
Heterogeneous Fenton process using iron-containing waste (ICW)
for methyl orange degradation: process performance and modeling

Mohamed E.M. Alia, Tarek A. Gad-Allaha, Emad S. Elmollab,*, Mohamed I. Badawya

aWater Pollution Research Department, National Research Centre, Cairo, Egypt
bDepartment of Civil Engineering, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
Tel. +20 1113301981; emails: em_civil@yahoo.com; emadelmolla@yahoo.com

Received 7 June 2012; Accepted 2 May 2013

ABSTRACT

The feasibility of using iron-containing waste (ICW) as new low-cost heterogeneous Fenton
catalyst for methyl orange (MO) degradation has been studied. Process modeling and simu-
lation has been conducted using artificial neural network (ANN). Complete degradation of
MO was achieved at 0.2 g/L ICW concentration, 24mM H2O2 dose, and pH 2 in 30min. A
three-layered back-propagation neural network with tangent sigmoid transfer function
(tansig) at hidden layer and linear transfer function (purelin) at output layer was used for
modeling the process performance. ANN-predicted results are very close to the experimental
results with a correlation coefficient (R2) of 0.961 and a mean squared error of 0.039. The
sensitivity analysis showed that all studied variables (reaction time, ICW concentration,
H2O2 dose, pH, and MO concentration) have strong effect on MO degradation. Among all
studied variables, pH appeared to be the most influential input variable followed by ICW
concentration.

Keywords: Artificial neural network (ANN); Modeling; Iron-containing waste; Heterogeneous
Fenton; Degradation; Methyl orange

1. Introduction

Effluents from textile industrial activities usually
contain several classes of hazardous dyes that have
negative effect on water resources, human health, and
environment. These effluents not only deteriorate the
receiving water, but also pose significant threats to
aquatic life because of oxygen deficiency and forma-
tion of some toxic products. Most of textile dyes are
designed to produce long-lasting colors and are resis-
tant to mild oxidation conditions. Therefore, stronger
oxidation agents such as Fenton’s reagent could be

used for the degradation of dye structure [1]. It was
estimated that over 700,000 tons of dyes and pigments
are produced annually and about 20% of dyes find
their way to the environment due to inefficient
use [2].

Development of an efficient process for dyes deg-
radation is needed to overcome problems associated
with traditional processes. Advanced oxidation pro-
cesses (AOPs) rely on the generation of extremely
active hydroxyl ( �OH) radicals, which are identified as
strong and nonselective oxidants for degradation of
almost all organic compounds [3]. One of the AOPs is
Fenton-like (heterogeneous Fenton) process which
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generates powerful �OH radicals from H2O2 in the
presence of iron (Fe2+/Fe3+/H2O2) [1]. In the heteroge-
neous Fenton reaction, soluble Fe2+ (catalyst) may be
replaced by iron-containing waste (ICW) produced
from steel industries.

Steel is manufactured by the chemical reduction of
iron or using an integrated steel manufacturing pro-
cess or a direct reduction process. In the conventional
integrated steel manufacturing process, the iron from
the blast furnace is converted to steel in a basic oxy-
gen furnace. Steel can also be made in an electric arc
furnace from scrap steel and, in some cases, from
direct reduced iron. Three major waste streams are
generated during steel manufacturing: air emission,
wastewater, and solid waste. The amount of the
generated solid waste from the conventional process
(furnace slag, collected dust) is in the range of
300–500 kg/t of steel manufactured. This ICW is rich
in iron and can be used as a catalyst in heterogeneous
Fenton process for wastewater treatment.

The use of ICW as heterogeneous Fenton catalyst
may give numerous advantages over the classic heter-
ogeneous/homogenous Fenton catalysts. In case of
comparison with homogeneous Fenton catalysts, these
advantages are less sludge production and easy sepa-
ration of the catalyst [4,5]. However, it is a cost-effec-
tive catalyst when compared with other
heterogeneous Fenton catalysts such as Fe2O3, S-
doped Fe2O3, Fe3O4 [6–11].

The objective of this work is to examine the feasi-
bility of using ICW as a new low-cost heterogeneous
Fenton catalyst for methyl orange (MO) degradation.
Process modeling and simulation using artificial neu-
ral network (ANN) are investigated. The ANN model-
ing outputs are compared with the experimental data.

2. Experimental

2.1. Reagents

All chemicals used in this study were of analytical
grade and were used without further purification. The
ICW was collected from the Egyptian for iron and
steel Company and was used after grinding to fine
powder. H2O2 (30%, v/v) and MO were purchased
from Fluka Company (Fig. 1). Aqueous solution of

MO was prepared by dissolving a certain amount of
MO in deionized water.

2.2. Analysis and procedure

X-ray Diffraction (XRD) pattern of ICW was
recorded on Bruker diffractometer equipped with
graphite-monochromatized Cu-Ka radiation (Ger-
many). The amount of iron in ICW was determined
by acid leaching and analysis of leachate by atomic
absorption spectrometer (Varian, Spectra AA 220).

All experiments were conducted in a conical flask
(250mL) placed on an orbital shaker (Stuart scientific,
UK) at 200 rpm rotation speed and under dark cir-
cumstance. The preselected ICW dose was added to
MO aqueous solution and the initial pH was adjusted
using H2SO4. Thereafter, H2O2 was added to start the
experiment. A volume of 5ml from the solution was
taken at preselected time intervals during the reaction
and then NaOH was immediately added to the sam-
ple. NaOH was added to decompose the residual
H2O2 and precipitate the formed ferric hydroxide
complexes [12]. The precipitated sample was filtered
through a 0.45lm membrane filter before measuring
the absorbance at kmax of MO on UV–Visible spectro-
photometer (Jasco V530, Japan).

3. Modeling

3.1. Artificial neural network (ANN)

ANN modeling is now used in many areas of
engineering, science, and technology. It is considered
as a promising tool because of its ability of learning,
simulation, and prediction of data [13]. The ANN is
an artificial intelligence technique that mimics the
human brain’s biological neural network in the prob-
lem-solving processes [14]. The network consists of
numerous individual processing units called neurons,
which are connected to a network by a set of weights.
The multilayer feed-forward network is a parallel
interconnected structure with unidirectional informa-
tion flow. ANN structure consists of an input layer
that includes independent variables, a number of hid-
den layers, and output layer [15].

In this study, a three-layered back-propagation
neural network with tangent sigmoid transfer function
(tansig) at hidden layer and a linear transfer function
(purelin) at output layer is used. Neural Network Tool-
box V4.0 of MATLAB mathematical software is used
for modeling, prediction, and simulation of MO deg-
radation. Out of the several experimental data points
generated, 95 experimental data points were used to
feed the neural network structure. The experimentalFig. 1. Chemical structures of MO.
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data-set was divided into input matrix [p] and target
matrix [t]. The input variables were reaction time (t),
ICW concentration (mg/L), H2O2 dose (mMole), pH,
and initial dye concentration. The corresponding MO
degradation percent was used as a target. Principal
component analysis was performed on input data to
filer out the uncorrelated random data.

4. Results and discussion

4.1. XRD characterization of catalyst

The ICW used in this study contains about 90%
iron detected. The crystalline structure of iron in the
ICW is illustrated in Fig. 2. Iron is crystallized in three
phases, magnetite (Fe3O4), hematite (Fe2O3), and fer-
rous oxide (FeO).

4.2. Heterogeneous Fenton catalytic activity of ICW

To assess the catalytic activity of ICW as a catalyst
in the degradation of MO by heterogeneous Fenton
process, preliminary experiments were carried out as
follows: (1) presence of H2O2 only, (2) presence of
ICW, and (3) presence of ICW and H2O2. Degradation
of 20mg/L of MO as function of time is shown in
Fig. 3. Low and negligible degradation was achieved
in presence of H2O2 only and this could be ascribed
to limited oxidation ability of H2O2 compared with
�OH radical. Presence of ICW only achieved MO deg-
radation of 21% in 2 h. This could be ascribed to the
adsorption by ICW. It is worth noting that the degra-
dation efficiency of 98% in 2 h was achieved in the
presence of catalyst and H2O2, which indicate that
ICW reacts with H2O2 to generate �OH radicals to
degrade MO.

In the present work, two mechanisms were
proposed for the generation of �OH radical via

Fenton-like reaction using ICW as catalyst. The first
mechanism was based on the presence of Fe3O4 and
Fe2O3 oxides which are present in the catalyst as
shown in Fig. 2 and is expressed in Eqs. (1)–(3). The
other mechanism relied on FeO that is present in the
catalyst and is presented in Eqs. (2) and (3). Ferrous
ions are continuously generated from the reaction and
hence high process performance is expected.

Fe3þ þH2O2 ! Fe2þ þHOO� þHþ ð1Þ

Fe2þ þH2O2 ! Fe3þ þ�OHþOH� ð2Þ

Fe3þ þHOO� ! Fe2þ þO2 þOHþ ð3Þ

4.3. Effect of pH

The pH of wastewater has an effect on heteroge-
neous Fenton process performance. The effect of pH
on the MO degradation by ICW was investigated at
pH range of 2–5. Other operating conditions were
0.15 g/L of ICW dose and 24 of mM H2O2 dose. Fig. 4
shows the experimental results which have been com-
pared with the ANN-predicted output. Almost com-
plete degradation of MO was achieved within 60min
at pH 2. However, increasing of pH to 5 resulted in
decreased degradation of about 55%. This agrees well
with the previously reported results [16]. At pH val-
ues above 5, dominant oxidant such as ferryl ion (e.g.
FeO2+) may be formed as in Eq. (4) and it is weaker
than �OH. In addition, deactivation of catalyst with
the formation of ferrous/ferric hydroxide complexes
leads to the deactivation of ferrous and reduction of
�OH [17–19]. In terms of the relation between the
experimental results and the predicted values, Fig. 4
shows that the predicted values fairly matched with
the experimental data.

Fig. 2. XRD pattern of Iron in ICW; (N) magnetite, (�)
hematite, and (�) wuestite.

Fig. 3. Degradation rate of MO under different conditions.
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Fig. 5. Effect of hydrogen peroxide concentration on experimental and predicated degradation rate of MO, hydrogen
peroxide concentrations (a) 12mM, (b) 24mM, (c) 48mM, and (d) 64mM.

Fig. 4. Effect of pH of solution value on experimental and predicated degradation rate of MO, and pH values (a) 2, (b) 3,
(c) 4, and (d) 5.
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Fe2þ þH2O2 ! Fe ðIVÞ þ ðFeO2þÞH2O ð4Þ

4.4. Effect of hydrogen peroxide concentration

To study the effects of hydrogen peroxide dose
on the MO degradation, H2O2 dose was varied in
the range of 12–64mM. Other operating conditions
were kept unchanged, 2 for pH and 0.15 g/L of
IWC dose. Fig. 5 shows MO degradation as a func-
tion of initial H2O2 concentration at 20mg/L of MO.
The experimental results have been compared with
the ANN-predicted output. As seen in Fig. 5, the
rate of MO degradation increases with increasing
H2O2 concentration during the early stages of
reaction; nonetheless, 90% conversion and complete

degradation was achieved after 60min of reaction
for 24mM of H2O2. An additional run was per-
formed at 48mM H2O2 dose leading to marginal
increase in MO degradation. Interestingly, increasing
H2O2 dose from 24 to 64mM had an adverse effect
on MO degradation which decreased from 90% to
about 73%. This could be due to hydrogen peroxide
not being selectively converted to �OH radicals
and/or, once �OH radicals have been generated;
they are wasted through scavenging reaction mecha-
nisms. During heterogeneous Fenton reactions, it has
been stated that �OH radicals can partly be scav-
enged by hydrogen peroxide to form hydroperoxyl
radicals (Eq. (5)) with a lower oxidizing power [16];
the latter can also scavenge hydroxyl radicals
according to Eq. (6):

Fig. 6. Effect of ICW concentration on experimental and predicated degradation rate of MO, catalyst doses (a) 0.05 g/L,
(b) 0.1 g/L, (c) 0.15 g/L, (d) 0.2 g/L, and (e) 0.25 g/L.
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�OHþH2O2 ! H2OþHO�
2 ð5Þ

HO�
2 þ �OH ! þH2OþO2 ð6Þ

Hence, 24mM H2O2 dose is considered satisfactory
to achieve an acceptable process performance with
almost complete MO degradation and it will be con-
sidered in the subsequent experiments. In terms of the
relation, the experimental results and the predicted

values produced show a good agreement as shown in
Fig. 5.

4.5. ICW concentration

The effect of ICW concentration on MO degradation
is shown in Fig. 6. The operating conditions were; ICW
0.05–0.25 g/L, MO 20mg/L, and H2O2 dose 24mM. As
seen, the initial MO degradation increased with

Fig. 7. Effect of MO concentration on experimental and predicated degradation rate of MO, MO concentrations (a) 10, (b)
20, (c) 40, (d) 60, and (e) 80mg/L.
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increasing ICW concentration. Increasing of MO degra-
dation with the increase of ICW concentration was
observed, the complete degradation of MOwas achieved
at ICW concentration of 0.2 g/L after 60min. Fig. 6
showed that predicted outputs of MO degradation are in
good agreement with the experimental values.

4.6. Effect of initial MO concentration

The effect of initial MO concentration in the range
10–80mg/L on its degradation was studied at 0.2 g/L

ICW concentration and 24mM H2O2 dose, and pH 2.
As seen in Fig. 7, degradation decreased with the
increasing initial concentration. The final (i.e. after
60min) MO degradation was 100, 98, 96, 89, and 86%
at initial MO concentrations of 10, 20, 40, 60, and
80mg/L, respectively. Experimental results and pre-
dicted values showed good agreement.

4.7. Test and validation of the model

The experimental data-set was divided into train-
ing (one half), validation (one fourth), and test (one
fourth) subsets, each of which contained 47, 24, and
24 data points, respectively. The experimental data-set
was used to feed the ANN to test and validate the
model. Topology of an ANN is determined by the
number of its layers, number of nodes in each layer
and the nature of transfer functions. A three-layered

Fig. 8. ANN structure.

Fig. 9. Relationship between numbers of epoch and MSE
for training, validation, and testing of the model.

Fig. 10. Comparison between predicted and measured
values of the color removal.

Table 1
Relative importance of input variables

Input variable Relative importance

Reaction time 12.0

ICW concentration 23.8

H2O2 dose 21.3

pH 26.8

MO concentration 16.0

Total 100.0

4544 M.E.M. Ali et al. / Desalination and Water Treatment 52 (2014) 4538–4546



feed-forward back-propagation neural network with
five neurons in the input layer, 10 neurons in the hid-
den layer and one neuron in the output layer (5-14-1
network) is used for the modeling of MO degradation
(Fig. 8). Sigmoid transfer function (tansig) between
input and hidden layer, and linear transfer function
(purelin) between hidden and output layer were used.
Levenberg–Marquardt back-propagation algorithm
was used as a training algorithm for the ANN. Fig. 9
shows the relationship between number of epochs and
mean squared error (MSE) for the training, validation,
and testing of model. The training stopped when the
minimum MSE was 0.039 and number of epochs
was 11.

Fig. 10 shows a comparison between the measured
and predicted MO degradation percent using the neu-
ral network model. The figure contains two lines, one
is the perfect fit Y=X (predicted data = experimental
data) and the other is the best fit indicated by a solid
line with best liner equation Y= (0.953) X+ 0.985, cor-
relation coefficient (R2) 0.961, and MSE 0.039.

4.8. Sensitivity analysis

Relative importance of the variables has been
assessed using Garson equation [13,20]. The Garson
equation is based on the neural net-weight connection
weights as in Eq. (7):

Ij ¼
Pm¼Nh

m¼1 jW ih
jmj �

PNi

k¼1 jW ih
kmj

� �
� jWho

mnj
� �

Pk¼Ni

k¼1

Pm¼Nh

m¼1 ðjW ih
kmj �

PNi

k¼1 jW ih
kmjÞ � jWho

mnj
n o ð7Þ

where Ij is the relative importance of the jth input
variable on the output variable, Ni and Nh are the
numbers of input and hidden neurons, respectively,
Ws are connection weights, the superscripts “i”, “h”,
and “o” refer to input, hidden, and output layers,
respectively, and subscripts “k”, “m”, and “n” refer to
input, hidden, and output neurons, respectively.

Table 1 shows the relative importance of input
variables and Table 2 shows weight matrix, weight
between input and hidden layers, and weight between
hidden layers and output layers calculated by Garson
Eq. (7). All variables (reaction time, Fe concentration,
H2O2 dose, pH, and MO concentration) have a strong
effect on MO degradation. The pH appeared to be the
most influential input variables followed by Fe con-
centration. The low relative importance of MO concen-
tration reveals that the selected operating conditions
are valid for a wide range of wastewater strengths
[18].

5. Conclusion

• ICW is a feasible catalyst in heterogeneous Fenton
process for MO degradation.

• Complete degradation of 20mg/L of MO was
achieved at ICW concentration 0.2 g/L, 24mM
H2O2 dose, and pH 2 in 60min.

• The neural network modeling effectively predicts
and simulates the behavior of heterogeneous Fen-
ton process with correlation coefficient (R2) of 0.961
and MSE of 0.039.

• The sensitivity analysis showed that all studied
variables (reaction time, ICW concentration, H2O2

Table 2
Weights matrix, weight between input and hidden layers (W1), and weight between hidden and output layers (W2)

Neuron W1 W2

Input variables Output

Reaction time ICW concentration H2O2 dose pH MO concentration Removal (%)

1 0.1082 �0.2661 1.1396 0.1492 0.2165 2.6681

2 �0.1132 �0.3274 �0.2098 2.0264 �0.5132 �2.0234

3 0.1893 �2.8773 0.2915 �0.567 �0.6523 �0.4105

4 0.1138 �0.0002 0.3637 2.0526 �1.8296 �1.7705

5 �0.575 1.5365 �0.1729 �2.073 1.1365 0.6721

6 0.7323 0.2763 �2.2862 �1.0635 �1.061 1.1244

7 0.4834 0.1921 �0.555 1.3474 0.2877 1.1827

8 �0.0862 1.8256 �0.2339 �0.0567 �0.0532 �2.1011

9 2.0981 �0.2179 �0.0788 0.765 �0.5606 1.1434

10 1.1553 �1.9035 �0.635 0.5577 �0.6075 1.1992
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dose, pH value, and MO concentration) have strong
effect on MO degradation.

• The pH value appeared to be the most influential
input variables followed by Fe concentration.
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