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ABSTRACT

Water quality control is affected by several factors such as climate change or the creation of
an ecological park for human convenience. The Four-River restoration project of Korea is a
government enterprise to solve a variety of problems, such as preventing floods, securing
water resources, water quality management, and encouraging re-creation of land. It is evi-
dence that technical developments and the concern of the government have sharply
increased for water quality management. In particular, the phenomenon of eutrophication
can cause various difficulties in drinking water treatment and water use. Accurate and
reliable algal bloom forecasting models will prove very useful in ensuring sustainable water
supply and proper water management in the near future. In this paper, a new method based
on wavelet transforms and artificial neural networks was adopted for chlorophyll-a concen-
tration forecasting 1, 3 and 7days ahead. First, 12 models for forecasting chlorophyll-a
concentration by combining water quality and hydrological factors from different models as
input data were established by using an original ANN with a back-propagation algorithm.
The best model, as evaluated by its performance functions, was selected and applied to the
new method as a coupled wavelet analysis-artificial neural network (WA-ANN) to forecast
chlorophyll-a concentration for 1, 3 and 7days. Finally, the results of WA-ANN in the study
were compared to those of a regular ANN with a back-propagation algorithm. The
results showed that WA-ANN models constitute a promising new method for short-term
chlorophyll-a concentration forecasting in large lakes.

Keywords: Wavelet transform; Artificial neural network; Forecasting; Chlorophyll-a;
WA-ANN

1. Introduction

Climate change and alteration of the environment
around rivers for human convenience cause various

problems in water quality control. Therefore, short-
term and long-term forecasting of water quality are
important components of water resource management
for a variety of reasons, such as helping optimize
water resources as well as planning for the prevention
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of future pollution in a sustainable and effective man-
ner. Highly accurate and reliable flow forecasting is
particularly important in watersheds because of
increasing environmental concerns directly related to
human life and rapidly changing circumstances. Data
collected on various water quality factors have been
used to forecast changes in river water quality by
using black box models or physical models in many
studies worldwide. In particular, artificial neural net-
work (ANN) may offer an effective and promising
method for streamflow forecasts, as well as for water
quality forecasting and water treatment [1]. Beginning
with the Streeter–Phelps model, various ANN models
have been developed to quantitatively simulate the
phenomenon of water quality change. The ANN
model has been widely used abroad for the purpose
of effective control through water quality prediction.
Studies on algal bloom forecasting using ANN have
been widely implemented in various countries since
1990. Generally, these studies focus on predicting
water quality components for 1–5 days, or even a
month, using ANN models. Friedrich et al. [2] used
water quality data that had been measured for
12 years, including orthophosphate, nitrate, Secchi
depth, water depth, dissolved oxygen (DO), water
temperature (Tw), and chlorophyll-a concentration
(chl-a), as the input data for an ANN. The models
were used to predict algal species abundance. Karul
et al. [3] studied non-linear behavior in eutrophication
processes with Levenberg—Marquardt (tangent-sig-
moid) analysis to predict chl-a using a variety of
water quality factors in the river reservoir as input
factors. Palani et al. [4] forecasted chl-a a week ahead
using general regression neural networks (NNs) to
forecast eutrophication based on DO, Tw, and chl-a
with a lag time of 2weeks as input data. These previ-
ous studies included many forecasting methods for
each component of water quality such as biochemical
oxygen demand and DO, but studies on the prediction
for chl-a, as well as models that chiefly predict chl-a a
week or a month in advance, are rare. The chl-a is the
main factor that causes eutrophication. If short-term
forecasting of this element is implemented, water
quality management will be much more efficient and
would facilitate the prevention of water pollution.
However, despite these studies, there are some prob-
lems with ANNs and other linear and non-linear
methods, i.e. they have limitations when used with
non-stationary data. Many methods such as NNs may
not be able to handle non-stationary data if prepro-
cessing of the input data is not done. The methods for
dealing with non-stationary data are not as advanced
as those for stationary data. Wavelet analysis has been
investigated in a number of disciplines outside water

resources engineering and hydrology, and has been
found to be very effective with non-stationary data.
Wavelet transforms provide useful decompositions of
original time series, and the wavelet-transformed data
improves the ability of a forecasting model by captur-
ing useful information at various levels of resolution.
Further, wavelet analysis can be a useful tool to
analyze detailed temporal patterns of non-stationary
hydrological and water quality signals over different
temporal scales. Nakken [5] used continuous wavelet
transforms to identify the temporal variability of rain-
fall and runoff and their relationships; in another
study, Kang et al. [6] studied temporal patterns of
three hydrological signals (precipitation, streamflow,
and water level) for three periods (15 years, three
years, and the hydrological year), as well as water
quality signals (nitrate, chloride, and sodium), with
the weighted wavelet Z-transform method. This study
found that wavelet analysis of hydrological signals
was more advantageous than classical Fourier analysis
in detecting detailed temporal patterns. Hanbay et al.
[7] predicted chemical oxygen demand (COD) based
on wavelet decomposition, entropy, and a NN for
rapid COD analysis. In particular, in the domain of
hydrology, wavelet analysis has been actively used to
describe the variability of streamflow [8] and to enable
streamflow forecasting using discrete wavelet trans-
form (DWT) [9,10]. In another study, Adamowski
et al. [11] studied a method based on coupling
DWT and ANN for flow forecasting applications in
non-perennial rivers. The wavelet coefficients were
then used as inputs into Levenberg—Marquardt ANN
models to forecast flow. The relative performance
of the coupled wavelet-neural network models
(WA-ANN) was compared to regular ANN models
for flow forecasting at lead times of one and three
days for two different rivers. In other words, wavelet
transform can be used in diverse fields to offset the
disadvantages of ANNs.

In this study, wavelet transform was applied to
decompose the signals of chl-a in an original time
series directly related to the eutrophication process;
these decomposed signals were used to improve the
ability of algal bloom forecasting models. The research
area was selected on the basis of a current pending
issue which is concerned about water quality pollu-
tion under the conditions of water quality in Korea.
Water quality management is needed in Daecheong
reservoir because of the sudden increase of algal
blooms in Geum River. This study uses wavelet
transform and ANN to improve the accuracy of
developed algal bloom models in previous studies
[12] using ANN with back-propagation algorithm
(BP-ANN).

M.E. Kim et al. / Desalination and Water Treatment 51 (2013) 4118–4128 4119



2. Materials and methods

2.1. Study area and data description

The selected study area, Daecheong reservoir in
Geum River, is one of the major sources of water sup-
ply in Korea. The length of the dam is 495m, volume
is 1,234,000m3, and height is 72m. Its watershed area
is 3,204 km2 excluding the Yongdam reservoir basin.
The dam has multiple uses, including domestic and
industrial water supply. Daecheong reservoir stores
1,649m2 of water for supply, and 1,300m2 of the
water is used for domestic and industrial purposes.
Furthermore, the reservoir is very important because
it offers space for leisure activities. Rainfall in this
watershed occurs mostly from June to August, with
the maximum rainfallfrom July to August. During the
dry season, which lasts from January to April and
from November to December, the reservoir receives
only 15% of the annual rainfall. These patterns are
typical Korean weather in which the rainfall is con-
centrated during the summer. This type of rainfall
increases the possibility of risks in water quality man-
agement. Accordingly, an automatic water quality
observation system has been installed by the Korean
government to monitor changes in water quality in
real time. However, there have been several occur-
rences of algal blooms in the same year because of

decreased water levels and the effects of climate
change in the area. The main reason for this is the
unexpected eutrophication in summer with the effect
that air temperature and rainfall frequency both
increase. In light of this, the Korean government has
established standards for algal bloom forecasting
based on water quality parameters such as Tw, pH,
DO, total organic carbon (TOC), chl-a, total nitrogen
(TN), and total phosphorous (TP) in the area. For this
study, we selected this area as a suitable site to estab-
lish an effective and promising model for short-term
algal bloom forecasting (Fig. 1).

The data used in this study have been obtained
from the automatic water quality observation system
in Daecheong reservoir. This includes various water
quality variables (Tw, pH, DO, TOC, TN, TP, and
chl-a) from 2009 to 2010, and hydrological variables
(inflow quantity (If) of Daecheong reservoir, outflow
quantity (Of), and air temperature).

2.2. Theory of ANN

A BP-ANN is very useful because of its broad
applicability in solving and managing many problems
such as principal prediction and modeling for various
purposes. According to a supervised learning method
in the process, this NN requires a set of training data

Fig. 1. Study area on Geum River watershed in South Korea.
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in order to learn the relationships among several
factors and testing data for validation. The architec-
ture of BP-ANN consists of three nodes: input,
hidden, and output nodes. The node-to-node connec-
tions, such as input-hidden and hidden-output are
connected by weights and biases. In establishing a
BP-ANN model, one must select an appropriate
activation function, determine the number of hidden
nodes, and estimate the corresponding parameters
using an approximate computational scheme. The
objective is to find a reasonable BP-ANN that will
give an approximation to true output within a speci-
fied error. Approximating functions are needed for
the superposition of the hyperbolic tangent as follows:

Hyperbolic tangent:

uðvÞ ¼ 1� expð�vÞ
1þ expð�vÞ ð1Þ

A description of the BP-ANN system based on the
hyperbolic tangent activation function can be derived
as follows:

~yðkÞ
t ðxÞ ¼ ck þ

Xj¼1

h

ajktanh bj þ
Xn
i¼1

wðiÞ
j xðiÞt

" #
ð2Þ

where the coefficients c, a, b and x are parameters of
the ANN model. The coefficient ck is associated with
the output node k, the coefficient ajk is associated with

the hidden node j and output node k, the coefficient bj
is associated with the hidden node j only, and the

coefficient xðiÞ
j is associated with the input i and the

hidden node j. Each output node receives data
through each weighted value for all the hidden nodes.
Each node produces the values by changing data
added up that has been used with a non-linear func-
tion for producing values.

2.3. Theory of wavelet transform

Wavelet analysis method is mathematical tools,
which has proven quite useful for time scale-based
signal analysis in physics and engineering. The wave-
let transform is a tool for decomposing a signal into
components at different resolutions and time scales.
The wavelet transform can be used to analyze a time
series which contains non-stationary data at many
different frequencies [13]. Wavelet transform produces
a few significant coefficients and reconstructs the
signal using significant coefficients from the signals
with discontinuities. Wavelet analysis allows the use
of long time intervals for low-frequency information
and shorter intervals for high-frequency information,

and it reveals aspects of data like trends, breakdown
points, and discontinuities that other signal analysis
techniques might miss. Another advantage of wavelet
analysis is the flexible choice of the mother wavelet
according to the characteristics of the investigated
time series.

DWT of various wavelet transform methods
involves the use of digital filtering techniques by
decomposing the time series signal. DWT scales and
positions are usually based on the powers of 2—the
so-called dyadic scales and positions. Mathematically,
it can be expressed as:

Wa;bðtÞ ¼j a j12 W 1� b

a

� �
ð3Þ

where Wa;b(t) is the successive wavelet, and a and b
are the scale and translation factor, respectively. The
successive wavelet transform of fðtÞ is defined as:

WWfða; bÞ ¼j a j1=2
Z
R

fðtÞ �W t� b

a

� �
dt ð4Þ

where �WðtÞ is a complex conjugate function of WðtÞ
The equation indicates that the wavelet transform is
the decomposition of fðtÞ under different resolu-
tion levels (scales). The DWT operates two sets of
functions viewed as high-pass and low-pass filters.
The original time series are passed through high-pass
and low-pass filters, and detailed coefficients and
approximation sub time series are obtained.

2.4. Methods

This study makes steady progress in the order
shown in (Fig. 2).

Fig. 2. Process of this study for establishing WA-ANN
model.
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There are two key points in this research: to select
the best model for algal bloom forecasting by estab-
lishing 12 models with BP-ANN, and to develop the
coupling WA-ANN. The optimal model was selected
for water quality forecasting by establishing a variety
of algal bloom real-time forecasting neural network
models (AB-RF-NN models) based on water quality
and hydrological components.

2.4.1. Developed AB-RF-NN models

Data analysis was implemented for basic statistical
and correlation analyses between elements of hydrol-
ogy and water quality which directly affect algal
blooms. As already mentioned [12], this study used
serial-correlation and cross-correlation analyses to
define the relationship among the elements. To check
the seasonal change and cyclical repeatability of the
time series data, serial-correlation analysis rk was used
to derive the following Eq. (5).

rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn�k

i¼1 ðxi � �xÞðxiþk � �xÞ
q

Pn
i¼1ðxi � �xÞ2 ð5Þ

In this formula, �ðxÞ is the average, and n is the
number of the analyzed data.

Cross-correlation analysis used to correlate water
quality and hydrologic elements yielded the following
Eq. (6).

rxyðkÞ ¼
CxyðkÞ
SxSy

ð6Þ

In this formula, Cxy is the covariance of x and y,
and Sx and Sy are the standard deviations of x and y

respectively. Using the abovementioned methods, the
AB-RF-NN models for short-term algal bloom fore-
casting with ANN were built using the parameters If,
Of, Tw, pH, DO, TOC, TP, TN, and chl-a, as shown in
(Table 1), on the basis of the results of the correlation
analysis. However, one disadvantage of the AB-RF-
NN models is that it rarely sets a peak value for train-
ing data. Therefore, a set of training data were used
in 2010, and a set of testing data were collected in
2009. For calibration/validation activity on the mod-
els, the following performance functions between the
observed values and the calculated output were used:
relative volume (RV), relative peak (RP), root mean
square error (RMSE), and correlation coefficient (R2),
as shown in (Table 2).

Table 1
Structure of AB-NN models used for reasonable estimation of output in this study

Output Model Factors of input data for neural network

If Of Tw pH DO TOC TN TP chl-a

Chl-a Model 1 � � � � � �
Model 2 � � � � �
Model 3 � � �
Model 4 � �
Model 5 � � � �
Model 6 � � � � � � � �
Model 7 � � � � � � �
Model 8 � � �
Model 9 � � � �
Model 10 � � � � � � �
Model 11 � � � �
Model 12 � �

Table 2
Description of model performance methods

Methods Basic equations

Relative peak error
(RP)

RP ¼ ½Q̂�Q�
Q , Q̂ & Q: forecasted &

observed peak value

Relative volume
error (RV)

RV ¼ ½Q̂v�Qv �
Qv

, Q̂v Qv: forecasted &

observed total volume

Root mean square
error (RMSE)

RMSE ¼
ffiffiffi
1
N

q PNðQ̂ðtÞ �QðtÞÞ2, t:
time, N: the number of data

Correlation
coefficient

R2 ¼
PNðQ̂� �QÞ2PNðQ� �QÞ2

, �Q: average of

observed data
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2.4.2. Coupled WA-ANN models

The WA-ANN model is based on a BP-ANN,
which uses sub-series components that are derived
from the use of the DWT on the original flow time
series data as inputs data. Each sub-series component
plays a different role in the original time series, and
the behavior of each sub-series is distinct. The ANN
models are built such that the decomposition and
details of the original time series are the inputs to the
ANN and the original time series are the outputs of
the ANN [11].

As shown in (Fig. 3), a WA-ANN was established
to increase accuracy. The chl-a, the most important of
the various water quality factors, was decomposed
into sub-series of approximations and details. The
process of decomposition was successively iterated,
with approximation signals being decomposed in
turn, so that the original observed chl-a was broken
down into many lower resolution components.

The performance of developed models was evalu-
ated in terms of statistical measures of the goodness of
fit. In order to provide an indication of the goodness of
fit between the observed and predicted values, RP, RV,
RMSE, and R2 were used, as shown in (Table 2). In
general, the smaller the RMSE, the better the perfor-
mance of the model. Similarly, the closer the value of
R2 to 1, the better the result of the model.

3. Results and discussion

3.1. AB-RF-NN forecasting models

As already analyzed in a previous study [12], the
correlation analysis has been conducted to identify the
relationship between water quality and hydrological

factors, with chl-a directly taken as the standard with
regard to the occurrence of eutrophication. We found
that chl-a had highly correlated with Tw, pH, DO,
TOC, TN, and TP. On the basis of these results, AB-
RF-NN models, which were 12 models with input
data consisting of each other factors from each of the
models, were developed. The results of these models
are shown in scatter plots (Fig. 4): Model 6, Model 7,
and Model 10 were selected as the best models for
chl-a forecasting based on the results of model perfor-
mance parameters such as RMSE and R2. Of these
models, Model 6 showed RMSE and R2 values of 1.65
and 0.98, respectively, for 1 day ahead; 3.34 and 0.93,
respectively, for 3 days ahead; and 4.92 and 0.847,
respectively, for 7 days ahead. Model 7 showed RMSE
and R2 values of 1.0 and 0.996, respectively, for 1 day;
2.9 and 0.953, respectively, for 3 days; and 3.95 and
0.918, respectively, for 7 days ahead, thereby rendering
it the best algal bloom forecasting model for three
periods. Lastly, the RMSE and R2 values in Model 10
were 1.88 and 0.956, respectively, for 1 day; 2.95 and
0.948, respectively, for 3 days; and 5.86 and 0.81,
respectively, for 7 days ahead. Model 7 was the best
AB-RF-NN model for comparing the improvements in
WA-ANN. Fig. 5 showed the results from selected
AB-RF-NN models with high performance based on
RMSE and R2 values. The results of performance mod-
els were shown at (Table 3).

3.2. Coupled WA-ANN models

In this study, coupled WA-ANN models were
developed for improving the high performance of the
AB-RF-NN models, as well as to increase accuracy for
the purpose of water quality management, and not

Fig. 3. Architecture of WA-ANN model.
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just as a precaution. WA-ANN models were coupled
with DWT and AB-RF-NN. The chl-a of a variety of
water quality factors was decomposed by a DWT into
level 9 using the Daubechies-3 function. The WA-
ANN models consisted of 5 components of water
quality (the same as the input factors of AB-RF-NN
models, except for chl-a) and decomposed approxima-
tions of low frequencies as input data. The WA-ANN
models were same as Model 7-1-1, Model 7-1-3, Model
7-1-7, Model 7-3-1, Model 7-3-3, Model 7-3-7, Model
7-4-1, Model 7-4-3, and Model 7-4-7, in each case, the
numbers indicate the best AB-RF-NN model, case,

and lead time, in that order. New model combining
Model 7 of the AB-RF-NN models and the DWT was
established for short-term forecasting. From these
models, reasonable models were selected on the basis
of the model performance results such as the RMSE
and R2. Table 4 indicated the architecture of the
WA-ANN models in forecasting chl-a by training and
testing. Subsequently, the WA-ANN models were
compared to AB-RF-NN models at a large lake. The
model performance results between these 2 models in
the case of 1-day forecasting appeared to be similar.
The model performance results in the case of the

Fig. 4. Results of chl-a forecasting by AB-RF-NN models: scatter plots between observed and forecasted data.
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3-day forecasting showed that the optimal WA-ANN
model, Model 7-1, had a positive capacity for

improvement. In contrast, in the case of the 7-day
forecasting, the results of the WA-ANN were higher

Table 3
Results of model performance for optimal AB-NN model and WA-NN model results

Model Lead time Results of model performance

RP RV RMSE R2

Optimal AB-NN model 7 1 8.85 0.34 1.0 0.99

3 24.96 2.57 2.90 0.95

7 24.12 32.98 3.95 0.91

Optimal WA-NN models 7-1 1 9.28 3.0 1.0 0.99

3 16.83 5.91 2.17 0.97

7 19.02 32.71 3.98 0.92

7-3 1 6.77 1.80 1.38 0.99

3 24.59 7.17 2.80 0.95

7 16.15 43.48 4.34 0.92

7-4 1 6.44 3.12 1.34 0.98

3 22.95 4.23 2.70 0.95

7 22.66 7.77 2.97 0.93

(a) 1 day

(b) 3 days

(c) 7 days

Fig. 5. Results from selected AB-RF-NN models with high performance based on R2 and RMSE criteria.
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than those of the Model 7 among the AB-RF-NN
models. (Fig. 6) showed the results of testing using
linear graphs and scatter plots from selected WA-

ANN models out of the nine models with high perfor-
mance results based on RMSE and R2. In particular,
Fig. 7 shown as above, residuals were explored by

Table 4
Architecture of WA-NN models for chlorophyll-a forecasting by training

Model Lead time Factors of input data Structure

Model 7-1 t+ 1 Tw, pH, TOC, TN, TP, (A1 of chl-a) 12-16-1

t+ 3 14-18-1

t+ 7 8-14-1

Model 7-3 t+ 1 Tw, pH, TOC, TN, TP, (A1, A2, and A3 of chl-a) 12-16-1

t+ 3 14-18-1

t+ 7 14-18-1

Model 7-4 t+ 1 Tw, pH, TOC, TN, TP, (A1, A2, A3, and A4 of chl-a) 14-18-1

t+ 3 14-18-1

t+ 7 15-18-1

(a) 1 day

(b) 3 days

(c) 7 days

Fig. 6. Results from selected WA-NN models with high performance based on R2 and RMSE criteria.
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comparing results between AB-RF-NN and WA-NN
models for forecasting chl-a for 1, 3 and 7days ahead.

4. Conclusions

The WA-ANN model is a new and promising
method to forecast chl-a over the short term; this
model includes a DWT and an ANN. In particular, in
this study, the model is proposed to increase the effec-
tiveness of water quality management and manage
clear water use in a sustainable manner. The accurate
forecasting results on a large lake indicate that the
WA-ANN model is a potentially useful method for
chl-a forecasting. As mentioned above, the model was
compared to AB-RF-NN models for chl-a forecasting
on a large lake with a lead time of 1, 3 or 7 days.
Results in this study using ANN for chl-a forecasting
were excellent in the short term, but were consider-
ably improved using the WA-ANN model under
the same conditions. This study demonstrated the
effectiveness of wavelet analysis in forecasting water
quality by using the model that yielded the best
AB-RF-NN results. Also, in case of having various
hydrological or water quality characteristics on each

watershed, the WA-ANN models could be widely
utilized to forecast. Salerno et al. [8] said that WA
can potentially be applied to help define the nature
and behavior of the karst contribution to river flows
and improve the future performance of surface
hydrological modeling.

With reference to purposes in this study, the results
with comparison could be explored: (1) WA-ANN
models were improved for water quality forecasting,
(2) the models showed the accuracy higher than
AB-RF-NN models, (3) the models showed higher
possibility to forecast chl-a for 3 days and 7days, as
well as 1 day. Comparison with a similar study, but dif-
fering the unit of used input data, results of correlation
coefficient was better than others.

It is recommended that future studies explore the
use of the WA-ANN model in forecasting chl-a for
other watersheds and a variety of lead times (such as
weekly and monthly) and compare the forecasting
performance of the wavelet-based noise removal
method to other filtering methods. In further research,
WA-ANN models on the basis of other AB-RF-NN
models, not with the best model, would better estab-
lish a forecasting model for water quality

(a) 1 day (b) 3 days (b) 7 days

Fig. 7. Residuals of comparisons between AB-NN and WA-NN models for chl-a forecasting result.
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management. And then this might support the level
of accuracy and applicability in WA-ANN model.

This would make water quality management easier
in various large lakes or many rivers. Furthermore, an
attempt could be made to obtain information regarding
the water quality characteristics of each river by apply-
ing the validated WA-ANN to various rivers. Finally,
this study can be applied directly to maintain reason-
able water quality in the reservoir and to prevent
deterioration of water quality in future incidents.
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