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ABSTRACT

This study focuses on the effects of operating conditions including cross-flow velocity, oil
concentration, transmembrane pressure, temperature, and pH on the normalized flux, rela-
tive fouling and turbidity rejection of a polymeric membrane in ultrafiltration (UF) system of
oily wastewater treatment. Although normalized flux rose with increasing CFV, TMP, tem-
perature, and pH, it decreased versus oil concentration. Increasing CFV, temperature, and
pH reduced the relative fouling, while a rise in oil concentration and TMP increased the rela-
tive fouling. Moreover, an increase in CFV, oil content and pH increased turbidity rejection
and rising TMP and temperature decreased the rejection. In this study, the evolutionary
polynomial regression (EPR) approach is adopted on three parametric studies; one is the nor-
malized flux, second is the relative fouling, and the third is the turbidity rejection. These
parameters were evaluated by EPR as a function of mentioned independent variables. By
comparing the experimental data and predicted values, the maximum and minimum average
errors were obtained as 8.29 and 0.0005%, respectively. The maximum and minimum values
of coefficient of determination were 1 and 0.902, respectively. Therefore, EPR would be a
potential candidate to describe membrane performance in UF systems.

Keywords: Evolutionary polynomial regression; Normalized flux; Relative fouling; Turbidity
rejection; Wastewater treatment

1. Introduction

Oily wastewaters are critical subject of environ-
mental issues with high contents of oil are being gen-
erated in the petroleum industry [1]. In recent years
membrane separation methods like microfiltration

(MF), ultrafiltration (UF) [2], nanofiltration (NF), and
reverse osmosis (RO) are being used for wastewater
treatment [3]. The main drawback of membranes is
fouling of their pore spaces and surfaces during the
filtration process. Investigation of the fouling is worth-
while because fouling causes substantial flux declines
during operation, affects selectivity negatively,
increases the operational cost and requires frequent*Corresponding author.
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membrane replacement. Therefore, knowledge about
effect of operation conditions on fouling of membrane
is essential [4]. One of the most important concerns in
wastewater purification by membrane filtration is the
removal of solutes. Recently, modeling the fouling of
membrane and rejection rate evaluation have been the
subject and challenging issue of many studies. Many
researchers have represented their models in the cases
of analytical modeling and modeling with machine
learning such as genetic programming (GP) [5–7] and
evolutionary polynomial regression (EPR) [8–10].

In GP, there is no need to have knowledge about
neither the physics of the problem nor the design of
the model. Shokrkar et al. [5] studied the treatment of
oily wastewaters with synthesized ceramic MF mem-
branes and proposed a new approach for modeling of
flux membrane using GP. The results obtained from
the GP model demonstrated acceptable fitness to the
experimental data with an average error of less than
5%. Hwang et al. [6] modeled and predicted mem-
brane fouling rate in a pilot-scale drinking water pro-
duction system using GP to discover the mathematical
function for the pattern of the membrane fouling rate.
The model has adopted the input parameters for
operating conditions (flow rate and filtration time)
and feed water quality (turbidity, pH, temperature).
The proposed model successfully simulated the
pattern of membrane resistance during the operational
period. Okhovat et al. [7] developed robust models
based on experimental data to predict the membrane
rejection of arsenic, chromium, and cadmium ions in a
NF pilot scale system using GP. The results of the
proposed GP models showed excellent concurrence
with the experimental results. The performance and
precisions of proposed GP models were quite
satisfactory.

In the EPR, there are hybrid–capabilities of
conventional numerical regression and GP. Savic et al.
[8] modeled the number of collapses and blockages in
two sewer systems using EPR to find the set of
formula. Two approaches were implemented, first, two
types of recorded sewer failures (collapses and
blockages) observed during a five-year-period; second,
the pipe data (age, size, etc.). The value of coefficient
of determination (COD) was close to one that showed
best fitness between experimental data and models.

In this study, the capability of EPR was applied as
a powerful tool in order to make set of formula with a
variable number of polynomial coefficients and find
out the dependency of normalized flux, relative
fouling, and turbidity rejection on independent
variables, i.e. cross flow velocity (CFV), oil concentra-
tion, transmembrane pressure (TMP), temperature,
and pH.

2. EPR in brief

Numerical regression as a powerful data analyzing
method is commonly used to estimate the best fitting
model for a set of experimental data. However, the
type of a function (exponential, logarithmic, linear,
etc.) must be selected before the fitting procedure
commences. On the other hand, GP is considered as a
simple and strong. Artificial intelligence-based strat-
egy is utilized for computer learning inspired by natu-
ral evolution to find the suitable mathematical model
to fit a set of points. The computer generates and
evolves a whole population of functional expressions.
The automated induction of mathematical descriptions
of data using GP is usually referred to as symbolic
regression [9]. EPR a synergistic technique, is a
recently developed data-hybrid regression method by
Giustolisi and Savic. This method integrates the best
characteristics of GP with that of numerical regression.
EPR consists of the set of equations including Case 0,
Case 1, Case 2, and Case 3 as mentioned in previous
studies [10,11].

Model accuracy, or fitness to observed data, is
evaluated using the COD as follows [12]:

COD ¼ 1�
P

N ðy� yexpÞ2
P

N ðyexp � avgðyexpÞÞ2
ð1Þ

And N is the number of experiments, y is the value
predicted by the generated polynomial model, and
avg(yexp) is the average value of the corresponding
observations. Eq. (1) shows that COD is strictly
connected of cost functions [12]. Fig. 1 depicts the
flowchart of EPR paces. In the left side of flowchart
the steps of procedure have been shown. The prime
steps consist of input data as EPR settings and that of
user defined. Successive steps are evaluation of for-
mula using Least Squares method. Eventually, the
genetic algorithm used for the evolutionary stage of
EPR that is employed to select the set of independent
variables (Xi) that must form the model structure [13].

3. Materials and methods

3.1. Experimental setup

Fig. 2 shows a schematic diagram of the experimen-
tal applied setup in this study. The feed was pumped
to the module by using centrifuge pump. While the
pressure on the membrane was adjusted by valve V3,
feed flow was regulated using valves V1 and V2.

The feed stream was split into two substreams, the
concentrate which contained nonpassing components
was returned to the feed tank, and the permeate flow
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Fig. 1. The EPR flowchart [13].
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containing the components passed through the mem-
brane and it was measured by a balance. The perme-
ate flow, after measurement, was returned to the feed
tank in order to have a constant concentration of the
feed. As temperature is one of the controlling factors,
a cooling/heating system was employed to detect the
required temperature. All experiments were carried
out in concentration mode of filtration for 150min in a
cross-flow operation.

3.2. Synthetic wastewater

The synthetic feed used in the experiments
includes the following: gasoline, deionized water, and
surfactant (Tween 85, Merck chemicals). This emulsion
was made by gradual addition of gasoline to deion-
ized water, mixed at 1,500 RPM using a finned mixer
in 1.5 h. Before the addition of gasoline, the surfactant
was dissolved in water for 10min. Various emulsions
with 0.1, 0.3, 0.6, 0.8, and 1 (%, v/v) of gasoline and a
constant volume percent of surfactant (0.1 that of oil)

were prepared. The size of particles with maximum
percentage and the average size of particles in the
synthetic feeds are reported in Table 1.

3.3. Membrane characterization

A polymeric membrane formed from polyacryloni-
trile (PAN), with a surface area of 66.15 cm2, which
was purchased from GE Osmonics Company, USA,
was used in this study. Technical specifications of this
membrane are given in Table 2.

The membrane fouling was observed with a scan-
ning electron microscope (Philips XL30, Germany).
The scanning electron microscope was operated with
maximum voltage of 30 kV. Fig. 3 shows the SEM
image of fresh YMMWSP1905 polymeric membrane.
As it is clear before filtration, there is no cake layer on
the membrane surface and no pore blocking on the
pores. Some cracks on the SEM of the membrane sur-
face are seen. It can be attributed to the additives used
to increase in hydrophile characteristic of
YMMWSP1905 membrane. In other word, when the
company modified the membrane surface to improve
hydrophile property of the YMMWSP1905 membrane,

Table 1
Particles size with maximum percentage and average size
of particles at different concentrations of emulsion

Oil
concentration
(%, v/v)

Size of particles in
maximum percentage
(nm)

Average size
of particles
(nm)

0.1 209 252

0.2 309 663

0.3 720 1,147

0.6 256–1936 1,271

0.8 1,535 1,551

1 2,531 3,898

Table 2
Characteristics of the polymeric membrane used in this
study

Commercial name YMMWSP1905

Material Polyacrylonitrile (PAN)

MWCOa (kDa) 100

Typical Flux/bar (lit/m2.hr.bar) 130

pH range (at 25˚C) 2–9

aMWCO=Molecular weight Cut-off.

Fig. 2. Diagram of UF experimental set-up [14].
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it made a great amount of unevenness on the surface.
It is indicated in the cross-section micrograph in Fig. 3
(b) as well. Phenomenon such as this has also been
reported in the previous researches [15–17].

4. Results and discussion

4.1. Experimental results

The values of normalized permeate flux, Rf/Rm or
relative fouling and turbidity rejection obtained from
experiments in the current UF system are concisely
reported in Table 3 during variations of oil concentra-
tion and TMP.

4.2. EPR settings and models for relative fouling analysis
using Matlab toolbox

The EPR settings used to provide the appropriate
model are reported in Table 4. The type of regression
was set static for the response parameters variations.
The polynomial structure has been reported in Table 4.
It was considered to enable EPR to select building
blocks such as fðXESðj;Kþ1Þ . . .XESðJ;2KÞ where Xi are
input variables including; CFV(m/s), oil concentration
(%, v/v), TMP (bar), temperature (˚C), and pH.

As mentioned, in all experiments the values of
normalized flux, relative fouling, and turbidity
rejection depended on CFV, oil concentration, TMP,

Fig. 3. SEM image of fresh YMMWSP1905 membrane, (a) Surface area, (b) Cross-section.

Table 3
Experimental results during variations of oil concentration and TMP

CFV
(m/s)

Oil concentration
(%, v/v)

TMP
(bar)

Temperature
(˚C)

pH
(–)

Normalized
permeate flux

Rf/Rm or relative
fouling

Turbidity
rejection (%)

1.5 0.1 3.5 30 7 2.04 0.04 94.94

1.5 0.2 3.5 30 7 1.87 0.08 96.22

1.5 0.3 3.5 30 7 1.76 0.11 97.06

1.5 0.6 3.5 30 7 1.74 0.19 98.78

1.5 0.8 3.5 30 7 1.72 0.26 98.82

1.5 1 3.5 30 7 1.70 0.33 98.94

1.5 0.3 1 30 7 0.80 0.11 99.94

1.5 0.3 1.5 30 7 1.20 0.12 99.68

1.5 0.3 2 30 7 1.47 0.12 99.53

1.5 0.3 3 30 7 1.72 0.15 99.29

1.5 0.3 3.5 30 7 1.80 0.16 99.32

1.5 0.3 4 30 7 2.08 0.17 99.12

1.5 0.3 4.5 30 7 2.15 0.19 99.06

1.5 0.3 5.5 30 7 2.32 0.23 98.85

1.5 0.3 6 30 7 2.44 0.26 98.79

1.5 0.3 6.5 30 7 2.50 0.28 98.50
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temperature, and pH. In each series of experiments,
one of the variables varied while others were kept
constant.

4.3. Influence of CFV

To investigate the effect of cross-flow velocity on
the normalized flux, relative fouling, and rejection, the
oil concentration, TMP, temperature, and pH were
fixed at 0.30 (%, v/v), 3.5 bar, 30˚C and 7, respectively.
Fig. 4(a) shows that with the rise of CFV, the normal-
ized flux increased, in such a way that its value at
velocity of 1.5m/s is 40% higher than that at 1m/s.
Increasing CFV causes a rise in mass transfer coeffi-
cient in the concentration boundary layer and also
increases the extent of mixing over the membrane sur-
face [18]. Fig. 4(b) indicates the variation of relative
fouling vs. CFV. Increasing CFV will intensify turbu-
lence of fluid flow and severe shear forces will
remove concentrated layer of precipitations from the
membrane surface, which results in low fouling

Table 4
EPR settings

Regression type Static

Polynomial structure Case 0 of EPR equations [10]

Function of type No function

Number of aj See figures

Range of exponents [0, 0.5, 1, 2]

Offset (a0) Yes

Constant estimation method Least squares

Number of generations 10

Fig. 4. (a) Normalized flux, (b) Relative fouling, (c) Rejection of turbidity, variations vs. CFV (Oil concentration = 0.30 (%,
v/v), TMP=3.5 bar, Temperature = 30˚C and pH=7).
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resistance. Therefore, at higher velocities, a part of cre-
ated layer was detached from the membrane surface
and returned to the liquid mass as a result of hydro-
dynamic effects of the flow [19]. Fig. 4(c) shows that
the rejection rate rise with CFV which can be resulted
from two probability: (1) Due to the remarkable
hydrophilic character of YMMWSP1905 and also pres-
ence of severe turbulence in the stream, the retention
time of particles on the surface of the membrane was
reduced, therefore rejection increased. Under these cir-
cumstances, the reader may consider that in competi-
tion between water molecules and oil droplets, the
water molecules dominated readily. (2) The rise of
flow turbulence as a result of increasing the fluid
velocity, led to the increase in number of efficient col-
lisions between oil droplets. To prove these phenom-
ena the particles size distribution of emulsion was
measured at CFV=1.5m/s. It was observed that size

of particles in maximum percentage increased dramat-
ically from 720 nm to 3,500 nm. Here the values of
average error were 0.10, 0.25, and 0.0005% (according
to formula error (%) = (Yexp�Y)/Yexp� 100), hereafter
all error percentages are reported based on this equa-
tion), respectively, that shows a perfect fitness
between experimental data and EPR prediction.

4.4. Influence of oil concentration

Fig. 5 shows a fine correspondence between exper-
imental measurements and EPR model. In this stage
the oil concentration was varied and the other param-
eters were kept constant. Table 1, proved that maxi-
mum size distribution of oil droplets increased with
concentration. It means at high concentration, the
average size of oil droplets at polarization layer was
greater than that of the feed. Therefore, with increas-

Fig. 5. (a) Normalized flux, (b) Relative fouling, (c) Rejection of turbidity, variations vs. oil concentration. (CFV=1.5m/s,
TMP=3.5 bar, Temperature = 30˚C and pH=7).

6288 A. Reyhani and M. Hemmati / Desalination and Water Treatment 52 (2014) 6282–6294



ing the oil contents on the feed side the thickness of
the polarized layer on the membrane surface
increased more readily. Thus, the oil droplets on the
membrane surface pressed together and got more con-
centrated and finally reduced the normalized flux and
increased the relative fouling of membrane. Previous
studies also showed a similar behavior [14,20]. Fig. 5
(a) shows that normalized permeate flux always
decreases with oil content. The average error for pre-
dicted values of normalized fluxes was 1.41%. Fig. 5
(b) illustrates relative fouling variations vs. oil
concentration. Average error was 1.22%. According to
Fig. 5(c), the rejection rate increased as a result of gel
layer formation. The higher the oil concentration, the
greater was the rejection rate. Okhovat et al. [7] mod-
eled the behavior of rejection of arsenic, chromium,

and cadmium by NF pilot-scale system using GP and
obtained average errors 0.216, 0.836, and 1.796%,
respectively. In this case, the average error value was
0.34%.

4.5. Influence of TMP

In this case, the values of CFV, oil concentration,
temperature, and pH were fixed. Fig. 6 proves that
EPR model has a good correspondence with the
experimental values. According to Darcy’s law, the
pressure difference at two membrane sides brings
about an increase in flux, although the effects of foul-
ing limit increase [21,22]. Fig. 6(a) shows that normal-
ized flux rose with increasing the TMP. The average
error was 4.26%. Fig. 6(b) demonstrates the relative

Fig. 6. (a) Normalized flux, (b) Relative fouling, (c) Rejection of turbidity, variations vs. TMP (CFV=1.5m/s, Oil
concentration = 0.30 (%, v/v), Temperature = 30˚C and pH=7).
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Fig. 8. (a) Normalized flux, (b) Relative fouling, (c) Rejection of turbidity, variations vs. temperature. (CFV=1.5 m/s, Oil
concentration = 0.30 (%, v/v), TMP=3.5 bar and pH=7).

Fig. 7. SEM image of YMMWSP1905membrane surface, (a) Before the filtration without gel layer, (b) At the end of the
filtration with cake layer.
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fouling increased by TMP. By increasing in TMP, the
concentration polarization phenomenon occurred on
membrane surface; thus, the concentration difference
between two membrane sides mounted [23]. Conse-
quently, the diffusion driving force increased and
more particles crossed the membrane and pore plug-
ging that strongly resisted the permeation flow
occurred by oil droplets [24]. This means that pore
plugging is more likely to occur at higher levels of
TMP. Rising of TMP makes the sediments compacted
on the surface of membrane (Fig. 7(b)), and as a
result, they block the membrane pores which cause
more compression in internal fouling [21,22]. The
value of average error for this part was 1.34%. Consid-
ering Fig. 6(c), the rejection decreased with pressure.
This behavior can be attributed to the permeation of
oil droplets through gel layer and membrane surface
under the presence of high pressures. Average error
value was 0.06% here.

Fig. 9(a) shows the surface of the membrane with-
out any cake layer before UF and Fig. 9(b) indicates the
existence of an oil layer on the membrane surface after
UF process. The surface is covered by cake layer acting
as a resistance in membrane filtration.

4.6. Influence of temperature

EPR model predicted a decrease in relative fouling
and rejection rate, and an increase in normalized flux
with increasing temperature. To investigate the effect
of temperature, some experiments were done in the
range of 25–55˚C. The values of other independent

variables were fixed at CFV=1.5m/s, oil concentra-
tion = 0.30 (%, v/v), TMP=3.5 bar, and pH=7, respec-
tively. Previous researches have shown that an
increase in temperature causes a rise in the amount of
normalized permeate flux, as illustrated in Fig. 8(a)
[25, 26]. The increase in temperature causes a reduc-
tion in the viscosity of solvent and, hence, an increase
in the solvent diffusion coefficient [27, 28]. Average
error was 1.78%. Likewise, increasing temperature
caused a rise in the solubility of oil droplets in water,
which caused that some droplets returned to feed
flow and some of others penetrated onto the mem-
brane (Fig. 9). These phenomena affected the thickness
of gel layer in the way reduced it (Fig. 8(b)) [29].
Hwang et al. [6] reported 8% for average error using
GP in polymeric membrane (PVDF) for prediction of
membrane fouling in the pilot-scale MF system. The
range of temperature in their study was set between
2.79˚C and 22.58˚C. In this case, the value of average
error was 1.66%. Fig. 8(c) implies that the rejection of
turbidity decreased with temperature due to two rea-
sons: (1) increase of oil permeation, (2) reduction of
fouling layer. By comparing experimental data and
EPR prediction, the error average value was obtained
as 0.06%. The values of average error prove that EPR
model matches the experimental data as shown in
Fig. 8.

4.7. Influence of pH

Fig. 10 compares the prediction quality of EPR
model and the experimental measurements. The

Fig. 9. SEM image of YMMWSP1905membrane after UF process, (a) Cross section, (b) Sediments in the pores of membrane.
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values of CFV, oil concentration, TMP, and tempera-
ture were chosen at 1.5m/s, 0.30 (%, v/v), 3.5 bar,
and 30˚C, respectively. The rise in pH would increase
the zeta potential value, so the thickness of cake that
was generated by filtration would be reduced due to
inter-droplet repulsion. Therefore, the feed solution
would be more stable causing the normalized flux to
increase and the relative fouling to decrease (Figs. 10
(a) and 10(b)). The values of average error for normal-
ized flux and relative fouling predicted by EPR model
were 8.29 and 4.40%, respectively. Furthermore,
Fig. 10(c) shows that the rejection of turbidity
increased by pH. In basic media, coagulation and
aggregation of oil droplet occurs in which rejection
percentage increases. Reader may attribute this

phenomenon to the presence of supramolecular forces
between oil droplets [30]. The value of average error
was obtained as 0.10%.

4.8. Final results of EPR

To show the accuracy of EPR, some points in and
out of the experimental ranges used in this study
were selected. In these points the values of normal-
ized flux, relative fouling, and turbidity rejection were
measured during experiments, thereafter using EPR
model the values of these parameters were predicted.
As it is reported in Table 5, there is a good
correspond between experimental data and the values
predicted by EPR. By using the EPR models that

Fig. 10. (a) Normalized flux, (b) Relative fouling, (c) Rejection of turbidity, variations vs. pH. (CFV=1.5 m/s, Oil
concentration = 0.30 (%, v/v), TMP=3.5 bar and Temperature = 30˚C).
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predict removal effeciency, the maximum level of
turbidity rejection can be calculated. The maximum
levels of turbidity removal occur when CFV=2m/s,
oil concentration >1.2 (%, v/v), TMP<0.5 bar, temper-
ature <20˚C, and pH=10. There is a difference in the
pH part between maximum points obtained by EPR
and the experiments; the experiments show pH=12 as
maximum point, while it is 10 achieved through EPR.

5. Conclusions

In this research, the influences of independent
parameters, i.e. CFV, oil concentration, TMP, tempera-
ture, and pH on normalized flux, relative fouling, and
turbidity rejection for a polymeric membrane in UF
system were investigated. Increasing CFV, tempera-
ture, and pH, reduced the relative fouling, and
increasing oil concentration and TMP caused an
increase in the relative fouling. Also, it was shown
that the increase in CFV, oil content, and pH would
increase turbidity rejection and raising TMP and tem-
perature would decrease the rejection.

EPR was used to predict the variations of normal-
ized flux, relative fouling, and turbidity rejection.
Predicted values for normalized flux and relative foul-
ing were compared with measurements obtained by
Darcy’s law. Moreover, predicted values for the rejec-
tion of turbidity by EPR were compared with experi-
mental values. This comparison demonstrated that
EPR is suitable to be used in membrane UF process,

because the maximum and minimum average errors
were obtained as 8.29 and 0.0005%, respectively. Like-
wise, the maximum and minimum values of COD
were 1 and 0.902, respectively.

Symbols

aj — constant values in the formula obtained
from EPR

avg (Yexp) — the average value of the corresponding
observations

COD — coefficient of determination

ES — matrix of exponents in the genetic
algorithm

f — the function defined by the user in the
EPR settings

Xi — vector of the k candidate inputs

Y — the value predicted by EPR

Yexp — the value of observation in the
experiment
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