant improved the wastewater filtration by
decreasing the TS concentration. The combination of
polishing filters with the use of the antiscaling agent
VIATEC 4000 and pH adjustment, improved the oper-
ational cycle time of the RO membrane by signifi-
cantly decreasing its fouling.

4. Conclusions

Effluents from a can-manufacturing plant were
treated using a number of sequential pretreatment
processes and membrane filtration. Pretreatment pro-
cesses include coagulation, flocculation, settling and
dual media sand-gravel, and activated carbon-anthra-
cite filtration. Results of the coagulation and floccu-
lation trials (based on the experimental design)
show that effluents treated with Al (SO4); as coagu-
lant and NALCO 9907 as a cationic flocculant, at
pH 5, achieve the best quality of treated water (0
NTU). Furthermore, detention time of 1 h in the set-
tling tank allows about 85% removal of the sus-

pended solids. Moreover, to increase the permeate
flow in the RO system and to avoid membrane foul-
ing (measured as a high pressure drop), pH of the
influent must be adjusted to 4, a dose of 3 mg/L of
antiscaling agent must be added, and membrane
must be operated at 1.87 MPa. At these conditions,
the average permeate flow achieves the highest
value (647.24 L/h) which represents a 71.25% water
recovery with sufficient quality for reuse. These con-
ditions also resulted in a reduction of 94.72% of the
TDS and a reduction of 79% of the SiO, concentra-
tion.

The permeate flow rate was analyzed in different
scenarios, and the possibility of an ANN approach
was investigated. The optimal model, which consisted
of a feed-forward network with two hidden layers
with four and three neurons, respectively, was able to
predict the permeate flow with the lowest MSE and a
determination coefficient of 0.99. This developed
model was able to interpolate the process variables at
many other conditions of interest with excellent sav-
ings in both time and cost (as shown in cases 1
through 8). It is very important to mention that the
wastewater pilot plant results in a significantly
improved quality and quantity of the water treated
and recuperated than the Reynolds and Richards tech-
nology used at the can manufacturing plant before of
this investigation.
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Symbols

EP — error function

d? — the expected output in output neuron k
vP — the real net output in output neuron k
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