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ABSTRACT

Surface sediments from 10 stations were sampled in Anping Harbor for heavy metals (Hg,
Pb, Cd, Cr, Cu, Zn, and Al), water content, organic matter, total grease as well as grain size.
Geo-accumulation index (Igeo), enrichment factor (EF), effect range median quotient, and
potential ecological risk index were applied to estimate the degree of metal contamination
and the potential ecological risk in sediments. The mean metals concentration with standard
deviations (mg/kg) in the surface sediments was 0.28 ± 0.17 of Hg, 0.40 ± 0.27 of Cd, 202
± 260 of Cr, 99 ± 102 of Cu, 36 ± 16 of Pb, and 257 ± 194 of Zn. For spatial distribution of
heavy metals, a relatively high metal content was observed in the Bamboo River mouth
region and it progressively decreased towards the harbor region. The estimates of Igeo and
EF revealed that sediments of Bamboo River mouth were severely metal contamination.
Results showed that upstream industrial and municipal wastewater discharges along the
river bank may be the major sources of pollution. For the potential ecological risk assess-
ment, the river mouth of Anping Harbor showed considerable ecological risk, while the
other areas posed low and moderate ecological risk. This study can provide valuable infor-
mation for developing future strategies for the management of river mouth and harbor.

Keywords: Ecological risk; Enrichment factor; Geo-accumulation index; Heavy metals;
Sediment

1. Introduction

Aquatic sediments can absorb chemicals to levels
many times higher than the water column concentra-
tion, so it is considered a sink and reservoir of

contaminants, such as metals [1]. Metals can be
classified into two parts, essential and nonessential
elements for organisms. Excessively essential metals
and nonessential metals are toxic to aquatic organisms
and further they could threaten the aquatic ecology
system [2]. Therefore, many studies effort has been
directed toward the distribution of metals in aquatic
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environment. Anthropogenic activities, such as
mining, smelting, domestic and industrial wastewa-
ters, tanning, steam electrical production, and sewage
sludge are the major sources of metal pollution [2,3].
Metals have a characteristic low solubility; they are
easily adsorbed on waterborne suspended particles
[4,5]. After a series of natural processes, the water-
borne metals would deposit in the sediment finally.
Hence, the quantity of metals contained in the sedi-
ment reflects the degree of pollution for the water
body [6].

Anping Harbor is the most important auxiliary
port of Kaohsiung Harbor, Taiwan. It is located on
Taiwan’s southwestern shore nearby 40 km north of
Kaohsiung Harbor. It receives effluents from two con-
taminated rivers, including Tainan Canal and Bamboo
River (Fig. 1). These rivers flow through the down-
town area of Tainan City and discharge into Anping
Harbor. The lack of sanitary sewer system (sanitation
coverage of 35.0%) [7] results in the discharge of
untreated raw wastewater directly into adjacent water
bodies, which leads to serious deterioration of water
quality. The major source of pollution includes
domestic wastewater discharges, industrial wastewater
discharges (e.g. metal processing, electronic, and foun-
dry), municipal surface run-off, and transportation
pollution. All pollutants will eventually be transported
to the river mouth and/or harbor and become depos-
ited and accumulated in the bottom sediments [8]. The
objective of this study is to investigate the heavy metal
contents (Hg, Cd, Cr, Cu, Pb, and Zn) in the surface
sediment of Anping Harbor so that the degree of met-
als accumulation and potential ecological risk can be
evaluated.

2. Materials and methods

2.1. Sample collection and laboratory analysis

Surface sediment samples were collected from 10
sampling sites at Anping Harbor (Fig. 1). In this study,
on-site sampling of all 40 surface sediments was done
on a fishing boat in February, May, August, and Octo-
ber, 2011 at 10 sites selected in Anping Harbor
(Fig. 1). The precise location of each sampling site was
pinpointed using global positioning system (GPS).
Ekman Dredge grab sampler (Jae Sung International
Co., Taiwan) was used to collect the surface sedi-
ments, the surface sediment (0–15 cm) samples were
placed in double-layer zipped sample bags and tem-
porarily stored in a cooler filled with crushed ice
before being transported to laboratory for analyses.

In the laboratory, a small portion of the sample
was subject to analysis of water content (dried to con-
stant weight at 105˚C), and the remaining portion sed-
iments were air-dried in a dark and cool place to be
analyzed later. Prior to being analyzed, each sample
was lightly crushed with a wooden board, and then
screened through 1-mm nylon net to remove particles
with diameters larger than 1 mm. One portion of the
screened portion was subject to particle size analyses
using a Coulter LS Particle Size Analyzer [9,10]; the
particles were classified into three groups, i.e. clay
(<2 μm), silt (2–63 μm), and sand (>63 μm) [11].
Another portion was washed with ultra-pure water to
remove sea salts; the salt-free particles were dried nat-
urally in a dark place, grounded into fine powder
with mortar and pestle made of agate, and then ana-
lyzed for organic matter (OM), total grease (TG), alu-
minum (Al), mercury (Hg), lead (Pb), cadmium (Cd),
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chromium (Cr), copper (Cu), and zinc (Zn). OM was
analyzed using the loss-on-ignition (LOI) method at
550˚C; TG was determined according to procedures
5520E published in Standard Method [12]. The analy-
sis of Al and the six metals contained in the sediments
is described below.

About 0.50 g dry weight of the sediment sample
was mixed with a mixture of ultra-pure acids (HNO3:
HCl:HF = 5:2:5, V/V/V), and then was heated to
digestion. The digested sample was filtered through
0.45-μm filter paper; the filtrate was diluted with
ultra-pure water to a pre-selected final volume. The Al
and metals content were determined using a flame
atomic absorption spectrophotometry (Hitachi Z-6100,
Japan). The MHS-10 technique was used for Hg analy-
sis (USEPA Method 7471A) [13]. Each batch of analy-
ses was accompanied with a certified reference
material PACS-2 (marine sediment) from the National
Research Council of Canada. Differences between cer-
tified and measured results were less than 10% for all
metals reported in this study. For every 10 samples
analyzed, the examination of standard solutions was
carried out to assure the stability of the instrument
used. The detection limits (mg/kg dry weight) for
these metals were: 5, 0.01, 0.01, 0.1, 0.5, 0.1, and 0.8 for
Al, Hg, Cd, Cr, Cu, Pb, and Zn, respectively.

2.2. Data analysis

Data analyses (e.g. mean, standard deviation, max-
imum and minimum concentrations), using statistical
methods, were performed in this study. The correla-
tion between sediment characteristics (i.e. particle size,
water content, OM, and TG) and metals contents, Per-
son correlation analysis was done with SPSS software
(SPSS, version 12.0). The geo-accumulation index
(Igeo), enrichment factor (EF), and modified pollution
index (MPI) were applied to estimate the degree of
metals contamination. The Igeo values for the metals
studied were calculated using the Müller’s expression
[14]:

Igeo ¼ log2
Cm

1:5Bm

� �
(1)

where Bm is the background content of metals in the
earth’s crust [8,15–18]. The mean contents of Hg, Pb,
Cr, Cd, Cu, Zn, and Al in the earth crust are 0.08,
12.5, 100, 0.2, 55, 70 mg/kg and 8.23%, respectively,
which were adopted from the data published by Tay-
lor [19]. Factor value of 1.5 is the background matrix
correction factor for adjusting the lithogenic effects.

The EF is carried out by normalizing the metal
concentration based on geological characteristics of the
sediment. It is defined as follows,

EF ¼ Cm=CAlð Þsediment

Cm=CAlð Þcrust
(2)

where Cm and CAl are the metals and Al content in
sediments or in earth crust, respectively. Aluminum is
a major metallic element found in the earth’s crust; its
concentration is somewhat high in sediments and is
not affected by man-made factors. Thus, Al has been
widely used for normalizing the metal concentration
in sediments [8,15–18].

The MPI is calculated using the formula developed
by Brady et al. [20]:

MPI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EFaverage
� �2 þ EFmaxð Þ2

2

s
(3)

where EFaverage and EFmax are average and max value,
respectively, in all the EF of metals studied. The MPI
is a combination of the Nemerow Pollution Index [21],
and EF. The MPI can provide a qualitative assessment
of site pollution with multiple metals.

The mean effect range median quotient (m-ERM-q)
and potential ecological risk index (RI) were employed
to assess the biological effects and potential ecological
risk in sediments. The RI can be calculated from the
equation [22]:

RI ¼
X

Erm (4)

Erm ¼ CF � Tm (5)

where Erm is the potential ecological risk factor for
metal, CF is the contamination factor, CF = Cm/Bm,
Cm is the measure concentration of metals in sedi-
ment, Bm is the background concentration of metals,
and Tm is the biological toxicity factor, i.e. 40, 30, 2, 5,
5, and 1 for Hg, Cd, Cr, Cu, Pb, and Zn, respectively.
In this study, the mean metal concentration in the
earth crust was taken as the background concentration
[23,24].

The m-ERM-q is calculated using the formula sug-
gested by Long et al. [25],

m-ERM-q ¼
P Cm

ERMm

� �
n

(6)
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where Cm is the sediment concentration of metals,
ERMm is the corresponding ERM value, i.e. 0.71, 9.6,
370, 270, 218, and 410 for Hg, Cd, Cr, Cu, Pb, and Zn
[26] and n is the number of metals.

3. Results and discussion

3.1. General sediment characteristics

Sediment characteristics at each sites are summa-
rized in Table 1, the mean water content ranged from
40.8 to 115.9%, while the OM and TG contents varied
from 2.2 to 4.2% and 570 to 3,942 mg/kg, respectively.
The water content, OM, and TG in the sediments from
the study area have a similar spatial evolution charac-
terized by the highest levels at Sites 4 and 8, which
are located at the vicinity of Tainan Canal and Bam-
boo River mouths. OM and TG were relatively high in
the vicinity of the river mouths compared with those
at the harbor entrance areas (Sites 9 and 10). The
results show that the anthropogenic contribution from
the harbor tributaries is the major source of OM and
TG [8,27]. The results of sediment particle diameter
analyses showed that the major particles of surface
sediments are silt with diameter between 2 and 63 μm.
The ranges of percentage compositions are 30.8–82.6,
4.1–18.0, and 0.0–65.0% for silt (2–63 μm), clay
(<2 μm), and sand (>63 μm), respectively. Chen et al.
[28] and Dong et al. [27] found that fine particles
(<63 μm) can easily adsorb and accumulate pollutants
and it is the major part among the particles found in
the harbor sediments. Additionally, the surface sedi-
ment samples collected at 10 monitoring stations stud-
ied contain 3.76–5.18% of Al with a mean of 4.29
± 0.54%. Aluminum is used as a normalized element
although it has some limitations, including the increas-
ing Al mobility by human activities, or the low Al
content in the natural sediment (e.g. sands) [20]. How-
ever, Al is one of the refractory elements which is
extremely immobile in the marine environment [29],
and the high content of Al is observed in the present
study area. Therefore, those limitations of mobile Al
and sediment characteristics could be ignored.

3.2. Distribution of heavy metals in sediments

Metal concentrations in the surface sediments from
10 sampling sites are presented in Fig. 2. Mean con-
centrations with standard deviations in the surface
sediments from 10 sites were 0.28 ± 0.17 mg/kg for
Hg, 0.40 ± 0.27 for Cd, 202 ± 260 for Cr, 99 ± 102 for
Cu, 36 ± 16 for Pb, and 257 ± 194 for Zn. The mean
Hg, Cd, Cu, Pb, and Zn contents were highest in Sites
8 (0.64 ± 0.19, 0.79 ± 0.29, 359 ± 103, 67 ± 18, and 641

± 285 mg/kg) and 4 (0.42 ± 0.15, 0.75 ± 0.38, 143 ± 11,
53 ± 13, and 414 ± 168 mg/kg), while the highest mean
concentration of Cr was found in Site 8 (774
± 369 mg/kg). Extremely high Cr concentration was
observed in Site 8 and was 2–30 folds than other sam-
pling sites. This phenomenon might be contributed by
the upstream of Bamboo River mouth, which is
through the Anping Industrial Park and has more
than 522 registered industrial factories that discharge
their treated and untreated wastewaters into the Bam-
boo River, and is discharged into southern Anping
Harbor (Fig. 1).

Concentration distributions of these metals in the
Anping Harbor sediment are shown in Fig. 2. Results
revealed that the sediment metal content is relatively
higher near the river mouths, especially in Tainan
Canal and Bamboo River mouth (Sites 4 and 8), and
gradually decreases in the direction toward the harbor
entrance. These observations clearly indicate that the
upstream pollutants brought over by rivers are the
major sources of harbor metals pollution. Because
these rivers are subject to upstream discharges of
untreated domestic and industrial wastewaters, the
pollutants are transported by river flow and finally
accumulate near the river mouth. Table 2 presents the
metals concentrations in sediments at different loca-
tions around the Asian area. Compared with those
reported in different regions of the Asian area, the
sediments collected from Anping Harbor have higher
metals level than those reported in most other regions,
especially Cr, Cu, and Zn.

The coefficient of the Pearson correlation between
the sediment characteristics and six metals contents
are shown in Table 3. The contents of most metals
are obviously correlated with the OM and TG
contents (Table 3), but not to particle size (p > 0.05),
indicating that particle size may not be a major factor
to be concerned for controlling the metals distribu-
tion. Although most studies presented significant neg-
ative correlation between sediment particle sizes and
metals concentrations [15,16,29,45,46], the results of
this study indicate the opposite that the OM and TG
contents are more important than particle size in con-
trolling the distribution of metals in the sediments.
The results suggest that the sorption mechanism of
metals in the study areas sediments is mainly influ-
enced by chemical adsorption rather than physical
adsorption or deposition of metals with organic com-
pounds on surface sediments. The metals distribution
in sediments is noted to exhibit significant positive
correlation with TG contents (Table 3), which were
usually derived from the upstream rivers either
through industrial effluents or municipal sewage
discharges [47].
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3.3. Contamination of heavy metals in sediments

The Igeo index can be used as a reference to esti-
mate the extent of metal accumulation. Based on the
Igeo data and Müller’s geo-accumulation indexes [14],
the accumulation levels with respect to the metals at
each site are ranked in Table 4. The results showed

that in the vicinity of Tainan Canal and Bamboo River
mouths, the sediment is in the moderated to strong
polluted class for most metals as compared with the
other harbor areas, which usually had none to med-
ium class of metal pollutant. Among the six metals
studied, Igeo classes of Hg were ranked as the
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Fig. 2. Spatial distribution of metal contents in the surface sediment of Anping Harbor.
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moderate to strong class (Class = 2–3) for sediments
from the output areas of rivers and as the none to
medium class (Class = 1) for sediments from the other
sites. This might indicate that the Anping Harbor has
moderately accumulated with Hg metal originating
from the upstream of rivers. Similar to mercury, Cd,
Cr, Cu, Pb, and Zn in the output areas of rivers com-
pared to other areas have higher pollution class.

The EF values of analyzed six metals were calcu-
lated to differentiate the man-made and natural
sources of metal contamination in the surface

sediments of Anping Harbor. When the EF of a metal
is greater than 1, the metal in the sediment originates
from man-made activities, and vice versa [9,15,47,48].
Furthermore, the EF value can be classified into 7 cate-
gories [49]: Class 0: no enrichment for EF < 1; Class 1:
minor for 1 ≤ EF < 3; Class 2: moderate for 3 ≤ EF < 5;
Class 3: moderately severe for 5 ≤ EF < 10; Class 4:
severe for 10 ≤ EF < 25; Class 5: very severe for
25 ≤ EF < 50; and Class 7: extremely severe for
EF ≥ 50. Table 5 presents the EF values and classes
for the metals obtained in this study with respect to

Table 2
Comparison of metal concentrations in sediments of Anping Harbor with other regions (mg/kg dw)

Location Hg Pb Cd Cr Cu Zn Refs.

Anping Harbor, Taiwan 0.10–0.92 15.1–89.1 0.04–1.39 14.4–1,311 11.0–439 62–911 Present study
Kaohsiung Coast, Taiwan – 2.5–23.8 0.05–0.42 12.5–95.0 1.3–23.8 45.0–128 [30]
Kaohsiung Harbor, Taiwan 0.15–1.12 16–109 0.15–1.11 23–523 10–562 70–1,602 [8]
Xiamen Bay, China – 44.9–59.8 0.11–1.01 36.7–134 18.5–97.2 65–223 [31]
Quanzhou Bay, China 0.17–0.74 34.3–101 0.28–0.89 51.1–122 24.8–120 106–242 [32]
Tianjin Bohai Bay, China 0.02–0.85 17.5–34.9 0.14–1.82 18–191 11.4–27.3 68.7–393 [33]
East China Sea, China – 10.0–44.8 – – 4.29–41.5 18.2–114 [34]
North Yellow Sea, China – 17–44 0.02–0.31 11–113 3–56 15–125 [35]
Eastern Coast of the Gulf

of Thailand
0.005–0.121 1.69–66.3 <0.006–0.19 – 14.4–103 7.48–131 [36]

Masan Bay, Korea – 13.0–82.2 0.1–7.5 30.5–99.8 13.5–90.7 80.0–379 [37]
Youngil Bay, Korea – 22.0–53.2 0.3–4.0 15.0–39.2 10.9–134 86.6–377 [38]
Korea Coast, Korea ND–0.63 1.9–107 ND–1.97 0.8–223 0.4–125 6–452 [39]
Ise-Tokai region, Japan – 6.26–82.7 0.06–1.48 43.0–168 13.5–81.6 66.7–210 [40]
Hokkaido, Japan 0.01–0.50 0.8–80 0.01–0.71 6–336 3–206 12–200 [41]
Manila Bay, Philippines – 7.3–19.0 – – 22.9–38.6 50–96 [42]
Port Klang, Malaysia – 31.3–105 0.16–2.10 22.0–83.2 8.6–57.0 17.0–193 [43]
Coastal of Dumai, Indonesia – 14.6–84.9 0.46–1.89 – 1.6–13.8 31.5–87.1 [44]

Table 3
Pearson correlation coefficients among sediment characteristics and metals concentrations (n = 40)

Item Clay + Silt Sand
Water
content

Organic
matter

Total
grease Hg Cd Cr Cu Pb Zn

Sand −1.00a

Water content 0.57a −0.57a

Organic
matter

0.30 −0.30 0.53a

Total grease 0.15 −0.15 0.47a 0.49a

Hg −0.17 0.17 0.11 0.16 0.65a

Cd −0.28 0.28 −0.05 0.29 0.35b 0.44a

Cr −0.16 0.16 0.15 0.04 0.61a 0.72a 0.22
Cu −0.23 0.23 0.21 0.34b 0.71a 0.76a 0.52a 0.86a

Pb −0.21 0.21 0.21 0.32b 0.55a 0.68a 0.65a 0.62a 0.79a

Zn −0.16 0.16 0.32b 0.34b 0.68a 0.67a 0.30 0.78a 0.89a 0.79a

Al 0.14 −0.14 0.25 0.15 0.43a 0.15 0.30 0.23 0.27 0.19 0.08

aCorrelation is significant at the 0.01 level (2-tailed).
bCorrelation is significant at the 0.05 level (2-tailed).
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the crustal average. The EF values of Hg and Zn were
highest with the means of 6.6 and 7.0, respectively.
This indicates that the sediment Hg and Zn has a high
enrichment phenomenon with respect to the earth
crust and that all Hg and Zn originates from man-
made sources. The mean EF values of Cd, Cr, Cu, and
Pb were 3.9, 3.9, 3.4, and 5.5, respectively, indicating
that they also originated from anthropogenic sources
in most samples. Spatially, high EF values (e.g. 14.6
for Hg, 7.1 for Cd, 14.0 for Cr, 11.8 for Cu, 9.5 for Pb,
and 16.6 for Zn) were noted in sediments at Site 8,

located in the vicinity of the Bamboo River mouth,
which receives much quantity of metallic pollutants
from industrial plants. The mean EF classes of the 6
metals ranged from 3 to 4, which represent minor to
moderate enrichment levels. Site 8 had the highest EF
classes among the 10 monitoring sites studied; its EF
classes were severe as 4–5.

Comparison of the results of pollution level
derived by Igeo and EF (Tables 4 and 5) reveals that
the pollution level is lower for the Igeo than EF. Using
a value of 1.5 as the background adjustment factor

Table 5
Enrichment of metals and classification of sediment in Anping Harbor

Site

Enrichment factors (EF)

EFaver. EFmax MPIHg Cd Cr Cu Pb Zn

1 3.4 3.8 1.2 2 4.5 5 3.3 7.3 5.6
2 4.4 3.7 1.9 2.1 5.5 5.6 3.9 8 6.3
3 8.1 3.6 1.6 2.4 5.5 6 4.5 11.3 8.6
4 9.9 6.9 2.5 4.9 7.9 11.5 7.3 18.2 13.9
5 5.8 1.7 2.9 2 4.6 5.6 3.8 8.6 6.6
6 3.4 2.8 3.1 2.6 4.2 5.6 3.6 9.7 7.3
7 6.8 3.4 9.1 3.9 5.6 7.6 6.1 10.8 8.8
8 14.7 7.1 14.3 12 9.4 16.9 12.4 22.9 18.4
9 4.9 2.4 0.7 1.1 3.8 3.6 2.8 5.9 4.6
10 5.1 2.9 0.5 0.8 3.7 3.5 2.8 6.6 5.0
All sites 6.7 3.8 3.8 3.4 5.5 7.1 5.1 22.9 16.6
Pollution

class
3 2 2 2 3 3 − − 5

Pollution
level

Moderately
severe

Moderate Moderate Moderate Moderately
severe

Moderately
severe

− − Severe

Table 4
Geo-accumulation index of metals and classification of sediment in Anping Harbor

Site

Geo-accumulation index (Igeo)

Hg Cd Cr Cu Pb Zn

1 0.3 0.5 −1.2 −0.5 0.7 0.8
2 0.6 0.3 −0.7 −0.5 0.8 0.8
3 1.4 0.2 −1.0 −0.4 0.8 0.9
4 1.8 1.3 −0.2 0.8 1.5 2.0
5 1.0 −0.8 0.0 −0.5 0.7 1.0
6 0.5 0.2 0.4 0.1 0.8 1.1
7 1.2 0.3 1.7 0.4 1.0 1.4
8 2.4 1.4 2.4 2.1 1.8 2.6
9 0.7 −0.3 −2.1 −1.5 0.4 0.2
10 0.6 −0.2 −2.6 −2.1 0.2 0.1
All sites 1.2 0.4 0.4 0.3 1.0 1.3
Pollution class 2 1 1 1 2 2
Pollution level Moderate None to medium None to medium None to medium Moderate Moderate
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could be the possible reason for underestimating the
pollution level, because it did not consider the compli-
cated interaction and sedimentation occurred in the
river mouth and marine environment [20].

The MPI is a comprehensive index that can be
employed to conduct an overall assessment and com-
parison of the heavy metal contamination of different
areas. The derivation of MPI is calculated from EFs,
moreover the classification of MPI is also based on the
EF thresholds as a basis to conduct the pollution level
assessment [20,50]. The 6 MPI classes were: Class 0:
unpolluted for MPI < 1; Class 1: slight for 1 ≤ MPI < 2;
Class 2: moderate for 2 ≤ MPI < 3; Class 3: moderate to
heavy for 3 ≤ MPI < 5; Class 4: heavy for 5 ≤ MPI < 10;
Class 5: severe for MPI ≥ 10 [20]. In this study, the pol-
lution level were presented that the river mouths (sev-
ere) > harbor (heavy) > entrance (moderate to heavy),
and all sediment samples collected from Anping
Harbor were belong to severe polluted level (Table 5).

3.4. Potential ecological risk of heavy metals in sediments

The potential ecological risk associated with the six
metals in the surface sediments of the study area was
assessed by Erm and RI index. The Erm and RI are
applied to evaluate the potential ecological risk associ-
ated with the accumulation of metals in surface sedi-
ments. Erm and RI that were proposed by Hakanson
[22] can be used to evaluate the potential risk of one
metal and combination of multiple metals, respec-
tively. The calculated Erm values can be categorized
into five classes of potential ecological risks: low risk
(Erm < 40), moderate risk (40 ≤ Erm < 80), higher risk
(80 ≤ Erm < 160), high risk (160 ≤ Erm < 320), and
serious risk (Erm ≥ 320). The calculated RI values
can be categorized into four classes of potential eco-
logical risks: low risk (RI < 150), moderate risk
(150 ≤ RI < 300), considerable risk (300 ≤ RI < 600),
and very high risk (RI ≥ 600) [22].

Table 6 and Fig. 3 list the Erm value, RI value, and
risk classification for the studied metals contained in
the surface sediment samples collected in this study.
The sequence of Erm was Hg > Cd > Pb > Cu >
Cr > Zn, and the Hg and Cd were classified as higher
and moderate risks, while the Pb, Cu, Cr, and Zn
were classified as low risk. The high Erm values (e.g.
321.5 for Hg, 118.1 for Cd, 15.5 for Cr, 32.7 for Cu,
26.8 for Pb, and 9.2 for Zn) were observed in sedi-
ments at Site 8, indicating high metal contamination of
the surface sediments in the Bamboo River mouth of
study area. These findings were consistent with the
results obtained from EF and Igeo. The mean RI values
of the surface sediments were from 144 to 524 with a

mean of 231 (Fig. 3). Sites 9 and 10 are classified as
low risk, Site 4 and 8 are classified as considerable
risk, and the other sites are classified as moderate risk,
respectively, with respect to combination of the study
metals pollution (Fig. 3).

Besides using sediment quality guidelines, the m-
ERM-q, which calculates the mean quotients for stud-
ied metals, can be used as approach to assess possible
biological effects for pollutants by comparing their
concentrations with the limit concentrations. Accord-
ing to Long et al. [25], the m-ERM-q, which is related
to toxicity, can be divided to four categories, less than
0.1, 0.11–0.5, 0.51–1.5, and greater than 1.5. The m-
ERM-q of less than 0.1 indicates a 12% probability of
toxicity; 0.11–0.5 represents 30% probability of toxicity;
0.51–1.5 indicates 46% probability of toxicity; and
greater than 1.5 has a 74% of toxicity. Furthermore,

Table 6
Potential ecological risk factor of the surface sediment for
each site for Anping Harbor

Site

Potential ecological risk factor (Erm)

Hg Cd Cr Cu Pb Zn

1 73.7 62.4 1.3 5.3 12.1 2.7
2 88.2 54.1 1.9 5.2 13.5 2.7
3 155.6 51.0 1.5 5.6 13.4 2.8
4 208.9 112.7 2.7 13.0 21.2 5.9
5 119.8 25.9 3.0 5.2 12.2 2.9
6 87.3 53.4 3.9 8.3 13.1 3.3
7 139.8 54.8 9.5 10.0 15.0 3.9
8 321.5 118.1 15.5 32.7 26.8 9.2
9 96.8 36.5 0.7 2.6 9.7 1.7
10 93.4 38.4 0.5 1.8 8.7 1.6
Mean 138.5 60.7 4.0 9.0 14.6 3.7

Fig. 3. Distribution of potential ecological risk indices for
six metals in the surface sediment of Anping Harbor.
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the percentage of samples in these four categories can
also be used to classify the site as low, medium-low,
medium-high, and high-priority sites, respectively.
The distribution of all samples (n = 40) shows that
85.0% of samples belonged to medium-low priority
sites and 12.5% of samples were of medium-high pri-
ority sites. Only 2.5% of the samples were of high-pri-
ority sites and 0% of samples were of low-priority
sites (Table 7). According to this classification, most
samples (97.5%) have medium-low and medium-high
(30–46%) probability of toxicity. Except Site 8 (Bamboo
River mouth), that is classified as high-priority site, all
sites can be classified as medium-low and medium-
high priority sites. The above evaluation results indi-
cated that the metals contained in surface sediment at
mouth of river has high potential ecological risks.
Therefore, effective management and control of
upstream pollution should be immediately imple-
mented to improve the river mouth sediment quality
and lower the associated ecological risk.

4. Conclusions

It is concluded from the present study that the
vicinity of the Tainan Canal and Bamboo River
mouths in Anping Harbor has been significantly
enriched and accumulated metals and had the higher
ecological risks. The distribution of the metals in sur-
face sediments reveals that the metals originates from
the river upstream discharges of industrial and
domestic wastewaters; it is transported along the river
and finally deposited and accumulated near the river
mouth. Results from the EF and Igeo analyses imply
that the Hg, Pb, and Zn of sediments have relatively
high enrichment and accumulation. However, results
of potential ecological risk evaluation showed that the
Hg and Cd contained in surface sediment of Anping
Harbor have relatively high potential ecological risks.
The results can provide regulatory valuable informa-
tion for references with the aim of extending future
strategies to renovate and manage river mouth and
harbor.
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