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ABSTRACT

In the design and operation of energy intensive systems the problem of improving the effi-
ciency is very important. The main way for solving this problem is optimization. This paper
describes the general approach for thermoeconomical optimization systems with a linear
structure. The suggested method is based on building and analysis of special graphs of ther-
moeconomical expenditure. The method is illustrated by an example system optimization for
thermal treatment of chlorine water.
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1. Introduction

Processes that take place in complex energy inten-
sive systems are characterized by mutual transforma-
tion of quantitatively different power resources. The
fast growth and development of modern technologies
requests thermodynamic analysis and optimization of
such systems, based on the combined application of
both laws of thermodynamics, and demands an exer-
gy approach [1,2]. Exergetic methods are universal
and make it possible to estimate the energy fluxes and
to develop energy balances for every element of the
system using a common criterion of efficiency. There-
fore, the exergetic methods are meaningful in analysis
and calculations.

Despite its usefulness, the benefits of the exerget-
ic approach were not fully realized until recent
years.

One reason for this situation is the underestima-
tion of exergetic functions for mathematical modeling,
synthesis, and optimization of flow sheets. Another
reason is the mathematical difficulty of the exergetic

approach in thermodynamic analysis. Meanwhile, the
increasing complexity of optimization problems
requires more effective and powerful mathematical
methods. Hence, during the last few years, many
papers with different applications of exergetic meth-
ods have been published [3–7].

The above referenced papers, as well as the
author’s earlier investigations [8–13] show that one of
the most effective mathematical methods used for
exergetic analysis and optimization is the method of
graph theory [14,15]. The benefit of graph models can
also be demonstrated by its flexibility and its wide
varieties of possible applications.

Possible exergy topological methods include the
sole use or combination of exergy flow graphs, exergy
loss graphs, and thermoeconomical graphs [3–7].

Systems with linear structure are often used in
energy technology as well as in other branches of
industry. For that reason it is necessary to study the
problem of linear structures systems optimization
separately from the systems of arbitrary structure.

Presented at the International Conference on Desalination for the Environment, Clean Water and Energy, European Desalination
Society, 23–26 April 2012, Barcelona, Spain

Desalination and Water Treatment
www.deswater.com

1944-3994/1944-3986 � 2013 Desalination Publications. All rights reserved
doi: 10.1080/19443994.2012.714453

51 (2013) 1549–1553

February



2. Method optimization of linear system

First, let us consider a homogeneous system that
contains n different elements of one type (as shown in
Fig. 1).

In this system one flow hj, j= 1 interacts succes-
sively with flows Ci, i= 1,2, … n.

In the problem of optimal synthesis, this can be
reformulated in such a way:

It is necessary to distribute the multitude of flows

C ¼ fC1;C2; . . .Ci; . . . ;Cng

along the flow hj (j= 1) and in result of interaction of
which parameters of flow in outlet of system will be
in interval of required constrains and thermoeconomi-
cal criteria will be minimized

X
i

X
j

Zij ¼ Zmin
� ð1Þ

where Zij -thermoeconomical expenditure at i-element
(j= 1).

For solving this type of a problem, it is necessary
to build the graph of thermoeconomical expenditure
as it was shown in [8]. In our case this graph will be a
tree Z= (N,D), the multitude of nodes N displays the
possibility of distribution of flows in the system, the

multitude of arcs D, displays the possible meanings of
thermoeconomical expenditures.

The governing equations which are representing
these levels are:
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p ¼ 0 ) jN0j ¼ 1

p ¼ 1 ) jNpj ¼ jCj;C�Np ¼ £ ð3Þ

1 � p � k ) jNpj � jCj

8 C
ðp�1Þ
ip�1

;C
ðpÞ
ip

� �
2 D ) C

ðp�1Þ
ip�1

;C
ðpÞ
ip

� �
¼ Z

ðpÞ
ip

ð4Þ

8 C
ðp�1Þ
ip�1

;C
ðpÞ
ip

� �
R D ) C

ðp�1Þ
ip�1

;C
ðpÞ
ip

� �
¼ 1

where symbol 1 shows that arcs of this type are
absent.

The flow hj in graph Z(N,D) is described as node

C
ð0Þ
0 . Then for obtaining conditions (1) it is necessary

to find an optimal way.

�C ¼ Cð0Þ
0 ;Cð1Þ

1 ; . . . ;C
ðpÞ
ip
; . . . ;CðkÞ

½n�ðp�1Þ�

� �
�C � N; ð5Þ

so that (see Fig. 2)

X
ip

X
p

Z
ðpÞ
ip

¼ Zmin
� ð6Þ

The algorithm of Belmann-Kalaba is usually used for
seeking the optimal way in graphs without contours.
This algorithm is based on the matrix of thermoeco-
nomical expenditure [8,9].
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Fig. 1. Linear system.

1550 V. Nikulshin / Desalination and Water Treatment 51 (2013) 1549–1553



In our case the graph of thermoeconomical expen-
diture is successive:

�pNp ¼ Npþ1 ð7Þ

where �p is the display of set Np, and condition of Eq.
(4) will be valid for elements of matrix which are

located in the intersection of columns C
ðpÞ
ip

and lines

C
ðp�1Þ
ip�1

; p ¼ 1; 2; . . . ; k; ip ¼ 1; 2; . . . ; ½n� ðp� 1Þ�. This

feature of graph of thermoeconomical expenditure
allows one to simplify the matrix of expenditure and
to reduce the number of analyzed variants in n times
[8,9].

Based on the features of the thermoeconomical
expenditure graph, we recommend the algorithm
of searching an optimal variant be used.

Each step of seeking an optimal variant is succes-
sively compared with thermoeconomical expenditure

Z
ðpÞ
ip

and Z
ðpÞ
min. In result, the flow corresponding to Eq.

(6) can be found. Then applying the procedure of

seeking Z
ðpÞ
min to all K steps, we will find the optimal

flow distribution which corresponds to the condition
in Eq. (1).

In case of inhomogeneous linear systems optimiza-
tion, the main idea of this approach will remain.

Since inhomogeneous elements are able to change
the different characteristics of flow hj, it is necessary
to consider not only the pth-step but also the previous
steps of the system’s optimization. Consequently the
method of dynamic programming has to be changed
to the branch and bound method. With this approach
at each step we seek and then save expenditure

Z
ðpÞmin
� , where Z

ðpÞ
� is the sum of thermoeconomical

expenditure for all p steps of the considered variant.

Then expenditure Z
ðpÞmin
� will be compared with the

analogous sums for the previous steps
ðp� 1Þ; ðp� 2Þ; . . . ; 1.

Then the variant corresponding to the following
equation has to be developed

Zmin
� ¼ min ZðlÞmin

�

h i
; l ¼ 1; 2; . . . ; p ð8Þ

Then elements for the next step of optimization have
to be taken from the multitude Npþ1, which corre-
sponds to Eq. (7).

3. Optimal synthesis of chlorine water refrigeration

The systems of chlorine water refrigeration usu-
ally have a linear structure. It is illustrated in Fig. 1.
In this case the flow h1 will display the flow of refrig-
erated chlorine water and C is the set of flows which
refrigerate the flow h1. The set of flows C includes
flows of industrial water and cooled water. If indus-
trial water is used, the surface of heat exchangers
and appropriate expenditures will be bigger than in
the case of using cooled water. But using cooled
water requires the additional expenditures for its
cooling. So the question is to find the variant of the
system of chlorine water refrigeration with minimum
expenditure:

Z� ¼
Xn

i¼1

Zmin
i ð9Þ
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Fig. 2. (P-1) and P - levels tree of thermoeconomical expenditure.
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Zmin
i ¼ min ðZA

i þ Ziw
i Þ; ðZA

i þ Zcw
i Þ� � ð10Þ

where:
ZA
i is the yearly investments cost (for surface,

repairing, salary of personnel etc.) for heat exchanger
i,

Ziw
i is the yearly expenditure for industrial water,

Zcw
i is the yearly expenditure for cooled water.

Zcw
i ¼ Pcw

i Ecw
i s ð11Þ

where:
Pcw
i is the price of one kJ cooled water.

Ecw
i is the exergy of cooled water which can be cal-

culated as the exergy of heat flow entering into heat
exchanger i,

s is the period work of the system during a year.

Ziw
i ¼ Piw

i m
iw
i s ð12Þ

Here:

Piw
i is the price of one kilogram of industrial water

(as the differences between the parameters of indus-
trial water and environment are very little we can
assume that the exergy of industrial water is equal to
zero) for heat exchanger i.

miw
i is the mass flow of industrial water for heat

exchanger i.

As an example, the typical line of chlorine produc-
tion was taken (the mass flow of chlorine is 2.53 kg/s)
with mass flow of chlorine water, 10.9 kg/s. The
working time during a year is = 7,200 h. The tempera-
ture of chlorine water at the inlet of the system is 50˚
C and the required temperature at the outlet of the
system is 15˚C. The heat exchangers for such scheme
are titanium refrigerators the surface of each is 60m2

with the coefficient of heat transfer being 700W/
(m2K). The initial temperature of the industrial water
is 20˚C. The initial temperature of cooled water is 5˚C.
The yearly investments cost for the heat exchanger is
0.0666 USD for one square meter of the surface. The
price of exergy of cooled water is 0.0038 USD/MJ and
the price of industrial water is 0.065� 10�6USD/kg.

Application of the procedure described above for
optimization of this system gives the tree of solution
as shown in Fig. 3. The left branch of the tree displays
variants of using cooled water, and the right branch-
industrial water. Each level of the tree (excluding level
zero) has two nodes with the appropriate temperature
of chlorine water and thermoeconomical expenditure.
For further developing of tree on each level taken the
node with a minimum of Z, as it was described
above.

It is seen that on the first three levels, is chosen
the variant of using industrial water and only on the
last one–cooled water. So the optimal system of chlo-
rine water refrigeration will include three heat
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Fig. 3. Tree of possible thermoeconomical expenditure the system of chlorine water refrigeration.
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exchangers with industrial water and one with cooled
water.

The optimal meaning of thermoeconomical expen-
diture for this system is 3,559 USD per year.

4. Conclusion

The problem of optimization linear systems has
to be solved separately from the problem of optimi-
zation of systems with arbitrary structure. On the
basis of the features of linear systems it is possible
to build an effective procedure of optimization. The
suggested method is based on developing and anal-
yses of the graph of thermoeconomical expenditure.
It allows one to find the optimal variant for homo-
geneous systems as well as for systems with differ-
ent tips of elements. The method is illustrated by an
example of chlorine water refrigeration system opti-
mization.
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