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ABSTRACT

In this study, the support vector machine (SVM) model which was based on restricted data
sets (the size of the training set is small or small training sample) was applied to predict the
permeate flux and rejection of Bovine serum albumin (BSA) of homemade VC-co-VAc-OH
microfiltration membrane as the function of fabrication conditions. The membrane prepara-
tion conditions (the solid content, the additive content, environmental temperature, the rela-
tive humidity, evaporation time of a volatile solvent, precipitation temperature, and
precipitation time) were input variables; pure water flux and rejection of BSA were output
variables. The results showed that the detailed relationships between fabrication conditions
and filtration performance of the membranes could be established. Excellent agreements
between the prediction of SVM model and the experiments validate that SVM model has suf-
ficient accuracy. Furthermore, the results predicted by SVM model were compared with
those predicted by artificial neural network (ANN) model which was widely used in the
optimization of nonlinear relationships. It is found that the deviations of both the training
and the predicting data obtained by SVM model are much smaller than those by ANN
models. Hence, SVM model can be used as an efficient approach to optimize fabrication
conditions of homemade VC-co-VAc-OH microfiltration membrane.
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1. Introduction

Membrane separation technology has become more
and more important in modern industry due to its
advantage of energy-saving and environmental
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friendly nature [1,2]. However, membrane fouling is
an inevitable phenomenon during industrial operation
process, which will greatly shorten membrane longev-
ity and increase its operating costs [3]. Therefore, the
membrane fouling is a hot point in the membrane
research field [4-6]. Though there are many kinds of
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methods, such as pretreatment of feed solutions [7-
10], membrane washing and cleaning [11,12],
operation optimization [13,14], and so on, were used
to overcome this problem, the anti-fouling membrane
fabrication still remains as the most efficient way to
improve membrane fouling [15,16].

The quality of the membrane depends on many
fabrication conditions, for example, the composition of
membrane casting solution, surrounding environmen-
tal condition, and the type of coagulation bath, etc.
This implies that in order to select the best membrane
fabrication condition, a large amount of experiments
have to do. Though experimental workload can be
reduced by orthogonal method [17], it is unable to pre-
dict filtration performance of the membrane. So, how
to predict the membrane filtration performance based
upon experimental data has practical significance.
Many forecasting methods, such as Multiple Linear
Regressions [18], artificial neural network (ANN) [19]
and support vector machine (SVM) [20] were explored
and used as an efficient prediction method.

Compared with multiple linear regression and other
traditional prediction methods, ANN model shows
high accuracy despite some shortcomings such as
design in advance of the network structure or construc-
tion of the network structure in training process using
heuristic algorithm; absence theoretical guidance for
the network adjustment and weight initialization; over-
fitting problem; etc. All these problems are arising from
the theoretical statistical basis of ANN, which needs a
large size of training sets. So, ANN is often unable to
solve specific practical issues, where data sets were
restricted. To overcome this limitation, Vapnik et al.
proposed SVM approach based on the statistical learn-
ing theory [20]. SVM is known as the excellent tool for
the classification and regression problems of good gen-
eralization ability and provides a unified framework for
restricted data sets” learning [21].

Recently, SVM as a highly effective approach of sys-
tem modeling with restricted data sets has been widely
applied in many fields for predicting [20,21], such as
pattern recognition problem [21-25], classification
[26,27], regression [28,29], image analysis [30], drug
design [31-33], time series analysis [34-36], quality con-
trol of food [37,38], protein structure function predic-
tion [39-42], genomics [43], and usually outperformed
the traditional statistical learning methods [44,45].
Thus, SVM have been receiving increasing attention
and quickly become quite a hot spot. For example, in
order to make this approach easy for junior learners to
comprehensively understand the basic ideas of SVM, C.
Burges reviewed the support vector classification
machines [46] and A. J. Smola also gave a review on the
Support Vector Regression Machines [47]. Specifically,
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as SVM is gaining popularity in a wide variety of bio-
logical applications, W.S. Noble described in detail
what exactly SVM is and how they work mainly for
biologists [48]. In addition, Xu et al. have also devel-
oped SVM for classification in chemometrics [49]. Jia
et al. showed that SVM was applicable to forecast the
synthesis characteristics of hydraulic valve and with
high accuracy [21]. A predictor is constructed to predict
the true and false splice sites for higher eukaryotes
based on SVM [50]. Liang et al. proposed an effective
approach for content-based sketch retrieval [51]. All
these contribute to the development and application of
SVM and make it become a very active area. Ergun
Gumus present an evaluation of using various methods
for face recognition [52]. All these results show that
SVM can provide better or comparable results than that
by ANN or other statistical models. However, up to
now, the application of SVM in membrane fabrication
process was not reported.

In this study, the SVM was used to validate its
application for the simulation of the permeate flux
and rejection of Bovine serum albumin (BSA) of
homemade VC-co-VAc-OH microfiltration membrane
as function of membrane fabrication conditions with
restricted data sets.

2. SVM

In SVM regression approach, the nonlinear regres-
sion problem in low-dimensional feature space can be
transformed to the linear regression problem in high-
dimensional feature space by a nonlinear mapping ¢.
In order to endow the SVM predicted models, good
function approximation and generalization capabili-
ties, a linear estimation function f, which makes the
empirical risk minimum [55], as follows:

f(x) = (@, 0(X)) +b (1)

where w(w € F) is the weight vector, (,) is the inner
product, ¢(X) denotes a mapping function in the
feature space, i.e. it represent the non-linear mapping
from low-dimensional feature spaces R™(X € R™) to
high-dimensional feature space F; b is a constant.

The values of w and b in formula (1) can be
derived substituting the set (sample) data (Xi, Yi) into
the following function:

Reeglf] = Ramplf] + Aol = 3" Cled o] @)

i=1
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where Rreg[ﬂ is the sum of empirical risk and experi-
ence risk; Remp[f] is the experience risk; A is the
regularization parameter for controlling the loss of
training set (sample) and the compromise of model

complexity; |o|* is the confidence risk and reflects
the model complexity in high-dimensional feature

space, and the smaller [|w|* means smaller confidence
risk; s is the size of the set (sample); and C(.) is the
Loss function, e =f(X;)—Yi= Y- Y; represents
the difference between the predicted values and the
experimental data, and C(e;) represents the experience
loss of the model. Based on the structured risk mini-
mization principle, SVMs seek to minimize the sum of
empirical risk and confidence risk.

For a given loss function, the problem of finding
function f can be solved as a quadratic programming
problem as following;:

S

max] = —3 3" (4 = )5 — )(0(X), 9(X,)

=1

+Y_ i (Yi—e) =Y a(Yite) (3)
i1 T
D %= D %
st 0< o <C (4)
0<a <C

By solving the functions (3) and (4), w=> 7,
(o —of)p(X;) can be gotten; b can be obtained by
substituting any supported vector into the functions (3)
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and (4). In this way, the function is transformed into
the following form:

S

flx) = (o1 = %) (0(X), (X)) + b ()

i=1

Definite the inner product of high-dimensional
feature transformation space as the kernel function of
SVM:

K(X;, X)) = ((Xi), 9(X))) (6)

The inner product in high-dimensional space can
be obtained only by computing the kernel function in
the low-dimensional space. Finally, by introducing
Lagrange multipliers and exploiting the optimality
constraints, the decision function has the following
explicit form [53]:

S

fl) = (o — 4))K(Xi, X) + b (7)

i=1

Based on the theory above, the structure of SVM
used to model the prediction of the effects of
membrane fabrication conditions on pure water flux
and rejection of BSA were shown in Fig. 1, respectively.

In present paper, the SVM system used in this work
is LIBSVM tool loaded into MATLAB (R2010b) and the
membrane fabrication conditions (the solid content, the
additive content, environmental temperature, the rela-
tive humidity, evaporation time of a volatile solvent,
precipitation temperature, and precipitation time) were
input variables, and the filtration performance of the

Fig. 1. (a) Structure of the SVM used for modeling the flux prediction process and (b) structure of the SVM used for

modeling the rejection prediction process.
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Fig. 1. (b) (Continued)

membrane (pure water flux and rejection of BSA) were
output variables. The network structure was optimized
by adjusting the program.

3. Experimental
3.1. Materials

Dimethylformamide (DMF), Dimethylacetamide
(DMAc), and N-methyl-2-pyrrolidone (NMP), all of
analytical grade, were purchased from Tianjin Fuchen
Chemical Reagent Factory. Poly (ethylene glycol) of
molecular weight of 2000g/mol, ie. PEG 2000,
which was chosen as the additive in casting solution,
N-butanol used as santomerse was purchased from
Beijing Chemical Engineering Factory. BSA used as
reagent for determining the rejection of BSA of the
membrane was purchased from Beijing Microorganism
Culture Medium Manufacturing Corporation, and its
isoelectric point of pH is 4.8. Homemade VC-co-VAc-
OH was used as the membrane material [54].

3.2. Membrane fabrication procedure

Firstly, VC-co-VAc-OH polymer was dissolved in
a solution of DMF and uniformly stirred. PEG was
added after the polymers have been completely dis-
solved. The casting solution was placed in the vacuum
oven at 60°C for 3days. Meantime, Non-Woven
Fabrics (NWFs) were put into deionized water to
remove the impurities and dried at the environmental
temperature of 25°C, then immersed in different sol-
vents for certain time. Secondly, the immersed NWFs
were evaporated for certain time under different envi-
ronmental temperatures and relative humidities.
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Thirdly, the casting solution was cast onto NWFs with
solvent by a casting blade under certain environmen-
tal temperature and relative humidity, and then the
cast film along with the glass plate was gently
immersed into coagulation bath with a temperature of
20°C for 30min. Finally, the formed membrane was
immersed into the deionized water bath for 24h to
remove residual solvent at room temperature.

3.3. Membrane characterization

Pure water flux and rejection of BSA (average
molecular weight is 67,000g/mol) of the membrane
were conducted via a dead-end membrane cell with an
effective filtration area of 24 cm?. The experiments were
measured at transmembrane pressure of 0.2 MPa, and
the experimental results were calculated as follows:

B 14
CAXE

J (8)
where | is the pure water flux of the membrane
(mLem 2h™'), V is the total permeate volume during
the experiment (mL), and A is the effective area of
membrane (cm?), t is operation time (h), respectively.

R(%) = (1 - %’) x 100% 9)

where R is the rejection of the membrane, C, and C;
is the concentration of permeate and the feed solution
(gL "), respectively. The analysis of BSA was per-
formed by the UV spectrophotometer (HP 8451-A) at
/. = 280nm. In addition, the experimental setup can be
found elsewhere [55].
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3.4. Data scaling

Because raw data of various factors (polymer
concentration, the additive content, environmental
temperature, the relative humidity, evaporation time
of a volatile solvent, precipitation temperature, precip-
itation time, pure water flux, and rejection of BSA) are
not in the same order of magnitude. In order to
prevent such raw data causing increased training time
or causing that the network not to converge, raw data
needs to undergo preprocessing. One approach for
scaling of the data is performed with following
formula Eq. (10), which normalizes the data to values
between — 1 and 1 [56]:

Flux in different operating condition
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Fig. 2. Normalization of membrane flux.
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(10)

where x; is the initial value of parameter, x| is the
normalized value of x;, Xmax and xmin are the
maximum and minimum of x;, respectively.

After the training and testing of SVM, the output
data were scaled to the real-world values through the
following equation:

Xi = 05(3(1 + 1)(xrnax - xmin) + Xmin (11)
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4. Results and discussion
4.1. Data scaling

Raw data were normalize and scaled, respectively.
As shown in Figs. 2 and 3, pure water flux and rejec-
tion of BSA of the membrane with different orders of
magnitude were normalized between —1 and+1 by
Eq. (10), respectively.

4.2. Comparison of experimental data and predicted values
by SVM

4.2.1. Fit of SVM to pure water flux

The network structure of SVM was trained with
100 training points and 50 test points. The inputs are
the membrane fabrication conditions, such as the com-
position of the casting solution (polymer concentration
and the additive content), surrounding environmental
condition (environmental temperature, the relative
humidity, evaporation time of a volatile solvent), and
precipitation condition (temperature and precipitation
time); and the outputs are pure water fluxes. If com-
paring the experimental data and the predicted values
by SVM under the different conditions, it can be seen
from Fig. 4 that the predicted values by SVM and
experimental data agreed quite well. According to
Fig. 5, the relative error of pure water fluxes between
predicted values by SVM and experimental data rela-
tive errors lie in the range —6 to 5%, and the average
absolute error is 2.84%. This means that the agreement
between the experimental data and the predicted
values by SVM is excellent.

From what has been discussed above, we may
safely draw the conclusion that the SVM can be used
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Figure of Relative Error
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Fig. 5. Relative error of flux by SVM.

to predict the effects of membrane fabrication
conditions on the pure water flux of homemade
VC-co-VAc-OH microfiltration membrane.

4.2.2. Fit of SVM to the rejection of BSA

The inputs are the membrane fabrication
conditions, such as the composition of the casting
solution (polymer concentration and the additive
content), surrounding environmental condition (envi-
ronmental temperature, the relative humidity, evapo-
ration time of a volatile solvent) and precipitation
condition (temperature and precipitation time), and
the output are the rejections of BSA of the membrane.
If comparing the experimental data and the predicted
values by SVM under the different conditions, it can

Points

Fig. 4. Comparison between experimental data and predicted data of flux under different operation by SVM.
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be seen from Fig. 6 that the predicted values by SVM
and experimental data agreed very well. According to
Fig. 7, the relative error of rejection of BSA of the
membrane between predicted values by SVM and
experimental data lie in the range —5 to 6%, and
the average absolute error is 2.37%. This means that
the agreement between the experimental data and the
predicted values by SVM is excellent.

Taking into account all these factors, we may come
to the conclusion that the SVM can be used to predict
the effects of fabrication conditions of the membrane
on rejection of BSA of homemade VC-co-VAc-OH
microfiltration membrane.

4.3. Comparison of prediction accuracy by SVM and ANN

In order to comparing the prediction accuracy by
SVM and ANN, the ANN was used to fit the same
experimental data used in 4.2. In this study, the net-
work was trained by the neural network toolbox of
MATLAB functions in training network. The transfer
function and the number of hidden layer nodes in the
training process of BP neural network were chosen as
in our previous study [19], i.e. the transfer function is
Traindx function, the hidden layer node is seven and
the learning rate is 0.1. In such circumstances, the
results were showed in Figs. 8 and 9, respectively.

Figs. 8 and 9 revealed the good prediction accu-
racy of pure water flux and rejection of BSA of the
membrane by ANN, respectively. Moreover, the
results in Table 1 shown that predicted data by SVM
model were more accurate than that of ANN model.
This can be explained by the following reasons: (i)

| —=— Experimental data |:
= Predicted data

Rejection

Fig. 6. Comparison between experimental data and
predicted data of rejection under different operation by
SVM.
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Figure of Relative Error
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SVM is based on statistical theory-based, and it has a
rigorous theoretical and mathematical foundation,
while ANN needs to rely on the designer’s experience
and knowledge; (ii) Large size of experimental set
needed for ANN methods to achieve desired predic-
tion accuracy, while the SVM method can get the high
accuracy only with a small size of experimental set;
(iii) SVM has good generalization ability, which can
get the global optimal solution.

Therefore, SVM can reach an optimal balance
between sensitivity and specificity in the small size of
the training set (small training sample or restricted
data sets) and give predictive values with high
accuracy.
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Fig. 8. Relative error of flux by ANN.
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Fig. 9. Relative error of rejection by ANN.
Table 1
Comparison between the different prediction methods
Methods of Average error Average error
prediction of flux (%) of rejection (%)
SVM 2.84 2.37
ANN 13.72 3.55

5. Conclusion

SVM model was constructed to predict the effects
of fabrication conditions on filtration performance of
homemade VC-co-VAc-OH  microfiltration ~mem-
branes. The detailed relationships between fabrication
conditions and filtration performance of membrane
were established by the SVM model. SVM possesses
good ability in the prediction of pure water flux and
rejection of BSA of homemade VC-co-VAc-OH micro-
filtration membrane, whose relative error varies from
—6 to 6%. In addition, the prediction accuracy by
SVM and ANN were compared. The average errors of
prediction of pure water flux and rejection of BSA of
the membrane by SVM are 2.84 and 2.37%, respec-
tively, while the value by ANN is 13.72 and 3.55%.
That is to say, SVM shows better learning and
generalization ability in the small size of the training
set. The ANN model can be applied to predict the
filtration performance of homemade VC-co-VAc-OH
microfiltration membranes and thereby design the
membrane fabrication conditions to obtain the desired
filtration performance of the membrane in the
fabrication process of homemade VC-co-VAc-OH
microfiltration membranes.
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Nomenclature

F — a high dimensional feature space

¢ — a nonlinear mapping

o) — weight vector

() — inner product

o(x) — a mapping function in the feature space

b — a constant (the bias)

Remplfl — experience risk

A — regularization parameter

||| — confidence risk

S — size of the sample

C() — Loss function

& — difference between the predicted values and
the experimental data

Cley — experience loss of the model

] — flux of the membrane

Vv — total permeate volume

A — effective membrane area

t — operation time

R — rejection of the membrane

Co — concentration of the permeation
C feed solution
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