
Removal of hexavalent chromium from aqueous solution by a novel
biosorbent Caryota urens seeds: equilibrium and kinetic studies

E. Suganya, S. Rangabhashiyam, A.V. Lity, N. Selvaraju*

Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India,
emails: elasuganyame@gmail.com (E. Suganya), rambhashiyam@gmail.com (S. Rangabhashiyam), lityalen@nitc.ac.in (A.V. Lity),
Tel. +91 495 2285409; Fax: +91 495 2287250; email: selvaraju@nitc.ac.in (N. Selvaraju)

Received 21 June 2015; Accepted 14 December 2015

ABSTRACT

A novel biosorbent Caryota urens seeds (CUS) was investigated for the technical feasibility
for the biosorption of hexavalent chromium from aqueous solution. The biosorbent was
characterized by SEM, FT-IR spectral, and EDS analysis. Effects of biosorbent size, biosor-
bent dosage, Cr(VI) concentration, pH, and contact time on the biosorption of hexavalent
chromium were investigated. Both the Langmuir and Freundlich isotherms were suitable
for describing the biosorption of Cr(VI) onto CUS. Application of the Langmuir isotherm
model to the biosorption system yielded a maximum biosorption capacity of 52.63 mg/g at
an equilibrium pH value of 2 and 303 K. Kinetic data were best fitted with the pseudo-
second-order kinetic model. The results indicate that the CUS can be effective biosorbent for
the removal of Cr(VI) from aqueous solution.
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1. Introduction

More research on water purification is focused
because of the shortage in the fresh drinking water,
which is the major concern worldwide nowadays
[1–4]. The pollutants removal from the various indus-
trial sources is becoming the most vital environmental
issue [5–9]. Different techniques on advanced wastew-
ater treatment are concerned to combat the problem
[10–15]. Hexavalent chromium is considered as a
major pollutant from the effluent streams of various
industries such as glass, electroplating, tanning, min-
ing, ceramics, rubber, fertilizers, metallurgical, etc.
[16,17]. Cr(VI) is a carcinogenic agent and associated
with the various health risks like liver damage, severe

diarrhea, nausea, vomiting, and corrosion of skin [18].
The United States Environmental Protection Agency
(USEPA) has set the tolerance limit for the Cr(VI) dis-
charge into surface water as 0.1 mg/L and in case of
potable water as 0.05 mg/L [19,20]. Removal of hex-
avalent chromium from wastewater is accomplished
by various conventional technologies like chemical
precipitation [21], electrochemical reduction [22],
membrane separation [23], ion exchange [24], and
extraction [25]. The wastewater treatment process is
based on the effluent characteristics such as, pH, tem-
perature, metal concentration, the economics, and the
social factor like standard set by government agencies
[26,27]. Activated carbon is the traditional inorganic
adsorbent for wastewater pollutant with its high speci-
fic surface area, but its cost factor has restricted its
comprehensive applications [28]. So, the development*Corresponding author.
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of economical and easily available adsorbents for the
heavy metal removal from the aqueous solution is
highly necessary. Biosorption is a potential method for
wastewater treatment based on the characteristic fea-
tures of biomasses toward pollutants binding. The
merits of biosorption include economical, high effi-
ciency of heavy metal removal from dilute solution
and biosorbent regeneration [29,30]. Literature review
by the author in nearly all of the peer reviewed
journals indicated that biosorption investigation of
hexavalent chromium by Caryota urens seed (CUS) as
a biosorbent has not been employed. Therefore, the
present study subjects the novel C. urens seed (CUS)
toward Cr(VI) removal from aqueous solution.

The present study focuses on the investigation over
the effects of pH, contact time, biosorbent dose,
biosorbent size, and initial metal ion concentration on
Cr(VI) removal using CUS. The equilibrium data
obtained in this study are tested with isotherm and
kinetic models in order to evaluate the biosorption of
Cr(VI) on CUS.

2. Materials and methods

2.1. Preparation of stock solution

An aqueous solution (1,000 mg/L) of Cr(VI) ions
was prepared by using K2Cr2O7 salt. For pH adjust-
ments, 0.1 N HCL/0.1 N NaOH was used. The stock
solution was diluted with distilled water to obtain the
desired Cr(VI) concentration range.

2.2. Preparation of biosorbent

The seeds of C. urens (CUS) were collected from
the local area of Kozhikode. The collected seeds were
washed, dried, pulverized, and sieved to obtain the
size of CUS in the range of 0.212–0.300 mm. The pre-
pared CUS were kept in air tight plastic bottles. The
elemental composition of CUS was found as 41.88% C,
8.17% H, 0.16% S, and 0.33% N. CUS was used as
such without any pretreatment.

2.3. Characterization of the biosorbent

The percentage elements composition of the CUS
was analyzed using C–H–N Analyzer (Vario EL III,
Elementar). The surface functional groups of the CUS
were determined through FT-IR spectroscope (Nicolet
Avatar 370, Thermo Scientific). The surface morophol-
ogy of the CUS was studied by SEM (SU6600, Hitachi).
The elemental composition of the CUS was determined
through EDX analyzer (EMAX-7000, Horiba).

2.4. Batch experiment

The batch biosorption experiments were carried
out using 50 ml of Cr(VI) solution with optimum
value of pH, biosorbent dosage, biosorbent size, metal
ion concentration at 303 K, and agitation speed of
120 rpm on orbital shaker (116736 GB; GeNei). After
the desired contact time, the samples were filtered
through Whatman No. 1 filter paper and the filtrates
were analyzed for residual Cr(VI) ion concentration
using double array UV–vis Spectrophotometer (2201;
Systronics) by diphenyl-carbazide method [31]. The
amount of Cr(VI) ions biosorbed q (mg/g) was calcu-
lated by using the following mass balance equation

qe ¼ C0 � Ce

m
� V (1)

and the Cr(VI) percent removal (%) was calculated
using the following equation:

Removal ð%Þ ¼ C0 � Ce

C0

� �
� 100 (2)

where q is the biosorption capacity (mg/g), C0 and Ce

are the initial and equilibrium Cr(VI) concentration
(mg/L), V is the volume of Cr(VI) solution(L), and m
is the weight of the CUS in g.

2.5. Biosorption isotherm models

Biosorption isotherms give the relationship
between the adsorbate concentration and the amount
of adsorbate biosorbed by the unit mass of biosorbent
at a constant temperature under equilibrium condition
[32]. The two parameter isotherm models [33] such as
Langmuir, Freundlich, Elovich, Temkin, and Jovanovic
were used to analyze the equilibrium data obtained in
the present study.

2.5.1. Langmuir isotherm

Langmuir isotherm model is based on the assump-
tion that all the biosorption sites have equal adsorbate
affinity and that the biosorption at one site does not
affect the biosorption at an adjacent site [34]. This iso-
therm model is used to obtain a maximum biosorption
capacity produced from the complete monolayer cov-
erage of biosorbent surface. The Langmuir model can
be expressed by the below equation:

qe ¼
Q0 KLCe

1 þ KL Ce
(3)
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where Ce is the equilibrium concentration of the Cr
(VI) ion (mg/L), qe denotes the biosorption capacity at
equilibrium (mg/g), Q0 represents the maximum
monolayer biosorption capacity (mg/g), and KL is the
Langmuir isotherm constant (L/mg).

The Langmuir isotherm model expressed in terms
of the dimensionless equilibrium constant RL, referred
to as the separation factor or equilibrium parameter as
expressed by the following equation:

RL ¼ 1

1 þ KLC0
(4)

where C0 represent the initial Cr(VI) concentration
(mg/L) and KL is obtained from the Langmuir plot.
The condition based on RL values are suggested as
0 < RL < 1 for favorable, RL > 1 for unfavorable, RL = 1
for linear, and RL = 0 for irreversible biosorption,
respectively.

2.5.2. Freundlich isotherm

The Freundlich isotherm model [35] is an empirical
model based on biosorption on a heterogeneous sur-
face. The equation is commonly represented by:

qe ¼ KFC
1=nF
e (5)

where KF and 1/nF are the Freundlich constants, these
are characteristics of the system, indicating the
adsorption capacity and the adsorption intensity,
respectively.

2.5.3. Elovich isotherm

The Elovich model is based on the assumption that
the biosorption sites increase exponentially with
biosorption process, which entail a multilayer
biosorption [36]. The equation of this model is given
as follows:

qe
qm

¼ KECe exp � qe
qm

� �
(6)

where KE represent the Elovich equilibrium constant
(L/mg), qm is the Elovich maximum biosorption
capacity (mg/g).

2.5.4. Temkin isotherm

This model contains a factor that takes into account of
the adsorbent–adsorbate interactions. The model is based

on the assumption that due to the adsorbate–adsorbate
repulsions, the heat of biosorption of all the molecules in
the layer decreases linearly with the coverage of mole-
cules and the biosorption of adsorbate is uniformly dis-
tributed [37]. The model is given by the equation:

qe ¼
RT

bT
lnðATCeÞ (7)

where AT is the Temkin isotherm equilibrium binding
constant (L/mg), bT denotes Temkin isotherm constant
(J/mol).

2.5.5. Jovanovic isotherm

The Jovanovic isotherm [38] assumption is similar
to that of the assumption considered in Langmuir iso-
therm model. It is represented by another approxima-
tion for monolayer localized adsorption without
lateral interactions:

qe ¼ qmj 1� e KjCeð Þ� �
(8)

where Kj denotes the Jovanovic isotherm constant
(L/g), qmj is the maximum biosorption capacity in
Jovanovic model (mg/g).

2.6. Biosorption kinetics

The biosorption kinetics analysis is essential for
designing over the batch biosorption systems. Kinetic
models like pseudo-first-order, pseudo-second-order,
and intra-particle diffusion models, respectively, were
used to fit the equilibrium data.

2.6.1. Pseudo-first-order

The biosorption rate constant based on the biosorp-
tion capacity was determined from the pseudo-first-
order kinetic model given by Lagergren [39] and is
represented as follows:

logðqe � qÞ ¼ log qe �
k1

2:303
t (9)

where qe and q are the amounts of Cr(VI) biosorbed
(mg/g) at equilibrium time and at any time t. k1
(1/min) is the pseudo-first-order rate constant.

2.6.2. Pseudo-second-order

A pseudo-second-order kinetic model [40] based
on the assumption that chemisorption is rate limiting
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step, which involves the valence force sharing or
electron exchange between biosorbent and adsorbate.
The pseudo-first-order kinetic model is given by the
following equation:

t

q
¼ 1

k2q2e
þ t

qe
(10)

where k2 (g/mg min) represents the pseudo-second-
order rate constant.

2.6.3. Intra-particle diffusion

The intra-particle diffusion model [41] describes
the insights into the mechanisms and rate-controlling
steps affecting the biosorption kinetics. The model is
represented as follows:

qt ¼ kidt
1=2 þ I (11)

where kid is the intra-particle diffusion rate constant
(mg/g min1/2), I is the intercept.

Fig. 1. SEM images of CUS.

Fig. 2. EDS elemental and spectra mapping of (a) CUS and (b) Cr(VI)-loaded CUS.
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3. Results and discussion

3.1. Biosorbent characteristics

Scanning electron micrographs (SEM) of the surface
structure for CUS are shown in Fig. 1. It is clear from
the SEM figures that the CUS surfaces were uneven,
rougher, and provided large surface area for hexava-
lent chromium biosorption. The EDS spectra of native
and Cr(VI) loaded CUS are shown in Fig. 2(a) and (b).
From these spectra, it was concluded that Cr(VI) has
been biosorbed on the surface of the CUS [42].

FT-IR spectra analyses of the native and Cr(VI)
loaded CUS (Fig. 3(a) and (b)) were undertaken and
results indicated that there are a number of important
functional groups on the surface of the CUS. In
Fig. 3(a), the absorption peak around 3,378 cm−1 indi-
cates the existence of free and intermolecular bonded
hydroxyl groups. Moreover, a peak at wave number
2,904 cm−1 representing that C–H groups are present
on the surface CUS. Other peak at 1,085 cm−1 is due to
CH2–OH stretching, and the peak at 1,288 cm−1 is
related to the C−O stretching in phenols [43,44]. In

Fig. 3. FT-IR spectra of (a) native and (b) Cr(VI)-loaded CUS.
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comparison of FT-IR spectra of before Cr(VI) biosorp-
tion, FT-IR spectra of Fig. 3(b) represents a clear band
shift and intensity decrease at the band regions of
C–H, CH2–OH, and C−O, respectively. These are the
functional groups of CUS found to have participated
in Cr(VI) biosorption.

3.2. Effect of biosorbent particle size

The effect of CUS particle size on Cr(VI) biosorp-
tion capacity and percentage removal is shown in
Table 1. The removal of Cr(VI) ions at different parti-
cle sizes (0.180–0.212, 0.212–0.250, and 0.250–
0.300 mm) indicated that the biosorption capacity and
percentage biosorption at the equilibrium increased
with the decrease in CUS particle size. The relatively
higher biosorption with smaller CUS particle size
range may be attributed to the fact that smaller CUS
particles have greater surface area. Therefore, CUS
particle size range of 0.180–0.212 mm was selected for
the experimental purpose.

3.3. Effect of pH

The effect of pH on Cr(VI) biosorption on CUS was
studied by varying the pH from 2 to 8. The plot of
biosorption capacity (mg/g), % biosorption versus pH
is shown in Fig. 4. As seen in Fig. 4, the biosorption
capacity and % removal of Cr(VI) decreased with an
increase in pH from 2 to 8. This is because, at lower pH
the surface of the CUS became positively charged and
the electrostatic force of attraction exhibited. But at
higher pH, the CUS surface was negatively charged
resulted in the repulsion [45]. Therefore, at higher pH
values, the surface of CUS becomes deprotonated and
results in the decline of Cr(VI) biosorption. For the sub-
sequent study, pH 2 was used as the optimum value.

3.4. Effect of biosorbent dosage

The effect of the amount of CUS on Cr(VI) biosorp-
tion was studied at pH 2 and different amounts of
biosorbent dosage in the range 0.05–0.6 g/L (Fig. 5).

Biosorption capacity was decreased with an increase
in CUS dosage from 0.05 to 0.6 g/L, this is due to the
leftover unsaturated biosorption sites. The percentage
removal of Cr(VI) removal remained almost same after
0.2 g/L biosorbent dosage. This might be because the
biosorption reached equilibrium [46]. Chromium ion
biosorption increases with the biosorbent dosage
because of an increase in CUS surface area. The
biosorption sites available for Cr(VI) removal is
directly proportional to CUS surface area.

3.5. Kinetic studies

3.5.1. Effect of initial Cr(VI) concentration and contact
time

The amount of Cr(VI) biosorbed on CUS was
studied as a function of contact time at different initial
Cr(VI) concentrations (50, 100, 150, 200, and
250 mg/L). It is evident from Fig. 6 that the biosorp-
tion capacity of CUS toward Cr(VI) removal increased
with increase in contact time up to 80 min, then
almost attained equilibrium. The removal of Cr(VI)
was found to be dependent on the initial Cr(VI)
concentration. The amount of Cr(VI) biosorbed by
CUS increased with increase in initial Cr(VI)
concentration. This is due to higher probability of
collision between Cr(VI) ions and CUS resulted in the
increased driving force of the concentration gradient
[47,48].

The pseudo-first-order, pseudo-second-order, and
intra-particle diffusion are the kinetic models used in
the present study. The constants of these kinetic mod-
els are calculated and represented in Table 2. In com-
parison of the coefficient of determination of the three
kinetic models used, pseudo-second-order kinetic
model has the highest value as well the calculated qe
values shows good agreement with the experimental

Table 1
Effect of CUS particle size on the removal of Cr(VI) at
equilibrium

CUS particle
size ranges (mm)

Biosorption
capacity (mg/g) % Biosorption

0.180–0.212 12.47 99.80
0.212–0.250 11.74 93.96
0.250–0.300 11.37 90.99

Fig. 4. Effect of pH in biosorption capacity and percentage
biosorption of Cr(VI).
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data (Table 4). The pseudo-second-order rate constant
(k2) decreases with an increase in initial Cr(VI) concen-
tration due to the increased concentration gradient of
the metal ions. Fig. 7 represents the plots of t/qt
against t of the CUS biosorbent at the experimental
conditions. Therefore, the kinetic model analysis of
CUS toward Cr(VI) revealed that the chemical
biosorption is the rate-limiting step.

3.6. Biosorption isotherm

The parameters of biosorption isotherm models
were calculated using linear regression analysis and
are represented in Table 3. The values of the isothermFig. 5. Effect of biosorbent dosage in biosorption capacity

and percentage biosorption of Cr(VI).

Fig. 6. Effect of contact time on the biosorption of Cr(VI) using CUS for different initial Cr(VI) concentrations.

Table 2
Kinetic constant parameters obtained for Cr(VI) biosorption on CUS

Cr(VI)
Conc. (mg/L) qe(exp) (mg/g)

Pseudo-first-order Pseudo-second-order Intra-particle diffusion

k1
(1/min)

qe(cal)
(mg/g) R2

k2
(g/mg min)

qe(cal)
(mg/g) R2

kid
(mg/g min1/2)

I
(mg/g) R2

50 12.47 0.0759 4.18 0.849 0.1451 12.65 1.00 0.084 11.57 0.708
100 24.33 0.0690 8.29 0.837 0.0615 25.00 1.00 0.178 22.41 0.763
150 33.60 0.0460 11.29 0.673 0.0233 34.48 0.999 0.382 29.42 0.777
200 43.21 0.0529 17.86 0.806 0.0156 45.45 0.999 0.592 36.82 0.795
250 52.66 0.0141 24.71 0.790 0.0075 55.55 0.999 1.015 41.45 0.854
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model constants and coefficient of determination gives
the information of the suitability of the biosorption
isotherm models used for the present study. The
Langmuir isotherm model better fitted the biosorption
equilibrium data. The parameters of this model
Q0 and KL were found to be as 52.63 mg/g and 0.2753
L/mg. The value of dimensionless equilibrium
constant for all the studied Cr(VI) concentrations of
50–250 mg/L was found to be less than one, which
pointed out the favorable biosorption of Cr(VI) onto
CUS. The values of RL found for the biosorption study
are near to zero which represents the irreversible
process. The Freundlich isotherm parameter, the
biosorption intensity nF value of 4.4247 specify that

the biosorption of Cr(VI) ions onto CUS is favorable
since the value of nF lies between 1 and 10. The Fre-
undlich isotherm model better described the biosorp-
tion equilibrium data. Using Elovich and Jovanovic
isotherm model, the maximum biosorption capacity
was predicted as 15.62 and 17.58 mg/g (Table 3). The
biosorption capacity predicted using Elovich and Jova-
novic isotherm model was less compared to the better
fitted Langmuir isotherm model. Temkin isotherm

Fig. 7. Plot of the pseudo-second-order model at different
initial Cr(VI) concentrations.

Table 3
Biosorption isotherm constants and coefficient of determination for various biosorption isotherms for Cr(VI) removal
using CUS

Biosorption isotherm Parameters CUS Coefficient of determination (R2)

Langmuir Q0 (mg/g) 52.63
KL (L/mg) 0.2753
RL values, C0 (mg/L)
50 0.0677
100 0.0350 0.950
150 0.0236
200 0.0178
250 0.0143

Freundlich Kf (mg/g)/(mg/L)1/n 20.27 0.975
nF 4.4247

Elovich KE (L/mg) 31.13 0.928
qm (mg/g) 15.62

Temkin AT (L/mg) 48.80 0.873
bT (kJ/mol) 0.4216

Jovanovic qmj (mg/g) 17.58 0.824
Kj (L/g) −0.001

Table 4
Comparison of biosorption capacities of various
biosorbents for Cr(VI)

Biosorbent

Biosorption
capacity
(mg/g) Refs.

Mango sawdust 37.73 [49]
Lathyrus sativus husk 44.5 [50]
Longan seed 35.02 [51]
Powdered Peganum

Harmala
10.63 [44]

Tamarind seeds 29.7 [52]
Walnut shell 8.01 [53]
Swietenia mahagoni fruit shell 2.309 [54]
Ficus auriculata leaves 13.33 [55]
Sterculia guttata shell 45.45 [56]
Caryota urens seeds 52.63 Present study
Alligator weed 82.57 [57]
Caryota urens inflorescence 100 [58]
Maize bran 294.13 [59]
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parameter bT and AT were calculated and represented
in Table 3. The coefficient of determination value of
this isotherm indicates that Temkin isotherm model is
not fit of equilibrium data as compared with the Lang-
muir, Freundlich, and Elovich isotherm models,
respectively. Based on the coefficient of determination,
The Javanovic isotherm model is the least fitted model
of among all the biosorption isotherm models used.

4. Conclusions

The present investigation showed that CUS is a
potential biosorbent offering greater Cr(VI) treatment
than other biosorbents reported in the literature
(Table 4). The biosorption of hexavalent chromium by
CUS was strongly dependent on biosorbent size, pH,
biosorbent dose, contact time, and initial Cr(VI) con-
centration. The Cr(VI) removal was maximum at pH
2.0. The FT-IR and EDS characterization has shown a
distinct difference in the native and Cr(VI) loaded
CUS. The biosorption equilibrium data showed better
fit to Langmuir and Freundlich isotherm models. The
biosorption kinetics was well explained by pseudo-
second-order kinetics rather than the pseudo-first-
order and intra-particle diffusion kinetic models.
Based on the above good results, this waste biomass is
recommended as an effective and cheap biosorbent for
removal of hexavalent chromium from aqueous solu-
tion. But further research has to be focused in the
direction of continuous column experiment for the
potential application toward the industrials effluents
treatment.
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