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ABSTRACT

Providing high-resolution monitoring data is essential in promoting decision-making activi-
ties for surface water quality protection such as scientific modeling and data analysis. In
this study, statistical models using multiple linear regression (MLR) were developed to esti-
mate Chlorophyll-a (Chl-a) and total suspended solid (TSS) concentrations in a mesotrophic
reservoir, the Yeongam Reservoir in Korea, from satellite observations. Two types of satel-
lite data that covered different spectral regions, for wavelengths in 412–865 nm (for the Geo-
stationary Ocean Color Imager) and those in 405–14,385 nm (for the Moderate Resolution
Imaging Spectroradiometer), were used as inputs for statistical models, after bias correction.
The MLR models for Chl-a and TSS were initially constructed and evaluated with 39 image
data-sets obtained during 2011–2014. Subsequently, they compared with their corresponding
algorithms that were developed under different environmental settings as well as the CE-
QUAL-W2 model, a numerical model of reservoir water quality. Sensitivity analysis showed
that specific red and near-infrared wavelengths significantly contributed to improve the
accuracy of the Chl-a and TSS estimates, respectively, along with those of blue and green
bands typically used. The constructed MLR models showed better performance than the
simulation model as well as the classical and recent bio-optical algorithms on average. In
particular, poor prediction performance for total nitrogen and total phosphorus caused by a
lack of adequate input data and description of transport mechanisms appeared to lower the
accuracy of the Chl-a and TSS estimates in the simulation model. Therefore, these results
demonstrate that statistical models developed from satellite observations can be used to
rapidly screen local water quality and to provide high-quality data for reservoir water
quality management.
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1. Introduction

Excessive nutrient inputs from anthropogenic
activities have caused eutrophication of aquatic
ecosystems [1], with episodes of contamination in glo-
bal water resources such as nuisance and harmful
algae blooms (HABs) [2–4]. Chlorophyll-a (Chl-a) and
total suspended solid (TSS) concentrations were con-
sidered as primary parameters for providing the early
prediction of algal blooms as well as diagnosing the
eutrophication status of surface water systems [5–7].
Measurements of the hydrologic and water quality
characteristics including Chl-a and TSS in a regular
monitoring program, however, were performed at low
spatial and temporal resolutions due to financial and
time constraints, e.g. only from three monitoring loca-
tions on a monthly basis at best for large reservoir sys-
tems in Korea [8]. To address the limitations arising
from sparse monitoring data in space and time, the
use of remote-sensing data is now favored and materi-
alized as a promising technique for illustrating water
quality conditions, or even developing alternative sta-
tistical models based on these profiles.

To estimate water quality constituent concentra-
tions from satellite observations, the previous studies
suggested a methodology that derived the remote-
sensing reflectance from the inherent optical proper-
ties (IOPs) of water bodies [9]. The underlying
assumptions in this approach are that the optical
properties of phytoplankton pigments and detrital
particles are mainly responsible for characterizing the
Chl-a levels, whereas those of miscellaneous particles
including both algal and non-algal components are
related to the TSS concentrations. This analytical
approach, referred as a bio-optical model, was initially
tested in feasibility studies to calculate the Chl-a and
TSS profiles in ocean surface waters [10–12]. Subse-
quently, it provided the basis for the development of
semi-analytical methods (e.g. the Garver, Siegel, and
Maritorena Model (GSM), and Quasi-Analytical Algo-
rithm (QAA) models) which reflected multiple ocean
properties [13,14].

In these models, a band ratio was often used to
calculate the Chl-a concentrations in optically deep
waters (namely CASE-1 water) by assuming that the
optical properties of phytoplankton exhibited the max-
imum and minimum absorption in blue and green
wavelengths [5,15,16]. The OC4v.4 and OC3 M models

were the bio-optical algorithms which were developed
for Chl-a using the ratio of green and blue band reflec-
tance in the Sea-Viewing Wide Field-of-View Sensor
(SeaWiFS) and Moderate Resolution Imaging Spectro-
radiometer (MODIS) images, respectively [16]. The
earlier models derived empirically were, however, less
successful in providing the Chl-a profiles at more opti-
cally complex waters (namely CASE-2 water) which
contained the elevated levels of colored dissolved
organic matter and other minor contaminants [17–20].
As an alternative to the existing bio-optical algorithms,
the Near-Infrared (NIR)-red models that used multiple
wavebands in NIR and red regions were recently
developed to estimate the Chl-a levels in turbid waters
[20–22]. Two-band NIR-red model included one wave-
length ranging between 660 and 690 nm (in the red
region) and the other ranging between 700 and
730 nm (in the NIR region), whereas one additional
wavelength that was greater than the 730 nm was
incorporated into three-band NIR-red model. Note
that all these wavelengths are found to be minimally
affected by any constituents in the complex water
columns [17–24].

The conventional band ratio algorithms including
the Clark’s model were also used to estimate the TSS
concentrations in open water regions (i.e. CASE-1
water). Those algorithms were developed specifically
using the band ratio ranging from 440 to 550 nm [25],
but still did not show good performance in CASE-2
water, as shown in the Chl-a estimation [26,27].
Accordingly, the recent studies recommended the
development of new bio-optical algorithms for CASE-
2 water using single or multiple bands, including the
band ratio, from different satellite images. Currently,
various algorithms which reflect the spectral idiosyn-
crasy of individual waters are tested to help research-
ers quantify the TSS levels under site-specific
variability in their optical properties [28–30].

The objectives of this study are to determine par-
ticular spectral bands which play an important role in
estimating both Chl-a and TSS profiles, and then to
develop multiple linear regression (MLR) models
using these bands as predictor variables. This is
because the site-specific models are probably more
suitable for quantifying the constituent levels in local
estuarine waters (with sporadic nutrient inputs from
interconnected water system) than the conventional
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models that are developed and examined in different
environmental settings. Thus, the significance of this
study can be described in terms of three aspects. First,
a sensitivity analysis was conducted to rank the spec-
tral bands in order of importance available in both 1-
km MODIS and 500-m Geostationary Ocean Color
Imager (GOCI) images. Note that the bands selected
from this process for use in the MLR models for Chl-a
and TSS may be different from those that were histori-
cally used in literature. Second, a comparison was
made between the MLR models and their correspond-
ing bio-optical algorithms such as the conventional
(OC4v.4, OC3 M, GDPS standard, and Clark’s mod-
els), NIR-red models, etc. This will ensure the suitabil-
ity of the MLR models which are developed from
either of two images for estimating the Chl-a and TSS
levels in local waters. Finally, the performance of the
MLR models was compared against the CE-QUAL-W2
model, a two-dimensional reservoir water quality
model (i.e. the US Army Corps of Engineers in USA),
to assess their accuracy and usefulness in rapidly
screening estuarine water quality conditions [31–34].

2. Materials and methods

2.1. Study area

The study area of the Yeongam Reservoir (YAR),
constructed in 1993, is located in the southwestern
part of the Korean peninsula facing the Yellow sea

(see Fig. 1). As an interconnected reservoir system, the
YAR is located midway between the Yeongsan Reser-
voir (YSR) and Kumho Reservoir. The YAR had a sur-
face area of 42.9 km2 with average annual storage
capacity of 280 million tons per year, according to the
historical records of reservoir operation in 2011–2013.
The intended purposes of the combined reservoir sys-
tem were to provide stable supply of irrigation water
and to improve flood protection for surrounding land
areas reclaimed along these estuarine reservoirs [35].
The YAR received most of water resources including
nutrient inputs through an artificial open channel
from the YSR that was considered as the most heavily
polluted waterway among the four major rivers in
South Korea [36]. Due to this reason, the YAR was
routinely classified as a mesotrophic reservoir [37].
The annual average Chl-a and TSS concentrations
recorded in 1993 were 13.77 mg/m3 and 15.86 mg/L,
respectively.

2.2. Environmental monitoring data acquisition for the
YAR

Water quality data were obtained from the Yeong-
san River Environment Research Center supervised by
the National Institute of Environmental Research in
Korea (http://water.nier.go.kr/waterMeasurement/se
lectWater.do). The physical, biological, and chemical
water quality characteristics were measured monthly
at three sampling sites in the YAR (see Fig. 1) where
the data from Jan 2011 to Dec 2014 were specifically
compiled. In each sample point, multiple depths in
the water column were measured, i.e. at the surface
(0.5 m), mid-depth (8 m), and near-bottom (17 m).
However, the Chl-a and TSS levels observed in the
surface layer were only used for a comparison with
their corresponding values estimated by the MLR
models that were derived from GOCI and MODIS,
respectively. Daily meteorological data in the Mokpo
City station adjacent to the YAR during a 2-year per-
iod (2011–2012) were collected from the Korea Meteo-
rological Administration. These data included the
temperature, dew point, precipitation, solar intensity,
wind speed, wind direction, and cloud cover percent-
age. Hydrologic data of the YAR (i.e. the daily inflow
rate, outflow rate, and gate operation) were also pro-
vided by the Korea Rural Community and Agricul-
tural Corporation during the same period. Both
meteorological and hydrologic data, once compiled,
were then used to establish the boundary and initial
conditions of the CE-QUAL-W2 model, along with the
water quality profiles in other layers, i.e. mid-depth
and near-bottom.

Fig. 1. A core area of study at the YAR and the intercon-
nected reservoirs, the YSR and Kumho Reservoir, located
in the southwestern part of Korea. Three solid circles indi-
cate the monitoring sites in the target reservoir.
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2.3. Data acquisition and processing for satellite images

A methodology that derived the remote-sensing
reflectance, Rrs(λ), from the IOPs of water bodies was
proposed by Gordon et al. [9], such that

RrsðkÞ � bbðkÞ
aðkÞ þ bbðkÞ c (1)

where aðkÞ, bbðkÞ, and γ indicate the absorption coeffi-
cient at wavelength λ, the backscattering coefficient,
and the parameter that is related to the volume scat-
tering function defined depending on the geometry of
light emerging from the water surface, respectively
[10,11].

For this study, two satellite observations, the level-
1B GOCI and MODIS images, were obtained for 13 d
in 2011–2014 from the websites maintained by the
Korea Ocean Satellite Center (http://kosc.kiost.ac/
kosc_web/GOCI_download/SatelliteData.html) and
National Aeronautics and Space Administration
(NASA) Goddard Space Flight Center (http://lads
web.nascom.nasa.gov/data/), respectively. For data
consistency between satellite and field observations,
the satellite images which were within a three-hour
time difference with the field water quality measure-
ments were selected only [12,38]. Also, when three
GOCI images between 10:30 and 12:30 in local time
were collected, one image from the Terra MODIS sen-
sor was collected in the morning to match the sam-
pling time between the images. Both satellite data
were then divided into two groups, the initial data-set
for developing the MLR models (2011–2012) and
remaining data-set for evaluating their applicability in
local waters (2013–2014).

Note that during the satellite image processing, an
atmospheric correction was applied to the level-1B
data from the GOCI and MODIS. This is because the
water-leaving radiance (Lw) was typically affected by
the absorption and scattering interference as well as
the cloud masking [28,39]. For this study, the modified
North Sea Mathematical Models algorithm was used
to adjust atmospheric disturbances in the satellite
observations [40–42]. This was specifically performed
using the Environment for Visualizing Images (version
4.5, Research Systems Inc., Colorado) and SeaWiFS
Data Analysis System (version 7.0.1, Ocean Biology
Processing Group, NASA Goddard Space Flight Cen-
ter, Maryland) tools for the GOCI and MODIS images,
respectively. Once atmospheric corrections were com-
pleted, a 3 × 3 box test was examined to confirm the
homogeneity of reflectance at a reference pixel. This
test was conducted by comparing the reference pixel
and its surrounding pixels to avoid a wrong choice of

the pixel affected by the patchy water [19,43]. Table 1
shows the Chl-a and TSS levels at three sampling sites
in the YAR for 14 different dates, which are converted
from 39 GOCI images through a series of image pro-
cessing operations, as discussed above.

2.4. MLR model

2.4.1. Selection of model parameters

Determining predictor variables that are responsi-
ble for changes in the Chl-a and TSS levels at local
waters may play an important role in constructing sta-
tistical models. In this study, the sensitivity analysis
was performed using the Latin Hypercube One factor
At a Time (LH-OAT) technique that evaluated the
effect of individual parameters on model outputs. The
LH-OAT method, frequently used in hydrologic and
watershed models, refers to a technique that combines
the Latin Hypercube (LH) sampling and One-Factor-
At-a-Time (OAT) design, as its name implies. As an
extension form of the Monte Carlo random sampling
[44], the method is specifically more powerful than
random (or too spare) and full factorial (or too dense)
samplings in terms of computational efficiency. In this
analysis, the partial effect for each parameter changed
is calculated by repeatedly moving the initial LH
points to other positions as follows:

Si;j ¼
100� Mðe1;::::;ei�ð1þ giÞ;:::;epÞ�Mðe1;::::ei;:::;epÞ

½Mðe1;::::ei�ð1þ giÞ;:::;epÞþMðe1;::::ei;:::;epÞ�=2
on

gi

������

������
(2)

where Si,j is the partial sensitivity for a parameter ei,
M is the model function, gi is the fraction by which a
parameter ei is changed, and j refers to the LH points.
From this calculation, four highly ranked bands which
were most sensitive to the model outputs were
selected for developing the MLR models for Chl-a and
TSS (see Table 2), regardless of the spectral bands that
were historically preferred in literature [45]. More
detailed information on the LH-OAT method is avail-
able elsewhere [46,47].

2.4.2. MLR model construction

In this study, four MLR models were developed
individually according to the satellite types (GOCI: G
and MODIS: M) and dependent variables (i.e. Chl-a and
TSS), hereafter referred to as MLR(G)-Chl-a, MLR(G)-
TSS, MLR(M)-Chl-a, and MLR(M)-TSS (see Table 2).
The coefficients of independent variables in the MLR
models were using SPSS Statistics (version 17.0, SPSS
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Inc., Chicago). The MLR models can be expressed as the
following:

Yi ¼ a þ bj � Rrsi;j þ ei (3)

εi ~ N(0, σ2)

where Yi is the Chl-a or TSS concentrations of sample
i (i = 39, the total number of images). a refers to the
intercept, bj is the slope of Rrs for the spectral band j
(j = 4) in the i-th image, and εi indicates the random
error term having its variance σ2.

The MLR models were initially constructed using
the satellite images in 2011–2012 and then evaluated
with the data in 2013–2014, to examine their

Table 1
The Chl-a and TSS levels at three sampling sites in the YAR for 14 different dates which are converted from the GOCI
images through image processing operations. The precipitation and inflow records present input data to the CE-QUAL-
W2 modela

Dates Sites TSS levels (mg/L) Chl-a levels (mg/m3) Precipitation (mm) Inflow (m3)

12 April 2011 1 6.4 10.1 (−1)2.5 (−5)4,041,000
2 10.8 21.4
3 12.8 14.7

29 May 2011 1 25.2 7.9 (−3)4.5 (−5)8,210,000
2 17.2 8.5
3 15.6 9.5

04 August 2011 1 6.4 2.3 (−3)2.6 (−5)70,203,000
07 September 2011 1 10.8 8.3

2 10.8 7.8
3 25.2 17.9

18 October 2011 1 8.4 11.8 (−3)12.0 (−3)11,936,000
2 15.2 14.7
3 14.4 22.7

20 February 2012 1 5.6 9.8 (−3)4.7
2 7.6 13.4
3 5.6 6.2

15 March 2012 1 6.0 3.4 7.5
2 6.0 2.8
3 7.2 3.3

08 July 2012 1 7.2 16.8 (−3)63.9 (−4)54,996,000
2 11.2 20.2
3 12.8 19.7

10 September 2012 2 12.4 20.4 (−3)69.3 (−5)200,907,000
3 43.2 9.9

12 December 2012 1 7.2 2.6 18.0 (−2)21,495,000
2 8.4 3.3
3 11.2 4.2

08 January 2013 1 3.2 6.0
2 6.0 5.9
3 4.0 4.0

21 February 2013 1 2.4 5.4 (−3)1.5
2 2.4 5.6
3 2.8 4.6

14 October 2013 1 9.6 14.8
2 10.0 5.8
3 17.6 1.6

21 February 2014 1 2.4 1.2
2 3.6 2.4
3 8.8 1.6

aA negative number in parenthesis indicates the number of days for which individual data were accumulated prior to each sampling

date.
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applicability in local estuarine reservoirs, as discussed
in Section 2.3. Their performance was also compared
with the field water quality measurements with
respect to the coefficient of determination (R2) and
root mean square error (RMSE).

2.5. Comparison of the performance of different models

The MLR models (i.e. MLR(G)-Chl-a, MLR(M)-Chl-
a, MLR(G)-TSS, and MLR(M)-TSS) were compared with

different types of bio-optical algorithms that mainly
employed the band ratio (referred as the conventional
models, see Table 3). The conventional models we used
in this study included the OC4v.4 and OC3 M
algorithms as well as the GDPS standard, and Clark’s
models. The OC4v.4 and OC3 M algorithms are the
models specifically developed for prediction of the Chl-
a levels using the SeaWiFS (a prototype of GOCI) and
MODIS images, respectively. In contrast, their corre-
sponding algorithms for the TSS estimation were the

Table 2
Rank order of important spectral wavelengths which are determined by the LH-OAT sensitivity analysis to develop
different MLR models from the GOCI and MODIS image dataa

Rank

GOCI images MODIS images

MLR(G)-Chl-a Sensitivity MLR(G)-TSS Sensitivity MLR(M)-Chl-a Sensitivity MLR(M)-TSS Sensitivity

1 B1 (412 nm) 13,908 B2 (443 nm) 2,185 B6 (547 nm) 1,195,608 B5 (531 nm) 3,948
2 B2 (443 nm) 1,896 B1 (412 nm) 1,845 B4 (488 nm) 167,219 B6 (547 nm) 1,664
3 B6 (680 nm) 466 B6 (680 nm) 661 B1 (412 nm) 125,292 B4 (488 nm) 1,073
4 B4 (555 nm) 448 B8 (865 nm) 365 B8 (645 nm) 67,455 B3 (469 nm) 224
5 B5 (660 nm) 445 B3 (490 nm) 169 B7 (555 nm) 46,890 B1 (412 nm) 121
6 B7 (745 nm) 122 B7 (745 nm) 66 B10 (678 nm) 35,088 B8 (645 nm) 121
7 B8 (865 nm) 98 B5 (660 nm) 10 B5 (531 nm) 18,755 B2 (443 nm) 113
8 B3 (490 nm) 56 B4 (555 nm) 2 B9 (667 nm) 17,761 B7 (555 nm) 89
9 B3 (469 nm) 5,423 B10 (678 nm) 23
10 B2 (443 nm) 3,918 B9 (667 nm) 5

aThe MLR models which are developed individually based on the satellite images (GOCI: G and MODIS: M) and dependent variables

(i.e. Chl-a and TSS) are abbreviated as MLR(G)-Chl-a, MLR(G)-TSS, MLR(M)-Chl-a, and MLR(M)-TSS. Note that the top four spectral

wavelengths ranked high are only used as predictor variables in different MLR models.

Table 3
Bio-optical algorithms for estimating the Chl-a and TSS levels in surface waters implemented in the conventional (i.e.
OC4v.4, OC3 M, GDPS standard, and Clark) modelsa

Types Conventional models

OC4v.4 Chl-a = 10f0 þ f1 �Rþ f2 �R2 þ f3 �R3 þ f4 �R4

where R = max Rrsð443Þ\Rrsð490Þ\Rrsð510Þ
Rrsð555Þ

h i
, f0 = 0.366, f1 = −3.067, f2 = 1.930, f3 = 0.649, and f4 = −1.532

OC3 M Chl-a = 10f0 þ f1 �Rþ f2 �R2 þ f3 �R3 þ f4 �R4

where R = max Rrsð443Þ\Rrsð490Þ
Rrsð555Þ

h i
, f0 = 0.2424, f1 = −2.7423, f2 = 1.8071, f3 = 0.0015, and f4 = −1.2280

GDPS standard TSS = 945.07 × R1.137

where R = Rrs(555)

Clark TSS = 10f0 þ f1 �Rþ f2 �R2 þ f3 �R3 þ f4 �R4 þ f5 �R5

where R = max nLwð412Þ\nLwð443Þ
Rrsð510Þ

h i
, f0 = 0.850, f1 = −0.123, f2 = 37.096, f3 = 88.035, f4 = −30.594, and

f5 = −48.004

aNote that the coefficients for fi represent the values that are optimized in individual models. nLw and λ indicate the normalized water-

leaving radiance (estimated from the upwelling radiance) and wavelength in nm, respectively.
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GDPS standard (with the GOCI data) and Clark’s mod-
els (with the MODIS data). Note that unlike other algo-
rithms, the GDPS standard model only uses a single
band for prediction of the TSS levels. The two- or three-
bands NIR-red algorithms fell into a category of the
recent models in this study, which were designed for
the Chl-a estimation (see Table 4). In addition, some
recent bioalgorithms which were developed for turbid
waters through single or multiple bands, including the
band ratio, from the GOCI and MODIS images were
used for comparison purposes with the MLR models
for TSS.

A comparison was also made between the outputs
of the MLR models and those of the CE-QUAL-W2
model. As a laterally averaged hydrodynamic and
water quality model, the CE-QUAL-W2 model simu-
lated the behavior of Chl-a and TSS in the YAR and
was used to verify the usefulness of the MLR models
in rapidly screening local estuarine water quality.
Before running a simulation, topography data which
were obtained from 140 sites in the YAR using an
acoustic Doppler profiler (SonTek/Xylem Inc., Califor-
nia) were provided as inputs to the CE-QUAL-W2
model. Based on the bathymetry data, the YAR was
eventually divided into 45 active segments and 26 ver-
tical layers [36]. Once all necessary input data were
provided, a pattern search technique was applied to
determine the optimal values of kinetic and hydrody-
namic parameters in the model (Table 5).

3. Results

3.1. Evaluation of constructed MLR models

When constructing the individual MLR models
through the sensitivity analysis, slightly different
wavelengths in two satellite images contributed to the
Chl-a estimation in the YAR (see Table 2). For exam-
ple, blue (412 and 443 nm), green (555 nm), and red
bands (680 nm) were the most sensitive to the Chl-a
estimation for the GOCI images, whereas blue (412
and 488 nm), green (547 nm), and red bands (645 nm)
were considered more important for the MODIS data.
The same applied to the TSS calculation in the YAR.
In other words while blue (412 and 443 nm), red
(680 nm), and NIR bands (865 nm) were the most sen-
sitive to the TSS estimation in the GOCI images, the
wavelengths in blue (488 and 469 nm) and green
bands (531 and 547 nm) were selected as predictor
variables for the MODIS data. Note that green
(520–555 nm) and red (660 nm) bands are commonly
chosen as the best variables for the TSS calculation in
literature [27–31].

Base on the results above, red (680 and 645 nm),
blue (412, 443, and 488 nm), and green bands (555 and
547 nm) were significantly correlated with the Chl-a
levels and dominantly affected the optical properties
at the surface layer of the YAR. These findings were
somewhat consistent with the previous studies in that
the absorption maxima and minimum for this

Table 4
Bio-optical algorithms for estimating the Chl-a and TSS levels in different area available in the recent studies using two
satellite data (i.e. the GOCI and MODIS images)

Images

Wavelengths

Bio-optical algorithms Refs.λ1 (nm) λ2 (nm) λ3 (nm)

GOCI 412 443 490 Chl-a = 1.8528 × R−3.263 where R = Rrsð443ÞþRrsð490Þ�Rrsð412Þ
Rrsð555Þ

h i
[41]

GOCI 680 745 Chl-a = 56:81 � R�1
rs ðk1Þ � Rrsðk2Þ

� �� 32:64 [20]

MODIS 667 748 Chl-a = 102:408þ 1:49� log 10�½R�1
rs ðk1Þ�Rrsðk2Þ� [24]

MODIS 662–672 743–753 Chl-a = �16:2 þ 136:3 � ½R�1
rs ðk1Þ � Rrsðk2Þ� [14]

MODIS 678 748 Chl-a = 1:472 � e6:3462�½R
�1
rs ðk1Þ�Rrsðk2Þ� [12]

GOCI 660 TSS = 1:7532 � e204:26�ðk1Þ [31]

GOCI 490 745 TSS = 101:0758�1:123�ðk2=k1Þ [33]

GOCI 660 TSS = 1:545 � e179:53�ðk1Þ [28]

MODIS 620–670 TSS = �1:91 � 1140:25 � ðk1Þ [34]

MODIS 555 645 488 TSS = 100:6311þ 22:2158�ðk1 þ k2Þ½ ��½0:5239�ðk1 þ k3Þ� [30]

MODIS 645 TSS = 2:49 � e97:19�ðk1Þ [32]
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constituent were usually detected at approximately
440 and 550 nm, and thereby those bands were typi-
cally used to estimate the Chl-a levels [15–18]. How-
ever, note that the band ratio method with blue and
green wavelengths is no longer used to estimate the
Chl-a concentrations in turbid waters. Interestingly,
inclusion of the wavelengths in red bands resulted in
an improvement in the prediction accuracy of two
MLR models, MLR(G)-Chl-a and MLR(M)-Chl-a, in
our study (data not shown).

In the case of the TSS estimation, the selected
bands in the GOCI images were widely distributed in
the visible and NIR wavelengths
(412 nm > 443 nm > 680 nm > 865 nm). These results
were also consistent with the previous studies for
CASE-2 water which used NIR and red wavelengths
ranging between 660 and 865 nm as optimal wave-
lengths [27,31–33]. Conversely, the selected bands in
the MODIS data were intensively distributed on the
blue and green wavelengths (440–555 nm) which

maximally absorbed the TSS concentrations in open
oceans. Thus, the MLR(M)-TSS appears to closely
resemble the conventional models for TSS.

The four wavelengths selected according to the
satellite types and dependent variables were used to
construct different MLR models (i.e. MLR(G)-Chl-a,
MLR(M)-Chl-a, MLR(G)-TSS, and MLR(M)-TSS) using
the enter method that only allowed them to be
included as predictor variables. The constructed MLR
models were initially tested with the data-set of the
GOCI and MODIS images for 2011–2012 and re-
assessed with the other data-set for 2013–2014
(Table 6). From the initial test, the coefficients of indi-
vidual variables in each MLR model were determined
along with their t statistic values (data not shown).
The t statistic showed that the significance of the
wavelength in 469 nm at MLR(M)-TSS was only
greater than 0.05, indicating this particular variable
should be carefully reinvestigated and included in the
model refined in the future. Despite this shortcoming,

Table 5
Major model parameters (i.e. 21 kinetic and 5 hydraulic parameters) adjusted from the calibration process of the CE-
QUAL-W2 modela

Constituents Parameters Definitions (units) Min Max
This
study

Algae AG Algal growth rate (d−1) 0.2 0.3 0.25
AR Algal dark respiration rate (d−1) 0.005 0.2 0.00523
AE Algal excretion rate (d−1) 0.005 0.2 0.00523
AM Algal mortality rate (d−1) 0 0.1 0.001
AS Algal settling rate (m/d) 0 4.0 0.266
AHSP Algal half-saturation P limited growth (g/m3) 0.0005 0.0800 0.0632
AHSN Algal half-saturation N limited growth (g/m3) 0.001 0.400 0.003
ASAT Algal light saturation (W/m2) 19 170 19
AT1 Lower temperature for algal growth (˚C) 5 10 6
AT2 Lower temperature for maximum algal growth (˚C) 15 30 26
AT3 Upper temperature for maximum algal growth (˚C) 20 40 21
AT4 Upper temperature for algal growth (˚C) 24 50 30
ACHLA Ratio between algal biomass and Chl-a 40 220 65

Organic matter LDOMDK Labile dissolved organic matter (DOM) decay rate (d−1) 0.010 0.64 0.014
RDOMDK Refractory DOM decay rate (d−1) 0.0001 0.0064 0.001
LPOMDK Labile particulate organic matter (POM) decay rate

(d−1)
0.001 0.12 0.082

POMS POM settling rate (d−1) 0.020 2 0.020
Phosphorus PO4R Sediment release rate of P (d−1) 0.000 0.03 0.000
Ammonium NH4R Sediment release rate of N (d−1) 0.001 0.4 0.209

NH4DK Ammonium decay rate (d−1) 0.001 1.3 0.017
Nitrate NO3DK Nitrate decay rate (d−1) 0.030 0.15 0.029
Hydraulic

parameters
AX Horizontal eddy viscosity and diffusivity (m2/s) 1* 1
CBHE Coefficient of bottom heat exchange (W m2/s) 0.3* 0.5
SRO Fraction solar radiation absorbed at the water surface 0.6* 0.45
WSCFN Wind sheltering factor 0.1–0.5* 0.9
FRICC Chezy bottom friction factor (m2/s) 0.3* 0.5

aThe values marked with an asterisk (*) are obtained from two reference sources [36,51].
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we simply included the wavelength in 469 nm for
MLR(M)-TSS to maintain consistency in the MLR
models in this preliminary study. The constructed
MLR models generally showed moderate to strong
moderate agreement with the observed data for both
2011–2012 and 2013–2014, except for site 1 in MLR(G)-
TSS and site 3 in MLR(G)-TSS. On average, the MLR
models developed from MODIS data appeared to be
more accurate than those of GOCI data in terms of R2

and RMSE, except for MLR(G)-TSS. Although we can-
not explain the exact reason for the low accuracy for a
few sites and difference in performance between the
MLR models, all these results demonstrate that they
are still useful tools for estimating the Chl-a and TSS
levels in local waters.

3.2. Comparison of the performance between MLR models
and different bio-optical algorithms

When the performance of the MLR models was
compared against the conventional models which
were developed from the GOCI and MODIS images,
their estimation accuracy for both Chl-a and TSS
seemed to be more accurate than the conventional
models on average (see Table 6). This is probably
because the disturbance of the optical properties in
local turbid waters is not accounted for in the conven-
tional models [17,28]. In the case of the Chl-a estima-

tion, the OC4v.4 model was generally more accurate
than the OC3 M model. For the TSS estimation, the
GDPS standard showed more powerful performance
than the Clark’s model. Surprisingly, the estimation
accuracy of the conventional models for both Chl-a
and TSS in the initial data-set was always low in site
1, as shown in MLR(G)-TSS. Although we did not
clearly explain their poor performance, this was not
simply caused by geographical features of the moni-
toring site. This is because the estimation accuracy of
the conventional models is still high in the other data-
set for 2013–2014 as well as for other MLR models in
any of the two data-sets, except for MLR(G)-TSS.

A comparison was also made between the MLR
models of Chl-a and TSS and other bio-optical algo-
rithms that used the specific wavelengths in the GOCI
and MODIS images (see Table 4 and Fig. 2). From the
figure, it was found that the MLR models showed bet-
ter performance than other models available in the
recent studies, except for MLR(M)-Chl-a (Fig. 2(c)).
This result clearly indicate that site-specific models are
more suitable for assessing local water conditions than
almost any other model as long as the wavelengths
from the satellite images are carefully selected in the
models and strictly examined in multiple data-sets.
Also, as the resolution of satellite images may affect
model performance, this issue is clearly addressed in
future comparison studies.

Table 6
Comparing the performance between the MLR and conventional models in two data-sets, one for 2011–2012 and the
other for 2013–2014, which are constructed from the GOCI and MODIS image dataa

Data-sets Sites

R2 (RMSE)

MLR models Conventional models

Chl-a TSS Chl-a TSS

MLR(G)-Chl-a MLR(M)-Chl-a MLR(G)-TSS MLR(M)-TSS OC4v.4 OC3 M
GDPS
standard Clark

2011–2012 Site
1

0.49 0.80 0.01 0.75 0.24 0.11 0.09 0.00
(3.71) (2.60) (4.12) (3.24) (6.36) (8.29) (7.89) (4.19)

Site
2

0.71 0.63 0.71 0.77 0.34 0.71 0.75 0.35
(5.06) (4.71) (3.39) (2.62) (6.87) (6.54) (1.92) (7.23)

Site
3

0.29 0.61 0.89 0.74 0.76 0.33 0.72 0.34
(5.72) (4.64) (3.07) (2.63) (4.91) (7.24) (3.83) (6.85)

2013–2014 Site
1

0.56 0.62 0.74 0.49 0.88 0.77 0.64 0.44
(4.18) (3.21) (4.66) (2.22) (4.10) (8.30) (5.33) (6.99)

Site
2

0.80 0.76 0.88 0.66 0.67 0.37 0.79 0.15
(3.56) (2.17) (3.43) (3.77) (5.59) (8.740) (4.41) (10.53)

Site
3

0.66 0.98 0.98 0.66 0.60 0.05 0.77 0.21
(3.20) (1.71) (0.84) (3.53) (5.15) (7.54) (3.09) (7.20)

aAbbreviations: R2 = the coefficient of determination and RMSE = the root mean square error.
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3.3. Comparison of the performance between MLR models
and CE-QUAL-W2

After setting appropriate initial and boundary con-
ditions (e.g. precipitation and inflow), the CE-QUAL-
W2 model which was adjusted by the pattern search
technique predicted the water elevation in the YAR suc-
cessfully (R2 = 0.81, data not shown). Fig. 3 shows the
predicted and observed water quality profiles on a
monthly basis at the water surface in three monitoring
sites of the YAR over two years, 2011–2012. As shown
in the figure, the prediction accuracy for water
temperature was the highest among all parameters
(Fig. 3(d)–(f)), which was followed by DO (Fig. 3(a)–(c)).
The simulation results for T-N were also in good
agreement with the observed data for three monitor-
ing sites of the YAR, even though some differences
were observed between them mainly at the beginning
and end of the simulation (Fig. 3(g)–(i)). In fact, the T-
N concentrations in the reservoir were high in late
winter and early spring, and then decreased during
the summer season due to largely the dilution effect
from heavy rainfall and high water inflow as well as

uptake by algae, to a less extent [48]. Nutrient inputs
from the interconnected reservoirs or surrounding
agriculture area were not responsible for this devia-
tion, as the concentrations of ammonia and nitrate
were not underestimated in the model (data not
shown).

Interestingly, the model appeared to constantly
overestimate the T-P concentrations at three monitor-
ing sites in the YAR (Fig. 3(j)–(l)), whereas the Chl-a
and TSS levels were underestimated (Fig. 3(m)–(r)).
There are two potential reasons for the overestimation
of the T-P concentrations in the reservoir. First, the
adsorption and precipitation processes of particulate
phosphorus into the sediment could not be reflected
in our model properly. For example, the adsorption
process of ortho-P (PO4) onto dissolved divalent metal
cations such as Fe2+ and Mn2+, which was responsible
for the decrease of the T-P levels in the water columns
[49], was not considered significantly in our simula-
tion scenario. The second reason was related to the
incorrect model input regarding the external phospho-
rus loading from upstream tributary [36,50]. The sew-
age treatment facilities constructed recently in the

Fig. 2. Comparing the performance between the MLR models of Chl-a and TSS, (a) MLR(G)-Chl-a, (b) MLR(G)-TSS, (c)
MLR(M)-Chl-a, and (d) MLR(M)-TSS, and other bio-optical algorithms available in the recent studies.
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upstream of the YAR lowered the T-P loading to the
reservoir [36]. However, this was not addressed accu-
rately in our simulation due to a lack of actual flow
and load data from the facilities.

There is some inherent difficulty when comparing
the results of the MLR models and their corresponding
simulation results from the CE-QUAL-W2 model due
to a large difference between algorithms in estimating

the Chl-a and TSS levels (Fig. 4). As discussed above,
the prediction accuracy for Chl-a and TSS was unsatis-
factory in the YAR (see Fig. 3), where large seasonal
and spatial variations in the Chl-a and TSS concentra-
tions were not sufficiently captured by the model. This
was partially attributed to the inaccurate simulation of
water quality constituents such as T-P and T-N which
were associated with the dynamics of Chl-a and TSS

Fig. 3. Comparing monthly profiles of several key parameters, (a) through (c) for DO, (d) through (f) for temperature, (g)
through (i) for T-N, (j) through (l) for T-P, (m) through (o) for Chl-a, and (p) through (r) for TSS, between field measurements
and simulation results from the CE-QUAL-W2 model at water surface in three monitoring sites for the YAR during 2011–2012.
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(e.g. zero order decay and algal growth) [36,50].
Accordingly, the deviation of the T-N and T-P predic-
tions from the observed values appeared to be propa-
gated into the Chl-a and TSS predictions in the model.
Also, the governing equations in the CE-QUAL-W2
model were designed to simulate the laterally averaged
velocity and water quality profiles. Thus, a lack of verti-
cal transportation equations in the model is another
potential reason for inadequate description of the Chl-a
and TSS profiles in the reservoir [51,52]. Overall, all
these results reveal that the MLR models developed
from satellite observations are more useful in rapidly
assessing surface water quality conditions than general
water quality models, if adequate input data and
description of transport mechanisms for the target
reservoir are not addressed fully in the simulation mod-
els. Also, the results derived from the MLR models may
be used to improve the accuracy of deterministic mod-
els, specifically when the environmental monitoring
data are sparse.

4. Conclusion

The main objective of this study was to develop
the MLR models from the GOCI and MODIS images
to rapidly screen water quality conditions in the YAR.
The following are the main outcomes in this study.

(1) Specific wavelengths in blue and green bands
contributed to the Chl-a estimation, as shown
in the previous studies. Including particular

red and NIR wavelengths in the MLR models
could additionally improve the accuracy of the
Chl-a and TSS estimates, respectively. The con-
structed MLR models still showed good perfor-
mance in the other data-set for 2013–2014.

(2) The MLR models were compared to the classi-
cal and recent bio-optical algorithms. The MLR
models developed locally reflected site-specific
water quality conditions better than any other
models tested. There was an exception in one
monitoring site presenting poor performance,
but this was not clearly addressed in this
study.

(3) The CE-QUAL-W2 model did not correctly
capture the behavior of T-N and T-P in the
YAR, whereas the simulation results for some
parameters after the calibration process are sat-
isfactory. This seemed to affect the perfor-
mance of the Chl-a and TSS predictions in the
model, revealing the usefulness of the MLR
models in assessing local estuarine water qual-
ity. Once verified successfully, the outputs
from the MLR models are, in turn, expected to
enhance the input data quality for the general
water quality models.
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