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ABSTRACT

The focus of this research is to create pragmatic and novel membrane bioreactor (MBR) mod-
els which can be applied for plant design, control and optimisation. Consequently, this
research compares the traditional mechanistic models based on existing well known MBR
filtration and biochemical processes with alternatives forms based on autoregressive input–
output model formulations that in turn are based on system identification methods. Both
model types are calibrated and validated using the same plant layouts and datasets derived
for this purpose. This collated plant information included data obtained from carrying out
standard flux-stepping experiments on a membrane filtration unit, and long term filtration
experiments on a pilot MBR plant. In order to overcome the inherent deficiencies in any
traditional approach, a novel alternative approach was tried in order to predict membrane
filtration and fouling process for a MBR in a quick and easy manner. The rationale behind
this novel approach is that it is simple to apply and that it does not require an intimate
knowledge of the exact processes occurring in the MBR, so it could be applied by any non-
specialist who was new to wastewater treatment modelling. This alternative approach uses
linear and bilinear autoregressive model structures. Initial results from both the traditional
and novel approaches indicate reasonable model predictive capabilities.
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1. Introduction

The aim of this study was to create practical mem-
brane bioreactor (MBR) computer models that can then
be applied for plant design, control and optimisation. It
was intended that the outcomes of this research would
lead both to the improvement of existing models and
the creation of new, innovative models. The eventual

application of both model types would be to optimise a
real treatment plant and thereby eventually develop a
long-term energy saving control strategy [1].

1.1. Disadvantages of using phenomenological membrane
fouling models for plant design, operation and control

Most current researchers model the membrane
fouling process using a phenomenological mechanistic
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approach that obeys the fundamental laws of physics.
This is the traditional approach used to model MBR
systems that treat wastewater. However, it has
been found that it does suffer from the following
disadvantages:

• Membrane fouling is in reality highly complex and
currently poorly understood as a process. Hence
any mechanistic fouling model, either simple or
complex, cannot hope adequately to address all
aspects involved in the fouling procedure [2].

• Usually a mechanistic fouling model needs to be
made bespoke for each individual filtration system,
so that it accurately depicts the specific hydrody-
namics of the process and the membrane opera-
tional regime [2].

• These models are normally highly dimensional and
contain several parameters requiring determination
by real-life plant datasets (e.g. flux stepping trials,
extended specialist laboratory experiments, etc.).

• Parameter estimation and optimisation require
expert knowledge and proves to be complex as
most models of this type are over-parameterised
with too many degrees of freedom.

• For many applications insufficient quality data is
usually available to allow a full model calibration
and validation, and thus any verified model is not
accurate for every situation.

• The general application of such complex models
means their take up for process control and the
development of future operational strategies will
always prove limited [3].

In a bid to overcome the distinct disadvantages of
a traditional mechanistic approach, it has been sug-
gested that a non-traditional approach can be used to
describe the membrane fouling process for a MBR sys-
tem. The non-traditional approach which was used in
this study is based on time series system identification
methods [4,5]. At its simplest, it uses the plant data
set itself to determine that best fit model from a range
of standard numerical model structures (e.g. autore-
gressive, state-space, sub-space, etc.), that are
described in greater detail in the next section.

1.2. “Model conceptualisation procedure” required to embed
the alternative modelling approaches in reality

Under this study two different model types,
namely, a phenomenological model structure and an
autoregressive time series model structure, were
tested to ascertain which gave the best results. These
autogressive model types, which are based on

standard mathematical formulations such as ordinary
differential equations or difference equations of vari-
ous orders, can be used as a quick method for model
prediction as no prior process knowledge is required
for model calibration and validation [6,7]. The proce-
dure automatically selects the best order model-based
on the number of lags in output data that give the
optimal prediction. Little skill is needed by the simu-
lator to obtain the best-fit, and a significant amount of
time is saved when compared to the complex needs
by verifying a typical mechanistic model. Addition-
ally, many of the complex tests, both laboratory-based
and in situ, that are required to validate numerous
model parameters are not required, or the need to
carry out extensive literature reviews of parameter
values used by previous reputable researchers.

However, it is recommended if these model types
are used as real practical alternatives to phenomeno-
logical approaches, extreme care should be taken in
selecting appropriate variables when forming the
autoregressive model structure. This is where a
“Model Conceptualisation Procedure” developed by
prior researchers, such as Paul [8] will prove invalu-
able as it underpins the basic knowledge needed by a
lay person when developing models of this type. This
procedure means that various structures have already
been developed and tested based on expert biochemi-
cal and hydrodynamic process knowledge, and the
user only has to implement them. Fig. 1 describes part
of such a MBR “Model Conceptualisation Procedure”
developed under this study [8].

A model of a process is typically represented by
an ordinary differential equation as shown in Eq. (1)
where the following vectors are: x(t) the state of the
system, m(t) the manipulated (control) variables, z(t)
the input variables from external environment, u(t)
the input variables connections from other subsystems
and y(t) the output variables for a subsystem.

_xðtÞ ¼ fðxðtÞ;mðtÞ; zðtÞ; uðtÞ; yðtÞÞ ð1Þ

Fig. 1. Part of a “model conceptualisation procedure” used
to develop rational relationships between input and output
variables for an approximate decomposed MBR model.
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So for a general membrane undergoing filtration as
shown in Fig. 1, the following generalised vector rep-
resentation can be used for a typical side stream MBR
scenario as shown above.

2. Methodology

This research work uses phenomenological models
based on both traditional MBR filtration and biochem-
ical processes to measure the effectiveness of alterna-
tive time series input–output (IO) models based upon
system identification time series analysis methods.
Both model types are calibrated and validated using
the same plant layouts and data sets derived for this
purpose.

2.1. Duclos–Orsello phenomenological model

A phenomenological dead-end filtration model [9],
was used in this study that depicts the three main
fouling mechanisms occurring on membranes, namely,
cake build-up, complete pore blocking and pore con-
striction, as originally described in Hermia [10] under
constant trans-membrane pressure (TMP) operation.
In this model, Duclos–Orsello et al. [9], splits the total
flow, Qt, through the membrane into flow through the

unblocked membrane surface area and flow through
the blocked membrane surface area as shown in Eq.
(2). Hence the first algebraic term relates to the
unblocked flow whilst the second integral term relates
to blocked flow.

This initial model was extensively modified and
added to by Paul et al. [11], so that it could be used to
model a variety of real-life MBR configurations.

Modifications and add-ons to this basic model
included: alteration so that it could be used for
varying flux and varying TMP operations; inclusion of
a backwash mode; it described pore constriction
(i.e. irreversible fouling) in relation to the concentra-
tion of soluble microbial products (SMP) in the liquor
with SMP being the key agent thought to determine
membrane fouling [12,13]; and, it could be used in a
cross-flow scenario by the addition of scouring terms
in the model formulation. Using data collected from a
pilot membrane filtration unit, this modified determin-
istic model was calibrated and validated in Matlab�.

2.2. Using system identification time series analysis
methods to create input–output models as possible
non-traditional alternatives

System identification is an iterative process in
which models with different structures are identified
from data, and the individual model performance is
compared. The normal start point is determined by
estimating the parameters of very simple model struc-
tures. If the performance still proves poor, then the
model structure is gradually increased in complexity.
Ultimately the simplest of all model structures tested

is eventually selected, in which the best describes the
dynamics of the system under scrutiny. In this iterative
process, which can be automated, the system identifi-
cation procedure commences by initially using linear
continuous IO model structures. This followed by
using more complex non-linear structures the simplest
of which is the bilinear one [14]. The best-fit structure
is then chosen as the optimal model formulation.
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In this study, a linear continuous IO state-space
model structure is tested using Matlab� and the
supplied time series data. The state-space model
structure is a good choice for quick estimation because
it requires only two parameters, namely the model
order and one or more input delays. These model
formulations are usually solved using iterative optimi-
sation techniques and algorithms like the least squares
method. However, this requires a lot of computing
power and they are prone to inherent inaccuracies. A
much more attractive model formulation is the sub-
space one which does not need to be solved using
iterative optimisation techniques and algorithms, but
by only using algebraic calculations [15]. This means
the sub-space model formulation is a very powerful
version of the state-space one that uses only a single-
shot solving procedure with improved accuracy.
Hence this sub-space method was also tested under
this study for comparative purposes on two different
data sets. Finally, a more complex but less robust tem-
perature dependent bilinear model structure was
tested on one of these data sets.

2.3. Pilot membrane filtration unit

Both the phenomenological and the state- and sub-
space fouling model types have been tested on the
data obtained from flux stepping tests performed on
an ITT Sanitaire Ltd pilot membrane filtration unit.
This unit treated tertiary effluent from Cardiff’s
sequence batch reactor wastewater treatment plant,
and its basic operational information is described in
Table 1 above.

2.4. Pilot MBR plant

In a separate but related study, the sub-space foul-
ing model type is tested with a bilinear fouling model
type using long term filtration data taken from an ITT
Sanitaire Ltd pilot MBR depicted in Picture 1. This
pilot treated brewery effluent generated from a Coors
(UK) plant, and its basic operational information is
described in Table 2 above. The dimensions of the fil-
tration portion of the pilot MBR plant were identical

Table 1
Operational data for pilot membrane filtration unit

ITT Sanitaire membrane filtration unit (without bioreactor)

Membrane type and area Horizontal “Kolon” fibres; PVDF 0.1 lm pore size; 20m2

Feed flow; permeate flow; backwash 1–2.4m3/h; 0.6–1m3/h; 1.2–1.8m3/h

Backwash interval & duration Every 4min with 30 s ON

TMP 300–500mbar

Aeration rate 13Nm3/h from coarse bubble tube diffuser

Cleaning regime Hypochlorite dosed 4 times daily into permeate tank

Feed flow biological data COD concentration 50mgO2/l; TSS concentration 25mg/l

Indicative feed flow SMP data Measured glucose concentration 5mg/l; measured protein concentration 100mg/l

Picture 1. ITT Sanitaire pilot MBR plant.

Table 2
Pilot MBR plant operational data

ITT Sanitaire MBR plant (with bioreactor)

Membrane type and
area

Vertical “Puron” fibres; PES
0.04 lm pore size; 20 m2

Permeate flow;
backwash flow

0.6m3/h; 1.1m3/h

Permeate
recirculation flow

0.27m3/h

Backwash interval &
duration

Every 6min with 45 s ON

TMP 300–500mbar

Bioreactor DO
operating range

2–4mg/l

Full air scour flow 27Nm3/h for 15 s every 60 s

Low air scour flow �2Nm3/h for 45 s every 60 s

Bioreactor data
(membrane feed)

MLSS concentration �7,500mg/l

Bioreactor tank data Volume 1m3; operating level of
weir 1.9–2.0m
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to filtration unit used earlier for the flux-stepping
tests. This validation was done on standard mixed
liquor from a MBR plant, in order to test the autore-
gressive models validity during filtration of liquids
with high biological solids content. The other advan-
tage of this dataset was that it was accumulated over
several months and consisted of regular measure-
ments taken on-line. Consequently, for a single month
there were hundreds of thousands of data points that
could be potentially used in any model simulation.
Further, the mixed liquor temperature was regularly
measured on-line so could be used as an input vari-
able to see whether a bilinear model gave a more rep-
resentative fit for the data.

3. Results and discussion

3.1. Model simulation for flux stepping—results for
Duclos–Orsello traditional approach

After various assumptions and simplifications of
the plant data, the eight best flux steps were used to
test the modified phenomenological model. Fig. 2,
shows the result obtained when using the calculated
optimal parameter sets for the best eight flux steps for
this pilot unit, with the pore blockage parameter, a,
calculated as 3,469 and the pore constriction parame-
ter, b, as 0.14. The model fit is extremely good, with
the genetic algorithm (GA) mean fit being 1.0377 for a
population generation of 5,000 when using the Mat-
lab� standard GA routine.

3.2. Model simulation for flux stepping—results for non-
traditional approach using IO models

After various assumptions and simplifications of
the plant data, the eight best flux steps were used to
test the proposed multi-input single output (MISO)
model structure. As the plant layout for this unit is

very simple with no bioreactor to complicate matters,
the selected MISO model structure should give a very
high degree of accuracy. In this case, the permeate
flux, the measured SMP levels, and the measured bulk
mixed liquor concentration into the membrane were
used as variables in the input model vector with the
TMP being the single variable in the output model
vector. First, an IO model-based on a standard itera-
tive state-space formulation, was tested using the
parameter estimation method (PEM) in the Matlab�
graphical user interface (GUI) system identification
toolbox. This was followed by using a quicker single-
shot algebraic sub-space method as a comparison,
which was developed by Chen and Maciejowski [15]
to run as a specialist Matlab� sub-space analysis tool-
box that overcomes the deficiencies of the PEM GUI
procedure. Results are described below.

3.2.1. Best-fit for eight flux steps of MISO normal state-
space model

Fig. 3 shows the result obtained when using the
calculated optimal parameter sets for the best eight
flux steps for this pilot unit. The model fit is extre-
mely poor.

The fully calculated state-space model vectors and
matrices for this specific simulation are as follows:

The generalised state-space model is shown in Eqs.
(3) and (4) with e(t) being system disturbance or noise;
TS the sampling interval; and A, B, C, D and K as
determined parameter sets.

xðtþ TSÞ ¼ A � xðtÞ þ B � uðtÞ þ K � eðtÞ ð3Þ

yðtÞ ¼ C � xðtÞ þD � uðtÞ þ eðtÞ ð4Þ

where

Fig. 2. Modified phenomenological model - best model fit
for eight flux steps.

Fig. 3. Best model fit for eight flux steps (four for
validation) for standard state-space formulation.
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A ¼
0:83394 �0:29167 0:2897 0:062391
0:34065 �0:27338 �0:85698 �0:077276
�0:45991 �0:71571 �0:051448 0:70936
0:65204 �1:1375 �0:99252 �0:7441

2
664

3
775

B ¼
�0:012929 �0:072907 0:27366
�0:02189 �0:64752 0:040819
�0:36466 0:53015 4:6264

2
4

3
5

C ¼ 130:32 46:421 �30:711 �30:999½ �

D ¼ 0 0 0½ � K ¼
0:0027854
�0:0019581
�0:041576
0:071596

2
664

3
775

3.2.2. Best-fit for eight flux steps for MISO sub-space
model

Fig. 4 shows the result obtained when using the
calculated optimal parameter sets for the best eight
flux steps for this pilot unit. The model fit is very
good. For the sake of brevity the fully calculated sub-
space model vectors, matrices and parameter sets are
not given here.

3.2.3. Discussion of model simulation results with pilot
membrane filtration unit data

The standard state-space formulation gave a work-
able fit, albeit not a very good one of 8.5% as shown
in Fig. 3. However, the shape and direction of the fit
is correct even though the simulated data is prone to
gradually attenuating fluctuations around a mean
point. This poor fit could be attributed to the regular
backwash events that cause a sudden large negative

drop in the TMP that the simulated model in this case
is unable to cope with.

When this MISO model structure is run as a sub-
space formulation, the best-fit is for a sixth order
model with an algorithm block size of four. This fit is
carried out by using the last four flux stepping cycles
as the validation data set. The result as shown in
Fig. 4 depicts an excellent fit amounting to 89.14%.
The shape of the fit is extremely good and is in the
right direction (i.e. TMP increases with time), and
thus validating the use of additional input biochemi-
cal data (e.g. SMP and mixed liquor concentration
levels) to improve the overall model fit.

3.3. Model simulation for long term filtration—results for
sub-space linear and temperature dependent bilinear models

In this case the permeate flux, the measured bulk
mixed liquor concentration into the membrane, and
the liquid temperature were used as variables in the
input model vector with the TMP being the single var-
iable in the output model vector. Data taken for the
full month of January was used and consisted of
nearly 24,000 data points.

3.3.1. Best-fit for long term filtration for MISO sub-space
and bilinear models

Fig. 5 is a combined plot of the actual TMP values
plotted against both the sub-space method and the
bilinear model version. Again for the sake of brevity,
neither model’s fully calculated vectors, matrices and
parameter sets are given here. As can be seen the
bilinear model which includes for temperature depen-
dence gives greater predictive accuracy at 43% best-fit,
although it proved more difficult to set up and less
robust than the sub-space method which only gave a
26% best-fit.

The following summarised points can be made
regarding IO model structures used in this section:

• If the IO model structure is not selected judiciously
then the resulting model will prove of little predic-
tive value. Therefore very careful thought has to be
applied to develop appropriate and sensible IO
model structures that best reflect reality.

• Different plant layout seem to favour different IO
model formulations, so some achieve a better fit
using state space formulations, whilst others are
better reflected using autoregressive iterative for-
mulations. However, the sub-space method always
performed adequately and so should always be
tried first.

Fig. 4. Best model fit for eight flux steps (four for
validation) for sub-space method.
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• It was found that when the backwash data was
entirely removed from the dataset, the fits for all
methods considerably improved. It is recom-
mended it is always discarded from a dataset
before use if at all possible, since it will negatively
skew the fit especially, the shape and direction of
the fit.

• As expected, the bilinear sub-space model gives a
better fit than its linear version, although its formu-
lation is more complex in nature, and the algorithm
used is very sensitive and thus, apt to fail or not be
able to provide a solution.

• It is abundantly evident from these simulation
results that IO model structures can give useful
predictive results when compared to traditional
phenomenological mechanistic approaches for
wastewater treatment.

4. Conclusions

Overall it is clear that the phenomenological model
performed very well even though it took a consider-
able time to be developed into a useful format, and
the model had to be calibrated using complex genetic
algorithm procedures. Conversely, the sub-space
method gave consistent results for the IO models
used, and was very easy to set up and calibrate. The
bilinear formulation even managed to improve upon
this but was much more difficult to setup and cali-
brate and even more fragile to run.

It initially looks like this novel approach has many
advantages over traditional mechanistic models while
giving comparable results for some IO structures.

Early simulation results described in this study prove
this, especially for subspace methods. However these
methods can prove very fragile and prone to crashing.
Additionally a comprehensive “Model Conceptualisa-
tion Procedure” is required to tie it into reality which
needs expert know-how to set up. They also require
very large data sets to produce accurate formulations,
and these linear models are only useful around a very
narrow operating range or operating point. Non-linear
model versions, such as the bilinear structure tested in
this study, can improve upon predictive accuracy but
are even more fragile than their linear counterparts.

In summary, it may prove advantageous to use
these methods for model prediction under most cir-
cumstances apart from the following instances:

• Not for design of new plant (particularly for pro-
cesses with long time constants), and the biological
operation of plant (i.e. off-line measurements).

• No good as research tools to investigate membrane
fouling. Cannot predict one-off fouling events, only
generalised scenarios.

The situation in which they may particularly prove
themselves superior to traditional model structures is
for model predictive control (possibly in real time) for
processes with very short time constants (i.e. rapidly
changing flux/TMP data). However, they would need
constant automated updating of historical data sets
using on-line sensors. In conclusion, further research
is required using longer historical data sets to defini-
tively ascertain whether this non-traditional modelling
approach can be further developed and improved
upon.

Fig. 5. Actual TMP vs. simulated subspace and bilinear model calculated values.
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Nomenclature

Bcake — general unspecified term relating to cake
build up

Cb — bulk concentration (mg/l)

f — fractional amount of total foulant
contributing to deposit growth

fbwash — general unspecified term relating to
backwash frequency, intensity, duration (and
relaxation steps)

Ifoul — general unspecified term relating to
irreversible fouling (i.e. pore constriction)
and its amelioration (e.g. chemical clean, etc.)

J0 — initial flux rate of clean membrane (m/s)

qperm — permeate flow rate (m3/s)

Qt — total volumetric flow rate (m3/s)

Q0 — initial volumetric flow rate (m3/s)

Rfoul — general unspecified term relating to
reversible fouling (i.e. pore blocking) and its
amelioration dependant on configuration (e.g.
air scour, cross flow velocity, backwash,
forward permeate run, relaxation, etc.)

Rm — resistance of the clean membrane (m�1)

Rp0 — original resistance of the deposit (m�1)

R — specific protein layer resistance (m/kg)

SPS — soluble polysaccharide concentration (mg/l)

SPP — soluble protein concentration (mg/l)

t — filtration time (s)

tp — filtration time after initial membrane blocking
occurs(s)

TMP — trans-membrane pressure (Pa)

XEPS — particulate (bound) extracellular polymeric
substances (mg/l)

Dp — constant total membrane pressure (Pa)

Greek letters

a — pore blockage parameter (m2/kg)

b — pore constriction parameter (kg)

lðTÞ — temperature dependant viscosity (cP)

xpump — general unspecified term relating to
recirculation pump speed, duration, etc.

Vthrottle — general unspecified term relating to throttle
valve settings for external membrane unit
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