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ABSTRACT

The main purpose of this research was the prediction of reverse osmosis (RO) membranes
performances, including separation factor, pure solvent flux, and total flux. The modified
surface force-pore flow is a mathematical and mechanism base model that has predicated the
performances of RO membranes appropriately better than others. The equations of this model
are complex and nonlinear, which should be solved by an advanced numerical method eventu-
ally. In this research, the radial basic function (RBF) network, which is an exclusive typical of
artificial neural network (ANN) and an association of radial functions into a single hidden layer,
was implemented for the predication of RO membrane performances. The input data of the net-
work were the parameters of this mathematical model and some experimental data which had
been obtained from four different types of RO membranes. About 80% of the total experimental
data were implemented for the training of data-set and the remaining 20% were used for the
testing of data-set. The predictive ability of RBF network was evaluated correctly by the mean
square error, root mean square error, and correlation coefficient (R). The mean square errors for
training and for testing data-set consequently were obtained 0.00009 and 0.00016 (for separation
factor), 0.00013 and 0.00013 (for pure solvent flux), and 0.00009 and 0.00012 (for total flux),
respectively. The results showed that this technique has predicted the performances of RO
membrane more correctly vs. the experimental data comparing to the previous ANNs and
comparing to original model, that is, modified surface force pore flow model accordingly.

Keywords: Artificial neural network; MD-SE-PF model; Radial basic function; RO membrane;
Performances; Radial basic function

1. Introduction currently. RO and nanofiltration (NF) are usually
implemented for a wide range of applications. They
may be classified as solvent purification and solute
concentration, in which permeate is desired product
and/or concentrated feed is desired product. In this

Potable and soft water is largely produced by the
use of reverse osmosis (RO) membrane processes
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way, RO mainly uses the membrane types that are
permeable to water but essentially impermeable to salt
[1-3].

To describe the performances of RO membranes,
mathematical and mechanistic models are being used
extensively. Some of these models rely on simple con-
cepts such as irreversible thermodynamic models that
are nonmechanism base models [4-8]. The other mod-
els, especially porous mechanism-based models, are
more complex and require sophisticated solution tech-
niques. Therefore, the prediction of RO membrane
performances were enhanced by transport models
which have been developed over time [9-14].

Among the offered models, the surface force-pore
flow (SF-PF) model, which were presented by Sourira-
jan and Matsuura [15,16], and its modified one (MD-
SF-PF), which was later formulated by Mehdizadeh
and Dickson, have delivered truthful results [17,18].

Although the MD-SF-PF model is an efficient
model for the prediction of RO membrane perfor-
mances, it involves many interrelated equations, and
moreover, some of them are fairly complex and
nonlinear, which requires an advanced numerical
technique for solving them [19]. Therefore, other tech-
niques, such as artificial neural networks, (ANNs)
which do not need the solving of such complex equa-
tions, are more valuable for simulating these kinds of
models.

During past two decades, applications of neural
networks (NNs) have been developed in various fields
such as chemistry and environmental studies. ANNs
are well-organized predictive methods in the model-
ing of nonlinear dynamic systems such as membrane
processes. One of the primary advantages of ANNs
over theoretical approaches is that they consider as
black box models, which does not require any compli-
cated governing with forceful assumption equations.
Neural networks introduced by McCulloch and Pitts
which is based on the interconnection of neurons in
the brain [20]. Recently, applications of NNs for the
modeling of membrane processes have been devel-
oped due to their attractive feature consequently.
Niemi et al. used the neural network model for
obtaining an estimation of permeable flux and rejec-
tion through membrane, and then, their results were
compared with those obtained by conventional meth-
ods [21,22]. Abbas and Al-Bastaki used a feedforward
neural network to predict the performance of a RO
experimental setup, which used a Film Tech SW30
membrane [23]. In that research, the Levenberg-
Marquardton (LM) was employed for the training of
NN. Zoubi et al. used ANNs and Spiegler-Kedem
model for the modeling of three commercial NF mem-
branes (NF90, NF270, and N30F) and for different
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salts (KCl, Na;50,4, and MgSO,) at high concentrations
similar to those of seawater [24]. These kinds of mod-
els that rely on irreversible thermodynamics are non-
mechanism-based models and have not high accurate
results. Zhao et al. developed two ANNs models by
solution diffusion (SD) model and modified SD-based
model (hybrid model) to compare actual and pre-
dicted permeable stream TDS [25]. One ANN model
was used multilayer perceptron (MLP) and the other
ANN model used a normal radial basic function
(RBF). These membrane models due to their simplicity
have high usage but do not have desirable results.
Shetty and Chellam employed a back-propagation
feedforward network with three layers, (one input,
one output, and one hidden) to predict the long-term
fouling NF membranes that are used to purify con-
taminated water supplies [26]. Recently, Lee et al.
used a feedforward neural network with three layers
to predict the performance of a seawater reverse
osmosis desalination plan [27]. The input layer con-
tains five neurons (time, feed temperature, feed con-
centration, pressure difference AP, and feed flow rate),
an output layer with two neurons (permeate TDS, and
permeate flow rate), and one hidden layer with 15
neurons. Libotean et al. performed a neural network
with back-propagation and support vector regression
algorithm for a RO plan performance to describe tem-
poral variations in permeate flux and salt passage
with a unique capability for useful short-time forecast-
ing of process performance degradation [28]. A new
study by Khayet et al. have been done and a MLP
feedforward ANN model with four inputs, two hid-
den layer, and one output layer was used for the pre-
diction of performance index of RO pilot plant [29].
The input factors are feed concentration, feed pres-
sure, feed temperature, and feed flow rate and the
outputs is performance index (average between per-
meable flux and the salt rejection). Jafar and Zilouch-
ian used a radial basis function network (RBFN) to
model the performances of two RO plants with differ-
ent feed water intakes [30]. Chen and Kim developed
a RBF neural network (RBFNN) to predict long-term
permeate flux decline in crossover membrane filtration
[31]. Noghabi et al. used ANN to predict the permeate
flux and rejection of ionic compounds of sugar beet
press water through polyamide NF membrane [32].
Considering the high capability of MD-SF-PF
model and its conditional input data and parameters
and available experimental data relevant to the physi-
cal conditions of some kinds of membranes, the predi-
cation of RO membrane performances via ANN
technique by use of these data could conclude some
novel and valuable results [17,18]. For the first time,
Moradi et al. trained a back-propagation feedforward
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neural network to predict the performances of RO
membranes process by applying the parameters of
MD-SE-PF model [33]. For this study, the Levenberg-
Marquardton was selected as training algorithm and
the network consists of three layers, including nine
neurons in input layer, one neuron in output layer,
and 20 neurons in hidden layer. Levenberg-Mar-
quardton is a kind of backpropagation neural network
(BPNN), but the RBFNN technique can overcome
some of the limitations of BPNN by use of a rapid
training phase due having a simple architecture and
maintaining complicated mapping abilities.

The main objective of the present work is to
develop a RBFNN technique to predict membrane per-
formances based on the parameters of MD-SF-PF
model. In this way, the separation characteristics
mainly separation factor, pure solvent flux, and total
flux will be calculated based on the parameters of
MD-SF-PF model and membrane properties such as
pore radius, friction constants between solute and sol-
vent and membrane, respectively, and finally opera-
tional conditions such as the average longitude
concentration of solute in membrane, pressure, and
temperature. It can be expected that RBFNN could
predict these objective performances with acceptable
error. Based on our knowledge, this is the first
research which used RBFNN for the prediction of RO
membrane performances based on MD-SF-PF model.

2. Theory
2.1. RO performances

The RO membrane performances are introduced as
pure solvent (N,) and total flux (Ny and separation
factor (f). They can be influenced by several factors
such as pressure, temperature, concentration of feed
water etc. [14,15]. Pure solvent and total flux are
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membrane and permeate water as is shown in Fig. 1
and presented in Eq. (1):
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2.2. MD-SF-PF model

The surface force-pore model (SF-PF) is a
mechanism-based model which has presented fairly
good results [17,18]. Moreover, its modified form
(MD-SF-PF) which has simulated the RO membrane
characteristic has had high consistency with
experimental data [17].

In this model, membrane is assumed to have
cylindrical micro porous. Therefore, the profiles of
velocity and concentration are functions of both radial
(p) and axial directions ({). The interaction between
solute and the wall of membranes is defined by the
Sutherland type potential function, which varies in
radial direction of the pore [17-19]. The Friction
parameter describes the hydrodynamic drag of pore
wall on the solute and is defined as the ratio of solute
diffusivity in free solution to solute diffusivity inside a
pore [17-19].

The brief explanation of MD-SF-PF model based
on input parameters of ANN is as follows. These
parameters include model parameters (6;, 6, t/¢),
membrane properties [Ry and Xa1, Xa» (friction con-
stants between solute and/or solvent and membrane,
respectively)], operational conditions, such as the aver-
age longitude concentration of solute in membrane
(C), pressure (P), and temperature (T).

The two-dimensionless parameters which represent
the radial p and axial { coordination directions are
introduced as below [17-19]:

defined as the rate of mass transfer of pure solvent T @
per membrane surface and total mass transfer per p " Rw
membrane surface.
Separation factor is defined as the difference ., Z
) E=— 3)
between concentrations of feed water near the T
RO Membrane

Feed Water

Permeate Water (Cas)

~

Boundary Layer Concentration Near
the Membrane (Casy)

Fig. 1. Reverse osmosis membrane process.
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where R,, is wall pore radius and 7 is pore length. The
differential equation expressing the velocity profile
inside (a) the membrane pore was derived as the
following;:

d*a(p) 1 [AP
[))] T T

lda(p)| | 1 [AP  moa(p) — m303(p)
dp2 " p dp }Jr { - }

1 1 1— Rk =(p)
“h (1 - @) () + (o] {1 T axpl(alp) + o)) - 1}
< exp(~D(p, 0)) =0

4)

where
_ nDas
ﬁl - R%/\/TEZ (5)
a2(p) =1 —exp(1 — @(p, 0)) ()
a3(p) =1 —exp(1 — D(p, 1)) @)
_Vanp_ _
o(p) = 7 [AP = (a2(p)m2 — a3(p)m3)] ®)
_exp(=@(p, 1))
0 0, 0) ¥
slp) = DL (10

The osmotic pressure is obtained from Van't Hoff’s
equation:

n=(v" +0v7)CaRT 1n
For the calculation of separation factor and fluxes in
the mathematical modeling of membranes, the exis-
tence of concentration is inevitable and it is calculated
from the concentration equation.

-1
Cpz = C[l + CRT;—l] (12)
3
In which:
1
L= / a(p)pdp (13)
0
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n- | o) + 0p) (ra+

 Sxp(=0(p,0))
blp)

Ty — k = (p)TE3 )
exp[(a(p) + (p)] — 1

pdp
The solute and solvent fluxes are as below:

" alp) + o(p)]

2
NA:S]A:X_AB(S/T)/Q b(p)

o —k* (p)m3 )
X | 7+ exp(—®(p, 0))pd
(2 ) 1 ooy =) 000 O
(14)
2 1
Ng =¢Jp = X—(s/r)CRT/ a(p)pdp (15)
AB 0
And the total flux is:
2 re
Nr = (Na + Ng) :X—AB(;) (Is + CRTh) (16)
And finally the pure solvent flux is:
Np = AAP, A= _CRiy_ 17)
T T T 8

A friction parameter b (p), which is the ratio of solute
diffusivity in free solution to solute diffusivity inside a
pore, is used to describe the hydrodynamic drag on
the solute by the pore wall. This function described as
below:

_ Xap + Xam _ Dag

b (18)
X4B Daym
E ,
b(p) — bFaxen exp (m) when p <1 -4 (19)
00 whenp>1-— 1

The solute-membrane interactions are expressed by a
potential function, (®) which represents the net body
force acting on the solute by the pore wall. In the
“MD-SE-PF” model this function was considered as
one dimensional.

01,0, 2 _
(D(p’ C) _ {m@ 4 whenp<1 A (20)

00 whenp>1-— 4
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2.3. ANNSs in general

One of the characteristics of ANNs which influ-
ences their performances is number of the layers.
From this point of view, multilayer (ML) networks
overcome single-layer networks for complex problems.
It does not mean that increasing in number of layers,
improve the performance of ANNs and many of them
influence the MLP through over-fitting. The way that
the neurons are connected to each other has a
significant effect on the operation of ANNs. These
connection ways are divided into two main types,
feedforward and feedback. In a feedforward network,
the information moves into only forward direction
from the input layer through the hidden layer to the
output layer. In the feedback network, the information
moves from output to the input of hidden and finally
to the input layers. The neuron sums up the weighted
inputs and a bias and then passed it through a trans-
fer function to produce the output for that neuron. A
transfer function is a mathematical representation, in
terms of spatial or temporal frequency, of the relation-
ship between input and output which act on the sum
of weighted inputs.

To show the performance and efficiency of the
ANN, we need a way of evaluating its output error
between the network and target output. Performance
of the ANN is explained by different error functions
such as MSE, RMSE, and correlation coefficient (R).
The network is training to reduce the value of error
functions between the ANN and the target output to
increase its performances.

n 2
MSE = Zl (Pff;l_ PE) (21)
RMSE = (MSE)? 22)
Q p _ o
R = Zi:] (Pm,z Pm‘av)(Pa,z Pe,av) (23)

Pe,mz)2

Q 2 g
Zizl [(Pml - Pm,av) Z (PEJ -
i=1
where P,, is the target value, P, is the network output,
and 7 is the number of data-set.

2.4. Radial basic function

A RBF network (RBFN) was proposed by Broom-
head and Lowe [34]. This network is a standard three
layer feedforward neural network, i.e. the input layer,
the nonlinear hidden layer (consists of Gaussian basic
functions in this study), and a linear output layer. The
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major difference between RBFN and MLP network
with error back propagation method exists in the hid-
den layer. A MLP neural network sums up the
weighted input vectors but in a RBFN, the distance
between input and center is used for learning process.
Also, A RBFN is faster to learn and to use than a
MLP.

The first layer of a RBFN consists of input data-set.
For each neuron in hidden layer, the distance between
the input data-set and the center is activated by a non-
linear radial basis function. This function is shown in
the following equation:

d(x;) = exp|—(| xi —ci || br)? (24)

where ¢ is the nonlinear RBF, x; is the input vector, b;
is bias in the hidden layer, and c¢; is center vector.

Each hidden neuron receives all inputs (xq, xo, ... ,
x;) and produces one output. The value of each out-
put, which has been produced by neurons in the hid-
den layer is between 0 and 1, depends on how close
the input is to the center location. If the centers of
neurons are closer to the inputs, they will have more
contributions to the outputs. On the contrary, if neu-
rons have centers away from inputs, then their out-
puts are invalidated and so vanished. Finally, the
output layer neurons receive weighted inputs and
RBEN output is given as follow equation:

Wip(xi) + by (25)

y:

n
=1

where y is RBFNN output, W; connection weight
which determines by the training process, b, bias in
the output layer.

The RBFNNs have been used to apply on wide
range of applications such as pattern classification,
system identification, nonlinear function approxima-
tion, time-series prediction, and so on. A key point of
RBENN is determining the proper number of neurons
in the hidden layer. If the number of neurons is too
small, the output vector may be in low accuracy and
too large numbers may cause overfitting of network.
In a training process, the numbers of neurons in
hidden layer is selected according to statistic proper-
ties of input data-set and then determine the centers
and spread width for neurons. Various methods are
proposed to choose the initial location of center,
e.g. random selection, K-mean technique, max-min
algorithms, etc. Spread width is an important parame-
ter in the performance of RBFNNs. The value of
spread width should be large enough to find the best
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Output Layer

Fig. 2. Schematic representation of RBFNN employed in this study.

solution for a problem. Fig. 2 shows the structure and
procedure work of RBFNN.

2.5. ANN inputs and outputs

The objective of MD-SF-PF model is to calculate
separation characteristics: separation factor (f), pure
solvent (Np), and total flux (N;). The connection
between RO model and RBEFNN is that the model
parameters, membrane properties, and operational
conditions were considered as input data of RBFNN.
In this way, nine parameters are needed which are
considered as inputs of the network. The input vector
is consists of model parameters (6;, 6, 7/¢), membrane
properties [Ryw (pore radius), X1, Xa» (friction con-
stants between solute and solvent and membrane
respectively), and operational conditions such as the
average longitude concentration of solute in mem-
brane (C), pressure (P), and temperature (T).

A data-set consisting of 304 experimental data,
which were gained by the four types of membranes,
was applied in this regard. These experimental data
were obtained by Mehdizadeh and Dickson [17]. Each
data consist of nine-dimensional input vectors and
three-dimensional output vectors. To observe the
influence of inputs on each output, a one-dimensional
output vector is used and the error functions were
calculated for them separately.

3. Results and discussion

The entire data (304) were divided into two ran-
dom parts: 80% as training data-set (243), and 20% as

test data-set (61). For improving network application,
training and test data-set have been distributed and
normalized in (=1, 1) interval. The different values for
spreading the width were tested and the optimum one
was considered two.

Figs. 3-5 show the conformity of RBFNN training
results and experimental data. Figs. 3-5 shows these
results for separation factor, solute flux, and total flux,
respectively.

From these figures, it was observed that a high
conformity exists with experimental data and a mini-
mum differences are visible in these data.

Figs. 6-8 show the MSE of outputs, i.e. separation
factor (f), pure solvent flux (N,), and total flux (N, vs.
the number of neurons in hidden layer. These figures
show a sharp drop in MSE when the number of neu-
rons is less than 20. The proper number of neurons

I I &— targets
. ?Wgﬂﬂé%ﬂi# m:u.n 5 |

]

0 50 & 70
No. of Data

Fig. 3. The conformity of RBFNN training results with
experimental data for separation factor.
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Fig. 4. The conformity of RBFNN training results with
experimental data for solute flux.

Dutpute vs Targets
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Fig. 5. The conformity of RBFNN training results with
experimental data for total flux.

» 10

Training dataset
St Tes) datasel

The MSE of Separation Factor

ik 4
e

40 45 50

] § 10 15 0 25 30 3B
No. of Neurons in Hidden Layer

Fig. 6. MSE vs. the number of neurons in hidden layer for
separation factor.
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Fig. 7. MSE vs. the number of neurons in hidden layer for

pure solvent flux.

Training dataset
Tesl datasel

The MSE of Total Flux
n

Il L I 1

0 5 10 15 20 ] 30 35 40 45 50

No. of Neurons in Hidden Layer

Fig. 8. MSE vs. the number of neurons in hidden layer for
total flux.

should be selected to prevent over-fitting of network.
As the figures illustrate, the MSE of training data-set
decreased but the MSE of test data-set increased after
maximum number of neurons reaches 38 for separa-
tion factor, 40 for pure solvent flux, and 41 for total
flux. This means, if the number of neurons is more
than the mentioned value, the network is facing
over-fitting phenomena.

Figs. 9-11 explain target data vs. network output
for three outputs which implemented with RBF neural
network. As the figures show, correlation coefficient
between the observed and predicted is as high as
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Fig. 9. Comparison RBFNN the predicted training and test data values vs. experimental data for separation factor.

0.9995 for separation factor, 0.9991 for pure solvent
flux, and 0.9994 for total flux. All conditions such as
slope and intercept are ideal for the results of RBFNN.
All points of these figures were located near the x =y
line. This means that the target data and the predicted
data have almost the same values.

After training process, the MSE for training and
test data-set were obtained 0.00009 and 0.00016,

1 T r - ")
Training dataset
= R=0.9995
S5 05t -
T
et
c
2
S Y 1
w
@
B
S
o 05
T
[]
bt
2
A ¥ = 0.99%-0.0007 1
et
o
15 1 L 1
-1 05 u] 0.5 il

respectively, for separation factor, 0.00013 and 0.00013
for pure solvent flux, 0.00009 and 0.00012 for total flux
consequently. The simulation results show that
RBENN is an accurate method to predict performance
of RO membranes. Table 1 shows the obtained results
from trained network.

The comparison of results between RBFNN and
BPNN (which was obtained by Moradi et al. [33])

1 T +

osl Test dataset
R=0.9991
U6 .

0.4

02F 4

y=0.99x-0.008

-1 1
-1 -0.5 0 0.5 1

Target (Pure Solvent Flux)

Fig. 10. Comparison RBFNN the predicted training and test data values vs. experimental data for pure solvent flux.
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Fig. 11. Comparison RBFNN the predicted training and test data values vs. experimental data for total flux.

Table 1
Performance of RBFNN in prediction of RO membrane
performances

RO performance MSE RMSE R

Separation factor 0.00016 0.012 0.9995
Pure solvent flux 0.00013 0.011 0.9991
Total flux 0.00012 0.010 0.9994

show a clear superiority of our network compare to
them. Finally, RBFNN can be used with high confi-
dence to predict the performances of RO membranes
in industrial applications by negligible error.

4. Conclusion

Due to complex and nonlinear equations of MD-
SF-PF model, the necessity of a simple technique,
which could have the capability of the predication of
RO membrane performances, is inevitable. In the pre-
sent study, a radial basic neural network RBFNN was
developed to predict the performances of RO mem-
branes. Implementation of the RBFNN lets to fast
training of the network. The results confirm the
advantage of RBFNN for the prediction of RO mem-
branes performances identically. It is obvious that
RBENN can be used as an assured method to predict
separation factor, pure solvent flux, and total flux with
a high accuracy comparing to the numerical and other
ANNs.

List of symbols

b(p)
C
Calr, 2)

Dag
D am
2

] A,r(r)

Jaz(1)

Iy and I3
N;

P

r

R

T
Ui(r)
4

k*(p)

OF
RMSD

Greek letters

alp)
B
AP
e

friction function, dimensionless

molar density of solution (kmol/m?)
concentration of solute inside a pore
(kmol/m?)

solute diffusivity in free solution (m”/sec)
solute diffusivity inside the pore (m*/sec)
theoretical separation, dimensionless
radial component of solute flux through a
single pore (kmol/m? s)

axial component of solute flux through a
single pore (kmol/m? s)

definite integral, dimensionless

flux of i through membrane (kmol/m? s)
hydrostatic pressure (kPa)

cylindrical coordinate normal to the pore
wall (m)

gas constant (kJ/kmol K)

temperature (K)

velocity of i inside the pore (m/s)
cylindrical coordinate parallel to the pore
wall (m)

ratio of local partition coefficients at the
ends of a pore for solute

objective function

parameter

velocity defined, dimensionless
parameter defined, dimensionless
pressure drop across the membrane (kPa)
fractional pore area of membrane,
dimensionless
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n — solution viscosity (kPa s)

6 — potential parameter (m)

6, — potential parameter, dimensionless

A — parameter defined, dimensionless

4 — axial coordinate, dimensionless

a(r, Z) — osmotic pressure inside the pore (kPa)

m; — osmotic pressure of solution at i (kPa)

p — radial coordinate, dimensionless

T — average pore length taking tortuosity into
account (m)

D(p, {) — potential function dimensionless

a>(p) — local Staverman (reflection) coefficient at
feed—-membrane interface

a3(p) — local Staverman (reflection) coefficient at
permeate—-membrane interface

Va — partial molar volume of solute (m®/kmol)

w(p) — parameter

Subscripts

A — solute

B — solvent

p — pure solvent (pure water)

M — membrane

T — total solution

W — pore wall

1 — feed solution

2 — feed at membrane interface

3 — permeate solution
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