
Landuse and NDVI change analysis of Sperchios river basin (Greece) with
different spatial resolution sensor data by Landsat/MSS/TM and OLI

Vassiliki Markogianni*, Elias Dimitriou

Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research-H.C.M.R., Anavissos 19013,
Greece, Tel. +30 22910 76349; Fax: +30 2291076419; email: vmarkogianni@hcmr.gr (V. Markogianni), Tel. +30 22910 76389;
Fax: +30 2291076419; email: elias@hcmr.gr (E. Dimitriou)

Received 7 March 2016; Accepted 29 April 2016

ABSTRACT

The assessment of land use–land cover (LULC) and normalized difference vegetation index
(NDVI) changes on hydrology is essential for the development of sustainable water resource
strategies. This study focuses on Sperchios river catchment, a complex and very heteroge-
neous area made up of numerous land covers that are difficult to map due to spectral simi-
larities. Difficulties such as multi-seasonal spectral variables corresponding to different
stages of land cover phenological development were addressed by choosing an unsuper-
vised classification algorithm called k-means in combination with the Corine land cover
database and past scientific studies. Available remote sensing data included three Landsat
images (MSS, TM, OLI) all of which were resampled to a common 30-m resolution. Final
LULC classifications in the period 1972–2013 separated forest, agricultural land and heath
land and detected unified bare with urban land and pastures with areas of low vegetation.
The recorded results include a significant reduction (–80%) of vegetation (NDVI values), 28
and 26% reduction rates in forests and pastures-low vegetation, respectively, a strong
increase (114%) in heath land and an 47% increase, as concerns the agricultural land. Using
of random points estimated the classification accuracy to be 75.4 and 85.2% for LULC of
1972–2013, respectively. This particular study constitutes a preliminary stage of an
attempted integrated basin management of Sperchios river intending to contribute to overall
ecological quality assessment of Sperchios river.
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1. Introduction

In recent times, remote sensing has been evolved
into a predominant tool for environmental monitor-
ing, global climate comprehension and amplification
of advancing and generative activities in a specific

district. Satellite remote sensing is used with great
success in monitoring and detection of vegetation and
land cover changes. Vegetation indices, established on
remotely sensed spectral reflectance in the near-
infrared and visible channels, have been extensively
employed for monitoring vegetation cover, health
status and Eco systemic diversities [1–5]. They have
been utilized to support land use mapping and change*Corresponding author.
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detection [6–10]. Among many vegetation indices
normalized difference vegetation index (NDVI) has
been most regularly used for vegetation monitoring in
various studies [11–18]. Furthermore, variety in
the superficial vegetation influence the equilibrium of
local ecosystems, research on the vegetation hetero-
geneity is the substructure of the ecological
conservation [19,20].

NDVI nominates the growth condition of vegeta-
tion while performs as an effective index for monitor-
ing vegetation fluctuations [21].

Furthermore, remote sensing has long been an effi-
cient expedient of monitoring land cover with its
immediate capacity to compile data at large scale, and
is developed into a compelling practice to retrieve for-
est cover information [22,23].

Resolutions of Landsat remote sensing data (30 m)
are fundamental for land use and land cover mapping
and change detection due to anthropogenic factors
usually at a small scale [23]. Present Landsat resolu-
tion land cover maps are usually resulted from super-
vised or unsupervised classification of single Landsat
bands [4,24–26].

Land use changes are the dominant reason provok-
ing habitat deterioration and water quality degradation
[27–29]. Natural mechanisms and issues of human
activities are major reasons of land use change [30,31].
Evolution activities such as agriculture, urbanisation,
forestry and industries favour more intensive land use
which expands runoffs and the transfer of pollutants
directly into the adjacent rivers, streams and sea
[32–34]. Their water quality is influenced by human
activities through point source pollution, such as
wastewater treatment facilities and non-point source
pollution, such as runoff from urban areas, mining and
farmlands [35,36]. Urbanization maximizes the envi-
ronmental problems concerning soil deterioration with
significant effects on water quality [37].

While previous studies have evaluated the agree-
ment in surface reflectance and vegetation indices
derived from multiple sensors, mainly focusing on
Landsat TM/ETM+ and MODIS instruments [38–40],
this study examines the characteristics of the NDVI
and land uses derived from the newly launched Land-
sat 8 OLI sensor and combines them with the respec-
tive ones derived from Landsat MSS and TM. This
particular effort has been conducted within the frame-
work of the KRIPIS research project which is oriented
towards the development of methodologies for inte-
grated river basin management and associated coastal
and marine zone with study areas the Sperchios river
and Maliakos Gulf (Greece) and constitutes a prelimi-
nary stage intending to contribute to overall ecological
quality assessment of Sperchios river.

2. Methodology

2.1. Study area

Sperchios river and its deltaic system is located in
Central Greece and it has been included in the NAT-
URA 2000 network with code GR2440002, where
anthropogenic interventions in the delta area, especially
after the 1950s [41 in 42], has influenced its natural
habitats each one on a different degree, depending on
the kind, the size and the location of the intervention.

River Sperchios is 85 km long and the total area of its
drainage basin is 1,907.2 Km2 [43 in 42], Fig. 1. It springs
from Timfristos (2,312 m), Vardousia, Orthris, Oiti and
Kallidromo and empties in Maliakos gulf, where its delta
is formed. In the area of embouchure, the main river bed
divides into three new beds, the old bed, the newer bed
and the diversion bed. Within the drainage basin, steep
slopes are dominant and for the total area the average
slope is 33%. The river Spercheios Delta occupies an area
of 196 Km2 and extents about 4 km east of Anthili village
and south-east of Lamia city. The climate in the area of
the Sperchios drainage basin belongs to the sub-tropical
Mediterranean zone, with warm and dry summer and
mild and wet winter [42].

Furthermore, the “riparian tree vegetation: consist
of willows, white poplars, planes, alders, mainly along
the river bank, in mixed and pure stands. The riparian
forest in the upper part of the delta occupies extended
areas with width a ranging from few up to several
hundred meters. The greatest part of the riparian for-
est is found in the upper part of the river (from Mak-
rakomi to Messopotamia)” [41 in 42].

The Delta and the lowland sedimentary area of
river Sperchios, geologically consist of quaternary
depositions and specifically clays, sand, pebbles grav-
els which compose a gentle to flat landscape (slope 0–
15%), on which the cultivated agricultural areas extent
as well the deltaic marshes and tidal area. It con-
tributes significant amounts of brought materials in
the lower area of discharge, due to the presence of
erosion prone flysch in its basin. These materials
deposit and enrich the plane of Lamia and the Delta
[44 in 42]. Changes in sediment transport, geomorpho-
logical evolution of Sperchios river delta, mainly due
to human activities, climate changes and the action of
the storm waves have been observed [45 in 42].

Finally, lowland areas have been created from the
transport and deposition of suspended particulate
matter from the river [42].

2.2. Satellite imagery and preprocessing elaboration

In this study, vegetation and land cover detection
at a catchment level was initially implemented by
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calculating NDVI. For this purpose, satellite imagery
from different remote sensors was used (Landsat MSS,
TM, OLI) to generate vegetation and land cover maps.
The satellite images were acquired from the USGS
Data Centre (United States Geological Survey) and the
acquisition dates are 08/09/1972 (Landsat 1 MSS), 08/
06/1984 (Landsat 5 TM) and 12/09/2013 (Landsat
8 OLI).

The data elaboration and analysis were con-
ducted in ESRI’s ArcGIS 10.1 software, while for
the analysis of the satellite imagery, the ENVI 5.1
software was used. After selecting the study area
scenes the digital data were initially resampled to a
common 30 m resolution, subsequently were georef-
erenced and geographically converted from WGS84
to EGSA87 coordinate system (National Datum)
and ultimately were submitted to the following
procedures:

(1) Geometric correction (using GCP).
(2) Radiometric correction for the conversion of

actual radiance values.

The formula used for this purpose is [Eq. (1), 46]:

Lk ¼ fðLMAXk � LMINkÞ=ðQCALMAX �QCALMINÞg � ðQCAL

�QCALMINÞ þ LMINk

(1)

where Lλ is the cell value as radiance, QCAL is the
digital number, LMINλ is spectral radiance scales to
QCALMIN, LMAXλ is spectral radiance scales to QCALMAX,
QCALMIN is the minimum quantized calibrated pixel
value and QCALMAX is the maximum quantized
calibrated pixel value:

(3) Atmospheric correction (dark object subtraction
technique) was also applied on the images
through the darkest-pixel subtraction technique
[47,48] via the relevant ENVI software tool.

2.3. NDVI

We used the following equation to estimate NDVI
[Eq. (2), 49]:

NDVI ¼ ðNIR� RÞ=ðNIRþ RÞ (2)

where NIR and R are the reflectance radiated in the
near-infrared wave band (4) and the visible red (3)
wave band of the satellite TM radiometer, respec-
tively. Regarding the Landsat 1 MSS sensor, the NIR
band is the 7 (0.8–1.1 μm) and the red the 5 (0.6–
0.7 μm) wavebands, respectively, and the NIR and red
bands of Landsat 8 OLI are the 5 (0.85–0.88 μm) and
the 4 (0.64–0.67 μm), respectively.

Fig. 1. Sperchios river’s basin and Maliakos Gulf.
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This estimation was implemented for each image
with ENVI 5.1 software and the resulting raster files
were imported into ArcGIS 10.1 for further processing
and statistical analysis. Each raster had a cell size of
30 m. The estimation in this approach generated three
NDVI maps (with the same cell size) for the aforemen-
tioned dates in a raster format. The changes in NDVI
between 1972 and 2013 were estimated using the fol-
lowing widely used mathematical equation (Eq. (3)):

% NDVI change ¼ 100 � ðNDVI2013
�NDVI1972Þ=NDVI1972 (3)

2.4. Land uses

The k-means unsupervised classification algorithm
[50–52] was used to detect the various land cover
types in the study area and the results were compared
with recent land use maps Corine 2000 database
(COoRdination of INformation οn the Environment)
and available land use maps of Sperchios river basin
from another scientific study [53].

The k-means classification algorithm is based on a
cluster analysis method, aiming to partition n observa-
tions into k clusters in which each observation belongs
to the cluster with the nearest mean. This process was
repeated by altering the number of classes until the
control points were accurately classified according to
the aforementioned supplementary data (Corine land
cover 2000 data base and available land use maps).
The classification algorithm was first applied to the
most recent image (Landsat eight, September 2013)
since this offered the opportunity to use all of the
available land cover information for validation (Corine
data base and Google Earth). The same process fol-
lowed for September 1972 using as exemplar the clas-
sification of 2013. The k-means classification algorithm
was selected after several test runs with the available
imagery and comparison with the results provided by
other commonly used algorithms such as the Iterative
Self-Organizing Data Analysis Technique (ISODATA).

The classification results included the following
categories: forest, agricultural land, heath land, unified
bare with urban land and unified pastures with areas
of low vegetation. Moreover, in order to quantify each
classification errors, 200 random points were created,
through the common ArcGis tool, inside different land
uses of each imagery. Creating random points is
widely used concerning the classification accuracy
assessment [54]. In the following, visual checks were
carried out in order to estimate the percentage agree-
ment with the respective remotely sensed land uses.

3. Results

3.1. NDVI mapping

The NDVI map of 1972 presents values ranging
from –0.01 to almost 0.6 (Table 1, Fig. 6), while the
mean NDVI value of the whole catchment is 0.21
(Figs. 2 and 6). The spatial distribution of the vegeta-
tion is characterized by dense, growing vegetation in
regions with medium and high elevation (500–
1,400 m) and sparse or annual vegetation types in low-
land regions (0–230 m) where bare-urban land and
pastures are detected.

In the 1984 vegetation map, the mean NDVI value
reaches 0.3, while the spatial pattern of the maximum
and minimum values is similar to that of the 1972 veg-
etation map (Table 1, Figs. 3 and 6).

The NDVI values of 2013 range from –0.16 to 0.4 and
the mean NDVI value is 0.04 (Table 1, Figs. 4 and 6).

From the aforementioned results, it becomes obvi-
ous that the vegetation of 1972–1984 is denser and
healthier compared to the vegetation of 2013, mainly
in regions that are dominated by forests. This fact can
also be ascertained by the mean NDVI values of each
date and the frequency distribution of NDVI values of
each year (Figs. 5 and 6). The majority of NDVI values
of 1972–1984 are distributed above the zero point
whereas a high percentage of NDVI values of 2013 are
negative (negligible vegetation). Even though data dis-
tribution of 1972–2013 tend to resemble to a normal
one, only the median value of 1972 data is almost in
the middle of the distribution skeleton. Moreover,
skewness of 1984 data is equal to –0.39 (Table 1,
Fig. 5). Furthermore, extreme negative values are

Table 1
Descriptive statistics and frequency distribution table of
NDVI values in 1972, 1984, and 2013

1972 1984 2013

Min. −0.01 −0.12 −0.16
Max. 0.56 0.73 0.39
Average 0.21 0.31 0.04
Standard Deviation 0.1 0.17 0.1
N Valid 18,455 18,452 18,460

Missing 11 14 6
Median 20,664 32,894 03,861
Skewness 176 –385 155
Std. error of skewness 018 018 018
Kurtosis –366 –289 189
Std. error of kurtosis 036 036 036
Percentiles 25 13,977 20,389 –01,549

75 27,967 43,552 09,863
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Fig. 2. NDVI of Sperchios river’s basin in 1972.

Fig. 3. NDVI of Sperchios river’s basin in 1984.
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detected in NDVIs of 1984–2013. The majority of 1984
NDVI data is lower than –0.25, whereas some extreme
NDVI values of 2013 are presented higher than –0.25
(Fig. 6). Since negative NDVI values greater than –0.1
have trivial ecological meaning, it was decided to
exclude them from the mapping of the NDVIs.

Higher NDVI values of 1972–1984 can be attributed
partially to the climatic conditions that have been
favourable for vegetation growth in the 1990s com-
pared to 2013, the great increase in the area of heath
land from 1972 to 2013 as it will be accrued from the
land use classification results and ultimately to the dif-
ferent dates of satellite images (09/1972, 06/1984)
associated not only with the different phenological
stage of vegetation, but also with the soil moisture.

Mean percentage NDVI change of Sperchios river
basin is –84%, indicating an overall significant vegeta-
tion decrease (Fig. 7). The spatial distribution of the
vegetation changes indicates significant and moderate
decrease in almost whole basin with some exceptions
along the Sperchios river where the vegetation is
slightly decreased. More particular, vegetation
decrease coincides with the areas covered by forests,
pastures and agricultural land while there is the possi-
bility of replacement of some of the crops of 1972 with
others in 2013. On the other hand, areas with vegeta-
tion increase are mainly located along the Sperchios
river and at some regions north-western and south-
western of the basin.

Combining the above-mentioned fluctuations with
the regional topography, it becomes evident that the
regions that present decreased vegetation are moun-
tainous, unexploited and situated at high altitude
(900–2,400 m), whereas regions with medium
decreased vegetation during 1972–2013 are lowlands
(0–500 m), dominated by urban areas and agricultural
lands.

The frequency distribution and box-plots diagrams
of NDVI (Figs. 5 and 6) illustrate the significant
decreasing trend of the vegetation cover in the study
area. This trend is not linear since in 1984 higher and
more dispersed values of NDVI are observed, but this
may be due to the slightly different date of the satel-
lite images (September in 1972–2013 while June in
1984). Nevertheless, in 1972, 50% of the area (between
25th and 75th percentiles) have NDVI values between
0.14 and 0.28 while the respective values for 2013 are
0–0.9 (Table 1, Fig. 6). This clearly indicates a signifi-
cant dropdown of the vegetation cover at a catchment
scale, during the study period, as mentioned above.

3.2. Land use mapping and associated changes

The studied catchment area is dominated by for-
ests that include coniferous, deciduous, evergreen-
broadleaf and mixed forests, while they are mainly
located at the northern, southern and western parts of

Fig. 4. NDVI of Sperchios river’s basin in 2013.
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the Sperchios river’s basin. The second largest land
use category is the heath land while agricultural land
follows including summer arable crops, tree crops,
olive groves and vineyards. In 1972, pastures and low
vegetation areas are ranked fourth (Fig. 8), while in
2013 in same position unified bare and urban land is
detected (Fig. 9). This category contains areas with no
vegetation especially in summer and concern crops on
fallow or abandoned fields, as well as continuous and
discontinuous urban constructions (all artificial sur-
faces, roads and rivers wider than five measures as
well as drainage and irrigation channels).

Conclusively, the temporal land use variation
between the study periods 1972–2013 is mainly charac-
terized by reduced forests and pastures by 28 and
26%, respectively, increased cultivations by 47%,
increased heath land by 114% and decreased surface
of bare and urban land 12%. Therefore, main land use
changes indicate the conversion of some forest land to
crops and heath land. These alterations can be attribu-
ted also to the significant changes of socio-economic
conditions overall in Greece in the period 1972–2013
that concern the initial intensification and increment

of agricultural activities and then the urbanization and
abandonment of many rural areas. Subsequently, in
order to validate the classification product, a compar-
ison was conducted among the results of the present
study and the study of [53], which regards the classifi-
cation of satellite images Landsat 5 TM and Landsat
seven ETM+.

Indicatively is stated that in 2007 forests cover an
area of 1,018.9 km2 [53] while in 2013 649.3 km2 (this
study), agricultural land [2007; 53] cover 458.3 km2

while in 2013, 257 km2 and in 2007 urban areas were
approximately 87 km2 [53]. Conclusively follows the
inference that the land use changes’ trends among the
results are similar with emphasis to the major reduc-
tion of forests and natural vegetated areas.

The validation of the results indicated that classifi-
cation accuracy reached the 75.4–85.2% for LULC of
1972–2013, respectively.

Then, the extent of each land cover was quantified
for both of images and the descriptive statistics
(Table 2) were performed, which revealed the long-
term changes in the land cover during the past
40 years.

Fig. 5. The frequency distribution of NDVI values in Sperchios river’s basin in 1972, 1984, and 2013 (red line: zero point,
green line: median value of all data).
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Fig. 6. Box plots representing NDVI values in Sperchios river’s basin in 1972, 1984, and 2013 (red line: zero point, green
line: median value of all data).

Fig. 7. Change in NDVI of Sperchios river’s basin during 1972–2013.
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Fig. 8. Land use types of Sperchios river’s basin in 1972.

Fig. 9. Land use types of Sperchios river’s basin in 2013.
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4. Land use classification and challenges

During the land use classification process, some
problems were encountered that made the achieve-
ment of high accuracy difficult by affecting the beha-
viour of the classification algorithm. The major
problem, that strongly characterizes Greece, is the
intense fragmentation and diversity of agricultural
land and the small size of the agricultural parcels.
This feature results not only in increased mixed inter-
class pixels but also between two different classes,
making the classification algorithm unable to distin-
guish them.

Another classification obstacle is the spectral con-
fusion due to the aspect and slope of areas covered by
(a) sparse scrub—grassland and dense shrub vegeta-
tion, (b) crops and bare land, (c) bare soil, olive groves
and urban areas. This confusion is observed mainly in
areas with intense brightness (reflectance) and involve-
ment of many different types of land use. In order to
outdistance the above-mentioned issues and record
reliable changes of cover/land use, similar and com-
parable land use categories were created for each year
(1972, 2013). More specifically, the separation of some
areas with low vegetation from pasture and areas with
sparse or no vegetation from urban construction was
particularly difficult, therefore it was preferred to
unify these classes into one. Moreover, the applied
classification algorithm on Landsat 5 TM (1984),
resulted in different land use classes compared to
others, hence according to the above-mentioned ratio-
nale, it was omitted from the classification procedure.

5. Discussion and conclusions

This article is an effort to quantify land use and
vegetation changes in the Sperchios river’s catchment
from 1972 to 2013 since their assessment on hydrology
is essential for the development of sustainable water
resource strategies.

The obtained NDVI maps indicate that denser and
more abundant vegetation dominates in medium and

high elevated areas where coniferous, transitional and
broad-leaved forests are detected, whereas areas cov-
ered by bare-urban land and pastures present lower
NDVI values.

The temporal trends of NDVI indicate that vegeta-
tion density increases, during the aforementioned per-
iod, in areas that are mainly located along the
Sperchios river and at some regions north-western
and south-western of the basin, whereas the vegeta-
tion density and coverage decrease coincides with the
areas covered by forests, pastures and agricultural
land. Likewise there is the possibility of replacement
of some of the crops of 1972 with others in 2013.

Thereafter, satellite imagery classification was
implemented and a land use classification algorithm
was applied to map the relevant changes from 1972 to
2013.

These results indicate that the decrease of forests
and pastures led to the increase of agricultural and
heath land. Both bare and urban land covers have
moderately been decreased during the study period.

Landsat time series analysis have been proven to
be useful in order to get the vegetation and LULC
changes information while NDVI of two images analy-
sis is more detailed information to combine with land
use/cover change condition in the interest of getting
the vegetation density distribution. More research is
needed about the higher land use classification accu-
racy of Landsat 8 OLI image than Landsat 1 MSS and
the different classification results of Landsat 5 TM
image.

This research study has been carried out in the
context of the KRIPIS research project with the view
of development of methodologies for integrated river
basin management and associated coastal and marine
zone and study areas the Sperchios river and Maliakos
Gulf (Greece). This preliminary stage intends to con-
tribute to overall ecological quality assessment of
Sperchios river by incorporating remotely sensed data
into hydraulic and ecological simulation models of
Sperchios river’s basin.

Table 2
Land use types in the study area for the period 1972–2013 and the associated changes

1972 2013
Change (%)

Land use Area (km2) (%) Area (km2) (%) 1972–2013

Forests 900.8 57.3 649.3 41.6 −28
Pastures-low vegetated areas 161.2 10.3 119.3 7.7 −26
Heath land 190 12.1 407.3 26.1 +114
Agricultural land 174.7 11.1 256.99 16.5 +47
Bare-urban land 145.1 9.2 127.8 8.2 −12
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