¢! Desalination and Water Treatment
¢ www.deswater.com

doi: 10.1080/19443994.2012.698796

1944-3994/1944-3986 © 2013 Desalination Publications. All rights reserved

51 (2013) 1457-1467
February

Taylor & Francis
Taylor & Francis Group

Modeling of phosphoric acid purification contaminated by

magnesium and cadmium

N. Boulkroune, A.H. Meniai*, W. Louaer, K. Bitchikh

Laboratoire De L’ingenierie des Procedes de I'environnement (LIPE), Departement de Chimie Industrielle,

Universite Mentouri de Constantine, Constantine, Algeria
Tel.[Fax: +213 818880; email: meniai@yahoo.fr

Received 29 February 2012; Accepted 10 May 2012

ABSTRACT

The present study brings to light modeling of the purification of phosphoric acid, which is
obtained through the wet process route. The said wet process inevitably is used to remove
the impurities, mainly the heavy metal cations such as Mg>*, Cd**, etc., which are initially
present in the phosphate rocks and it is imperative that these impurities be removed . For
the very same purpose, liquid-liquid extraction has proven to be one of the most reliable
techniques and hence it is again considered, basing the model on the purely theoretical con-
siderations of thermodynamics and mass transfer. The developed model was tested on two
systems with Mg**and Cd** as the contaminants and dinonylnaphthalene sulfonic acid and
di (2-ethylhexyl) dithiophosphoric acid as complexing agents, both diluted in kerosene and
dodecane, respectively. A parametric study was carried out, to investigate the effect of cer-
tain key parameters such as the phosphoric acid and the extractant initial concentrations.

Keywords: Phosphoric acid purification; Extraction; Magnesium; Cadmium; Phosphate;

Complexing agent

1. Introduction

Many important industrial fields, such as pharma-
ceuticals, food, soap and detergents, and fertilizers,
involve the use of phosphoric acid [1]. The use of
phosphoric acid has paved the way for the develop-
ment of phosphoric-acid-based production processes
such as evaporation, fixation on land filtration, precip-
itation, adsorption or liquid-liquid extraction, with
the last mentioned serving as the main topic of the
present study [1-5]. However, a great majority of

*Corresponding author.

these works are purely of an experimental nature,
hence motivating the modeling of this process.

In fact, phosphoric acid is produced in the wet
process which consists of sulfuric acid attack on the
phosphate rock. However, a major drawback of this
production route is that the obtained phosphoric acid
inevitably contains impurities such as organic matter
and heavy metal cations such as Cu?**, Cd**, and
Zn®*. These species are initially present in the
phosphate rock and then migrate into produced phos-
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phoric acid solutions from where it is imperative that
they be eliminated.

2. Thermodynamic modeling

As mentioned above and to remove heavy metal
ions, with a view to purifying the phosphoric acid,
the liquid-liquid extraction technique, involving an
organic solvent, is employed. However a priori, metal-
lic cations are made to enter into complexes using a
carefully chosen complexing agent. The purification
process then combines a chemical step (complexation
and acid dissociation reactions) and a physical step (a
mass transfer of the formed complex into the organic
phase to ensure phase equilibria). The aim of the pro-
posed model for phosphoric acid purification by the
liquid-liquid extraction technique is to calculate the
mole fractions of the different species present in both
phases.

The phase equilibria are calculated using the UNI-
QUAC model which is modified to suit the case when
the electrolytes are present in the system. However,
this method requires interaction parameters, which
are also calculated using the experimental data
reported in the literature [6,7].

2.1. Chemical equilibria

The model is based on the method proposed by
Devore [8], which is briefly described in the present
section. The electrolyte dissociation and complex for-
mation take place according to the following reaction
series:

A—B+C K; (1a)
B~D+C K (1b)
F~G+H K (1c)

with Kl,Kz,
stants.

The initial concentrations of the different species in
the reaction mixture are specified, while those of the
species resulting from the dissociation of phosphoric
acid are initially considered as zero. If [AT, BT, etc.,
represent the molar concentrations of the reactants
at the ith iteration, their values at the next iteration
(i+1th will be calculated from the equilibrium
equations, considering the following general chemical
equilibrium:

,Ki, the equilibrium dissociation con-
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A—B+C

The concentrations are:

at ith iteration [AT [B] [CY

at (i + 1)th iteration [AT — 4 [Bl'+ 4 [CI'+ 4
let:

[A]"! = [A] - 4 (1d)
[B]"*! = [B]' + 4 (le)
[CI* =[C] + 4 (1f)

with 4 the concentration step change. The equilibrium
constant at the ith iteration is given by:

(T + 4)(B] + 4)
K; = . 1
([A] — 4) (e)

Neglecting the terms in 4 of power higher than 1
gives:

Ki[A]' ~ [B][C]

A =12
[C'[B]' + K

(1h)

The concentrations of the species are then adjusted
several times during one iterative cycle. If a negative
concentration is generated, the corresponding reaction
is skipped until the next iteration.

In the present study, the purification of phosphoric
acid, contaminated with magnesium and cadmium, by
the liquid-liquid extraction technique is considered
using two complexing agents namely the dinonyl-
naphthalene sulfonic acid (DNNSA) and the di (2-eth-
ylhexyl) dithiophosphoric acid (D,EHDTPA) as well
as kerosene and dodecane, as diluents, respectively.
The experimental study for the two systems was
reported in [6,7].

The different chemical equilibrium and reactions
taking place in the aqueous phase are the
following;:

Dissociation reactions [9]

H,PO, — H;PO; + H" K, = 7.107x10°° (R1)

H,PO, «+HPO; +H" K, =4.275x10"7
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HPO; «PO; +H" K;=1.15x10"" (R3)
H;PO, + H,PO; < H;P,0; K, = 1263 (R4)
HJr + H5P208_ — HﬁPZOB K5 = 03 (RS)
HzO — H+ + OH7 K6 = 10_14 (Ré)
Complexation reactions [6,7]:
Mg*" + (HA); < (MgA,-6HA) + 2H" K; =59.6 (R7)
Cd*" +2HR « CdR, + 2H" Kz = 11x10° (R8)
Substituting into Eq. (1h) gives:
Ky [H5POy4] — [H,PO, ][H]*
4y = 2
T LPO,]+ [+ Ky 2a)
-1 J_ +
[HPO, ] + [H'] + [Ky]
2-1 31T+
4, =5 [HP% ] [1104 J[H"] (20)
PO, 1+ H']+ K5
1. — Ka[HsPO4J[H,PO; ] — [H5P,05] 2d)
471+ Ky[H3PO,] 4 K4 [H,PO; |
_ Ks[H'][HsP,05] — [HeP>0s] 20)
° 7 1+ Ks[H'] + Ks[HsP,O;]|
Ks — [H'][OH ]
Ao = 2f
©= Ky + [H1'] + [OH | @
4y — K;[Mg™[(HA)g] — [(MgA,-6HA)][H']*
K7[(HA)g] + K7 [Mg™] + 4[H"][(MgA,-6HA)] + [H']*

(2g)
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B Ks[Cd*"][HR]* — [CdR,][H*]?
* Ks[HR]” 4 4K;3[Cd**|[HR] 4 4[H"][CdR,] + [H]*
(2h)

8

The concentrations of the different species in the
mixture are calculated by solving Egs. (2a)-(2h) simul-
taneously.

2.2. Liquid phase equilibria

The calculation of liquid-liquid equilibria is
based on the estimation of the activity coefficients
according to a thermodynamic model activity such
as NRTL, UNIFAC, UNIQUAC, etc. In the present
study, the UNIQUAC model is employed under
its modified version to take into account the pres-
ence of electrolytes and it is expressed as follows
[10]:

Lny, = LmyP? + LmyS + Lmy® (3)
Lny; = Ly + LnypSn + Ly R (4)

where n and b denote the solvent and the ion, respec-
tively. LnyPH Ln)$, and LR are the Debye-Huckel,
the combinatorial, and the residual contributions to
the activity coefficient of solvent n or ion b, respec-
tively, and are expressed as follows:

2.2.1. The Dubye—Huckel term

2A

LnyPH = M5 (14 bI'? —1/(1 4 bI"/?)) — 2In(1 + bI'/?)

(5)

Lnyy™ = —ﬁA%{;w (6)
2.2.2. The combinatorial term

Lnyg:Ln%+l—f—:—%zqn(Ln?—:+l—?—:> (7)
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qub< " 0, Oy " Twb + Tw (b (8)

where r,, and g, are the surface area and volume
parameters, Z is the coordination number set equal to
10, Op, ¢y, and ¢, are calculated from the following
expressions:

Xifi

0; = 9
PIEST) ®)
X;t;
= 10
b= (10)
2.2.3. The residual term
R 2
Lny; =gn 1—Lnsn—An—TB (11)
* R 1
Lnyb' = b (—Lnsb — Ab + T (Db + Eb — ZB)
L+ ) (12)
where:
S| = Z le//kl (13)
K
Y
Cy === 14
u="g (14
Ac=) " 0Cu (15)
1
Db == Z Z H?Hmélb,m (Cim + Cmi) (16)
i#b m
Eb - Z mebm(cbm + Cmb) (17)
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fom =0 Y _ Ovim0; (18)
i#b
B=> 0 (19)

Yop and Yo" are the values of ¥}, and ¥y, in
water pure. >, and ) ; are sums over all the species

in the system.

Y = exp(— a_;l) (20)
In this case, ay is the interaction parameter
between species k and L
A priori, the interaction parameters of the modi-
fied UNIQUAC model can be determined from the
minimization of an objective function which can be
written as follows:

F= Z Z[ln(ijj)l - ln(ijj)n]2 (21)
i

where (ij/-)I and (ijj)H are the activities of the con-
stituent j in phases I and II, and this is taken for all
tie lines.

The objective function F is minimized by the
simplex method of optimization developed by Nelder
and Mead in 1965 [11].

3. Results and discussion

The proposed model is tested for the two systems
which are shown in Table 1.

A priori, for a given initial concentration of the
complexing agent, the total amount of complex
formed should be calculated, and hence a complexa-
tion ratio R that is defined as the total amount of com-
plex formed over that of an initial free metal
concentration (before complexation) [9]. In other
words, R gives an idea of the extent of complexation.

An assessment of the developed computer code
was carried out by comparing the calculated results
with the experimental values, as shown in Fig. 1, from
which it can be seen that the model is more reliable
for the second system than the first one where the
agreement is more qualitative than quantitative.

Fig. 2 shows the effect of the concentration of com-
plexing agent on the complexation ratio. For a given
concentration of phosphoric acid and different concen-
trations of the metal, it is noted that the ratio of
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Table 1
Systems tested
System Acid Metallic ion Complexing agent Organic diluent
1 H;PO, Mg** Dinonylnaphthalene sulfonic acid (DNNSA) Kerosene
H;PO, Ccd** Di (2-ethylhexyl) dithiophosphoric acid (D,EHDTPA) Dodecane
5
[Mg*]=0.02M 1,0 ARABKARERROEROER A AR
44 —— Exp
—4— Cal [Cd?]=6.6710" (M)

¥
/
3 081 / s Exp
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0,6 - /
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|

Complexation ratio
Complexation ratio

0,2 4

e m s B R 00 t———F———T T
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[DNNSA] (M) [D,EHDTPA] (M)

Fig. 1. Comparison between the calculated and experimental results for both systems.
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Fig. 2. The effect of the concentration of a complexing agent on the complexation ratio for different concentrations of the
metal for both systems.
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complexation increases with increasing concentration
of the complexing agent, particularly for low values of
the metal concentrations. This may be regarded as a
direct consequence of the definition of the complexa-
tion ratio.

Fig. 3 shows that the increase of metal concentra-
tion has a negative effect on complexation ratio and
that too whatever the concentration of phosphoric
acid.

Applying the thermodynamic approach described
above, a huge matrix of interaction parameters has
been obtained (see Appendix), where all the values
have been used to simulate the distribution of differ-
ent species between the aqueous and the organic
phases. A comparison between the metal mole frac-
tion values in the two phases obtained from the com-
plexation model based on the reported experimental

1,000 A
0,995 -
g
©
c 0,990 -
S
©
x
9 0,985
Q
£
o
(@)
0,980
[DNNSAJ=0.2M \
—a— [Mg2+]=0.02M .
0975711 ¢ [Mg2+]=0.03M
T T T T T T T T T T T

0 1 2 3 4 5 6
Initial concentration of phosphoric acid (M)
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data and those obtained using the modified UNI-
QUAC model, is given in Table 2.

4. Conclusion

The present study shows a model based on a com-
bination of chemical and physical equilibria, through
an application to the purification of phosphoric acid
by the liquid-liquid extraction.

A computer code was developed and tested with
two systems where phosphoric acid was contaminated
with cadmium and magnesium ions, respectively. The
proposed model was also used to investigate the effect
of certain parameters on the complexation such as the
effect of concentration of the complexing agent and
the effect of the acidity of the medium. The compari-
son between the calculated and experimental results

1,0000 LS e
\'\'\. .\.\.\.\°\o\o
0,9999 1
)
©
50,9998
©
x
5
£ 09997
]
o
0,9996 4| [D2EHDTPA]=0.02M \
—— [Cd2+]=6.67*10-3M .
—4—[Cd2+]=0.356"10-3M
0,9996 +———F———F———T—————1

0 1 2 3 4 5 6
Initial concentration of phosphoric acid (M)

Fig. 3. The effect of an initial concentration of phosphoric acid on the report of complexation for both systems.

Table 2
A comparison between the experimental and calculated values
System Experimental fraction f; Calculated fraction model f,
- 1
Error (%) :—l(ﬁ f?' x 100
1

1 X 2.7796018 x 107° 2.6509272 x 107° 4.63

X5 3.7509361 x 1072 3.5189835 x 102 6.18
20X 1.3202921 x 10~* 1.3785210 x 10~* 441

X, 2.0828463 x 1074 2.176644 x 10~* 45

With X; and X, the metal and the complex mole fractions after equilibrium in the aqueous and organic phases, respectively. It can be

seen that a good agreement is obtained.
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for both systems gave a good agreement, particularly
for the second system.

The results were also used for the determination of
interaction parameters for the modified UNIQUAC
model used for the activity coefficient calculations.

In conclusion, the present study should be seen as
an attempt to model the liquid-liquid extraction start-
ing from purely theoretical considerations of thermo-
dynamics and mass transfer.

List of symbols

Ab  Debye-Huckel parameters

F objective function

I ionic strength

K equilibrium constant

M,, molecular weight of solvent m
n number of moles

N number of components

q surface area parameter

r volume parameter

R complexation ratio

T temperature

X; mole fraction

z UNIQUAC parameter

Z; number of change of ion i
Greek letters

4 concentration step

Y activity coefficient

Vi activity coefficient of non-symmetric component

interaction parameter
surface area fraction of component

© chemical potential
s volume fraction component
Subscripts

C combinatorial
D-H Debye-Huckel
ion ion

sol  solvent

R residual

UNI UNIQUAC
Superscripts

° % reference state

00 infinite dilution
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