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ABSTRACT

A series of self-nitrogen-doped and Zn-doped TiO2/C@SiO2 (ZTRH) nanoporous
composites with high surface area and excellent biological hierarchical porous structure
have been synthesized by sol–gel method at different temperatures. The porous SiO2 and
activated carbon from the decomposition of rice husk (RH) were regarded as the template
and porous catalytic carrier. The structure, crystallinity, morphology, and other physical–
chemical properties of the samples were characterized by X-ray diffraction, transmission
electron microscopy, X-ray photoelectron spectroscopy, Fourier transforminfrared spec-
troscopy, N2 adsorption–desorption isotherms, and UV–vis diffuse reflectance spectroscopy.
The feasibility of ZTRH nanoporous composites for decomposing pollutants was evaluated
by rhodamine B under visible light irradiation. Compared with the traditional photocat-
alytic materials, ZTRH nanoporous materials not only performed high efficiency in pollu-
tants degradation, but also exhibited good adsorption properties. Moreover, since RH ash
acts as the catalyst support, the composites are easily recycled after catalysis reaction. The
ZTRH nanoporous composites could be applied to the wastewater with different pH values
and be regarded as a kind of promising recyclable photocatalyst in photodegradation of
pollutants in water.
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1. Introduction

Aromatic pollutants widely present in the effluents
containing dyestuffs, pesticides, petrochemicals, and
other industries products [1–3] which could be easily
loaded to environment and cause health problems to
human beings. Photoinduced redox chemical reaction

occurring on irradiated semiconductor surface is a
kind of promising remediation methodology to sur-
mount this pollution problem, especially for aromatic
pollutants [4–7]. Because of its relative high efficiency,
non-toxicity, low cost, chemical inertness, and photo-
stability, nanostructured TiO2 has received a consider-
able attention in aromatic pollutants degradation [5,6].
Despite that great progresses in improving the
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photocatalytic performance of nanostructured TiO2

has been achieved in the past decades, there are still
some challenges to be addressed, for example, narrow
excitation wavelength, fast recombination rate of
photogenerated electron–hole pairs, small specific sur-
face area, and difficult recycled after the wastewater
treatment [8–11].

To solve those aforementioned problems, nanos-
tructured TiO2 in anatase phase hybrid with hierarchi-
cal nanoporous materials with high specific surface
areas are desirable since such a hierarchical nanopor-
ous structure offers an alternative strategy to minimize
diffusion barriers and potentially provides more active
sites for catalyst reactions [12,13]. Meanwhile, immobi-
lizing nanostructured materials on substrate could
make the catalysts easily separated and recycled after
wastewater treatment [14–16]. However, presynthetic
of hierarchical porous substrate to produce the titania
replica requires additional processes that might be
costly and of environmental concern. The rice husk
(RH), consisting of organic components (e.g. cellulose,
hemicellulose, and lignin) (61–77 wt.%), ash (mainly
amorphous SiO2) (13–29 wt.%) and water, can provide
nanoporous SiO2 and activated carbon as excellent
catalytic substrates with large specific surface area
[17–19]. For instance, biogenic hierarchical TiO2/SiO2

derived from RH with enhanced photocatalytic
properties for dye degradation has been studied
[20–27]. Titania and ceria incorporated RHs silica has
been synthesized for heterogeneous catalyst with high
adsorption capability to photodegrade MB under UV
irradiation [23,24] or using RH as catalyst support for
TiO2 to remove rhodamine B from wastewater [25].
MCM-41 and ZSM-5 zeolites also have been synthe-
sized from RH ash for catalytic reaction [26,27].

So far, since RHs was considered as catalyst carri-
ers because nanostructured SiO2 could be formed
inside, it contains substantial concentration of organic
substances which can be as a precursor for active car-
bon-based materials and provide a natural template to
obtain nanostructures that requires attentions as well.
As we know, Zn2+ is a good activating agent to
produce activated carbon [19,28] to obtain RH-based
porous materials with extra specific surface area
500–1,200 m2/g which is much higher than 500 m2/g
that achieved by physical method (CO2 gas) [29].
Moreover, the doped Zn2+ into TiO2 could signifi-
cantly alleviate the decay of the light-to-electric energy
conversion efficiency at low illumination intensity and
extend the excitation wavelength. Indeed, since the
band gap of pure TiO2 (anatase) is 3.2 eV, only UV
light with a wavelength shorter than 380 nm could be
responsive for photocatalysis and it is a crucial limita-
tion for the utilization under visible light [30–33]. The

dopant Zn2+ could improve the photocatalytic ability
of TiO2 under visible light [34]. Besides, as RH
contains abundant non-metallic elements such as N, it
indicates that nitrogen in RH could be self-doped into
mixed-oxide system during synthesis. Meanwhile, the
biological nanoporous structure is hierarchical which
plays a fundamental role in photosynthesis and
underpins the survival of virtually all higher life
forms [20–22].

Herein, we demonstrate a facile method to prepare
uniform Zn-doped TiO2/C@SiO2 (ZTRH) nanoporous
composites by sol–gel method with RH as a template
(Fig. 1). The porous SiO2 and activated carbon from
RH function as the template and porous catalytic car-
rier. The activated carbons not only have high adsorp-
tion capacity, but also assist to form in situ amorphous
carbon layer for fast transfer of hot charge carriers
[35,36]. Furthermore, the self-doped N element into
mixed-oxide system and Zn–TiO2 located on the sur-
face of porous SiO2 and carbon display excellent cat-
alytic degradation ability of rhodamine B (RhB) under
visible light. Compared with the conventional photo-
catalytic materials, ZTRH nanoporous materials not
only exhibit high efficiency in photocatalysis, but also
own good properties in pollutant adsorption. More-
over, RHs as the catalyst supporters result in the
nanocomposites easy-recycled after catalytic reactions.

2. Experimental

2.1. Materials

All chemicals were analytical grade and used with-
out further purification. Hydrochloric acid (HCl), tita-
nium tetrabutoxide, nitric acid, EtOH, ZnCl2 were
purchased from the Sinopharm Group Co. LTD. Dis-
tilled water was applied for all the synthesis and treat-
ment processes. The RH was from Jingmen of Hubei
Province in China.

2.2. The synthesis of ZTRH nanoporous materials

ZTRH nanoporous composites were synthesized in
a step wise method via sol–gel reaction. Forty grams
of clean RHs were stirred in 600 ml HCl (1 wt.%) at
100˚C for 1 h. Acid-treated RHs were washed with
distilled water to pH 7.0 and dried in an oven at
100˚C for 24 h to obtain the product (Acid treated RH,
HRH). About 10 g HRH was added to 50 ml 10 wt.%
ZnCl2, then stirred for 1 h at room temperature, and
dried in an oven at 100˚C for 24 h to obtain Zn-RH
(ZRH). The titania sols were prepared according to
literature [37]. Ten gram-pretreated ZRH was added
into 50 ml titania sols and impregnated for 24 h, after
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which the mixtures were dried in an oven at 100˚C for
24 h to obtain the precursor of ZTRH nanoporous
composites. For facilitating the performance of the
sample, the RH without ZnCl2 treating was also
added into titania sols and impregnated for 24 h to
obtain the precursor of TiO2/C@SiO2 nanoporous
composite (TRH). The precursor of ZTRH and TRH
was heat treated at different temperatures (450, 550,
and 650 C) for 3 h with a heating speed of 3 C/min in
a flow of nitrogen (1.0 L/min) in a tubular electric fur-
nace to obtain the products. The synthesized ZTRH
and TRH were coded as ZTRH450, ZTRH550,
ZTRH650, TRH450, TRH550, and TRH650, respec-
tively, according to the various heated temperature.

2.3. Characterizations

In order to determine the crystalline phases of the
heat-treated powder samples, X-ray diffraction (XRD)
measurements (XRD, X’Pert Pro, Philips, Netherlands)
were carried out using a conventional Bragg–Brentano
diffractometer with Ni-filtered Cu Kα radiation. The
morphology of the samples was examined by a field
emission scanning electron microscope (FESEM,
Quanta 400, FEI Company, USA) equipped with an
energy dispersive X-ray spectroscope (EDS, Noran
623M-3SUT, Thermo Electron Corporation, Japan) and
transmission electron microscopy (Transmission
electron micros-copy (TEM), JEM-2100UHRJEOL,
Japan). The Brunauer–Emmett–Teller (BET) surface
areas and porosities of the samples were studied with
a nitrogen adsorption instrument (Micrometrics ASAP
2020). Fourier transform infrared (FTIR) spectra were
taken with a spectrum one FTIR spectrophotometer
(Perkin-Elmer, America) at room temperature. The
absorption spectra were carried on by Lambda 35

spectrophotometer (Perkin-Elmer, America). Photocat-
alytic oxidation of the organic compounds occurred
under the illumination of a 500 W xenon lamp
equipped with a 420 nm cut-off filter. UV–vis absorp-
tion spectroscopy of all of the samples was recorded
using a Varian Cary UV–vis–NIR spectrophotometer
in the spectral range 200–800 nm. 0.25 g of each sam-
ple was pressed between two pieces of quartz glass
within the 363 cm area to cover the aperture through
which the excitation light passed. A BaSiO4 plate was
used as the basic line for the spectra. The element
composition and chemical oxidation state were investi-
gated by X-ray photoelectron spectra (XPS) on a VG
Multi lab 2000 spectrometer (Thermo Electron
Corporation) with Al Kα radiation as the exciting
source (300 W). Binding energies were calibrated ver-
sus the carbon signal at 284.64 eV.

2.4. Photocatalytic reactions

The photocatalytic activity of ZTRHs was demon-
strated by a photocatalytic degradation of RhB with
concentration at 40 μM in water. In a 25 mL of RhB
aqueous solution, 0.025 g catalyst was suspended and
the solution was stirred in a dark room for 1 h to
reach the absorption equilibrium. The solution was
irradiated by a 500 W xenon lamp with a 420 nm cut-
off filter in an open thermostatic photo reactor. At a
given time interval of irradiation, the concentration of
RhB in the solution was analyzed using a Lambda 35
spectrophotometer. The degradation rate of the RhB
was evaluated by the equation:

Dð Þ ¼ A0 � A½ �
A0

� 100% ¼ C0 � C½ �
C0

� 100% (1)

Fig. 1. The proposed formation mechanism of ZTRH nanoporous composites.
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where A and A0 are the absorbance of RhB solution
after and before degradation, C and C0 are the concen-
tration of RhB after and before degradation.

3. Results and discussion

3.1. Characterizations of samples

3.1.1. Morphology

Fig. 2 showed the SEM images of RH (Fig. 1(a)
and (c)) and ZTRH550 (Fig. 2(b) and (d)). The outer
surface of lemma was high ridge with a linear profile
(Fig. 2(a)). Underlying the outer epidermis were
two layers of thick-walled fibers (Fig. 2(c)). The two
layers made up sandwich structure-like honeycomb
with homogeneous superfine porosities, resulted in

excellent absorb properties of RH. In Fig. 2(b) and (d),
ZTRH550 was coated by the TiO2 nanoparticles. These
biomorphic high ridges can turn into active sites for
catalytic degradation. Moreover, the internal tissue of
ZTRH550 displayed hierarchical biological porous
structure. The pore with the diameter of 10–15 μm
along the entire length of ZTRH550 can provide high
adsorption capacity and specific surface area. The
SEM images and the corresponding EDS spectrum
(Fig. 2(a) and (c)) confirmed the presence of C, Si, and
O elements in the heat-treated RH, while the TiO2

particles formed a thin film coating on the RH surface
of ZTRH550 can be confirmed by the SEM-EDX tech-
nique (Fig. 2(b) and (d)).

The TEM images of ZTRH550 are displayed in
Fig. 3. Fig. 3(a) exhibits the agglomeration of TiO2

Fig. 2. SEM images of RH (a,c) and ZTRH550 (b,d). The EDS spectrum of RH and ZTHR 550 were inset in corresponding
spectrum.
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supported on porous RH SiO2. It shows a worm-hole-
type porosity of uniform nanopores. In this view, most
of TiO2 particles were well distributed across the
nanoporous ZTRH550 (Fig. 3(a) and (b)), which
confirmed the regularity of the internal structure of
catalysts and registered a good aspect of prepared
catalysts for photocatalytic degradation of RhB. EDX
spectra in Fig. 3(c) demonstrates that it contains O, Si,
Ti, Cl, and Zn elements at point 1 within the ZTRH550
particles as shown in Fig. 3(a).

3.1.2. Surface area and pore size distribution

The nitrogen adsorption–desorption isotherms of
ZTRH550 are shown in Fig. 4. The form of N2 adsorp-
tion–desorption isotherm curves indicated that
ZTRH550 was mesoporous materials. In Fig. 4, the
pore sizes on the nanoscale for the ZTRH550 were dis-
tributed between 1 and 40 nm, centered around 2 nm.
The specific area of the TRH calcined at 550 C
(TRH550) and ZTRHs calcined at 450, 550, and 650˚C
were 145.9, 219.2, 319.2, and 343.5 m2 g−1, respectively
(In Table 1). The specific area of the ZTRH samples
increased with the calcination temperature increased

from 450 to 650˚C. The specific area of ZTRHs cal-
cined at 450, 550, and 650˚C was larger than the
TRH550 demonstrated the addition of Zn could obvi-
ously increase the specific area of the ZTRH samples.

Fig. 3. TEM images (a) and HRTEM image (b) of ZTRH550, EDX spectrum of point 1 (c).

Fig. 4. The nitrogen adsorption–desorption isotherm and
pore size distribution of ZTRH550.
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3.1.3. FTIR spectral analysis

Fig. 5(a) described the FTIR spectra of RH,
TRH550, and ZTRH550. And, Fig. 5(b) shows the FTIR
spectra of ZTRH450, ZTRH550, and ZTRH650. The
broad band near 3557 and 1614 cm−1 appeared in all
the FTIR curves were, respectively, ascribed to the
stretching and bending modes of the surface hydroxyl
groups (including SiO2–OH, C–OH, and TiO2–OH). It
demonstrated that the presence of silicon and carbon
could increase the contents of both chemisorption and
physisorption hydroxyl groups on the surfaces of the
nanoporous composites [38]. The hydroxyl was impor-
tant in the TiO2 catalyst because it not only reduced
the recombination of electron-hole pairs but also had a
strong photo-oxidation capability that can improve the
photocatalystic activity of the TiO2 catalyst. The band
at 880–993 cm−1 can be observe in a-(B), a-(C), b-(a),
b-(b), b-(c), but not in a-(A) was attributed to asym-
metric Si–O–Ti stretching vibration of the structural

siloxane bond [39], which implied the incorporation of
titanium into the framework of silica.

3.1.4. UV/VIS spectra

Fig. 6 shows the UV–vis absorbance spectra of
TRH550, ZTRH450, TRH550, and TRH550, respec-
tively. ZTRH exhibited huge absorption spectra in
UV–vis range and presented black color. The absorp-
tion in the visible-light region implies that the pre-
pared samples can be activated by visible light to
form photogene-rated electrons and holes and partici-
pate in the desired photocatalytic reactions. As con-
firmed by XPS analysis (Fig. 7), additional amount of
N and Zn was doped into the TiO2. TRH550, however,
exhibited relatively lesser absorbance as compared to
ZTRH, due to the surface deposition of Zn–TiO2.

3.1.5. X-ray photoelectron spectroscopy

Fig. 7 shows the XPS survey spectra for the surface
of ZTRH550. The deposited film contained Ti, O, Zn,
C, and N elements in ZTRH550. The C1s peak is due
to the adsorbed carbon. The photoelectron peak for
Ti2p can be seen at a binding energy (Eb) of 465 eV,
so does O1s at Eb = 537, C1s at Eb = 284.8, and Zn2p
at Eb = 1022.2 eV. Si and C contained in the original
RH were passed on to ZTRH. The whole XPS survey
(Fig. 7(a)) demonstrated that Zn and N exist in the
oxides. XPS spectra of Zn 2p region are given in

Table 1
BET surface area of TRH and ZTRHs calcined at different
temperature

Samples BET surface area/m2 g−1

TRH550 145.9
ZTRH450 219.2
ZTRH550 319.2
ZTRH650 343.5

Fig. 5. FTIR spectra of catalysts (a-(a): RH550, a-(B): TRH550, a-(C): ZTRH550, a-(a): ZTRH450, a-(b): ZTRH450, a-(c):
ZTRH450).
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Fig. 7(b). Zn (2p3/2, 1/2) doublet was observed at
1022.2 and 1045.1 eV, indicating Zn in 2+ state bond-
ing with oxygen. The doped zinc has minor influence
on titania oxidation state of the ZTRH550 [29,34]. The
high-resolution scanning of N 1s displayed in Fig. 7(c)
shows three peaks, at 398.2, 400.5, and 401.7 eV,
indicating that the N dopants are at the interstitial
sites of the TiO2 lattice [40,41]. The N1S peak at
398 eV is attributed to N anion in O-Ti-N or O-Si-N
bonds [42] which is helpful for photocatalytic within
the visible range. The latter two peaks are at 400.5 and
401.7 eV, which is assigned to molecularly chemi-
sorbed nitrogen species and helpful for photocatalytic
within the visible range [36]. The C1s XPS spectra
have four peaks at 284.8, 286.6, 288.7, and 290.5 eV,
which are due to C-H bonds, C-O bonds, C=O bonds,
and C-N bonds (Fig. 7(d)). These tests demonstrate
that Zn and N are co-doped into ZTRH from ZnCl2
and RH.

3.1.6. Powder XRD analysis

XRD analysis was carried out to investigate the
changes of TiO2 phase structure after calcinations as
in Fig. 8. Abroad pattern was obtained for RH550,
which was typical shape of amorphous solids and
suggested the absence of any ordered crystalline
structure, indicated relative high disordered structure
of silica in this sample. The accompanied rutile
phase of TiO2 was detected in the sample ZTRH450,
ZTRH550, and ZTRH650 while anatase phase ofTiO2

was the main crystal phase in ZTRH450 and

ZTRH550. The intensity of peak of TiO2 anatase
phase significantly reduced with increased tempera-
tures but the intensity of rutile phase peak was
accordingly increased at the same time. The mean
size of a single crystallite can be estimated from
full-width at half-maxima of XRD peak by Scherrer’s
formula:

D ¼ k

k
bcosh (2)

The anatase phase crystalline sizes of TiO2 in
ZTRH450, ZTRH550, and ZTRH650 were 5.6, 10.2, and
10.0 nm, respectively. However, the average anatase
phase crystalline size of TiO2 in TRH550 was 3.0 nm.
This demonstrated the Zn doping promoted the phase
transformation of TiO2 from anatase phase to rutile
phase.

3.2. Photocatalytic activity

Since RhB is a kind of representative pollutant,
we use it to evaluate the photocatalytic performance
of the TRH and ZTRHs catalyst under visible-light
irradiation in this work. In Fig. 9(a), the concentra-
tion of RhB decreasing apparently when the irradia-
tion period of visible-light is longer indicated the
occurrence of photodegradation of RhB in the
system. Nearly 95% RhB was photodegraded in
100 min in the presence of ZTRH450, ZTRH550, and
ZTRH650 but no obvious indication about
photodegradation of RhB was appeared in the pres-
ence of TRH. It indicated that Zn doping played an
important role to promote charge transfer between
TiO2 and RhB during the photodegradation of RhB
under visible light [30]. Meanwhile, metal oxides
with more structure defects on surface could
ionosorb oxygen as O− species and cause hole-trap
reaction [14], by which the recombination rate of
e−/h+ pairs was reduced during the photocatalytic
degradation process.

The calculated reaction rate constants of sample
ZTRH450, ZTRH550, and ZTRH650 for RhB degrada-
tion were 0.0278, 0.0512, and 0.0413 min–1,
respectively (Fig. 9(b)). It is noted that the photocat-
alytic activity of ZTRH500 is higher than others,
which is in consistent with the results of XRD. With
the increases in calcination temperature from 450 to
550˚C, the content of anatase phase and the specific
surface area in the ZTRH samples increase. But
when temperature is up to 650˚C, anatase phase and
the specific surface area turn to decrease. The

Fig. 6. UV–vis absorbance spectra of TRH550 (a), ZTRH450
(b), TRH550 (c), and TRH550 (d).
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enhanced photocatalytic oxidation activity for ZTRHs
nanoporous composites under visible light is eluci-
dated in Fig. 10. The active carbon improves the
adsorption performance of ZTRHs powder with the
graphite structure on the edge to form acidic func-
tional groups for high photocatalytic activity [43].
Moreover, the active carbon enhances the conductiv-
ity of TiO2 to induce rapid transfer of hot carriers to
the surface and participate in the photoredox reac-
tions [36]. Furthermore, the doped Zn atoms in TiO2

can increase the photons number e in the photocat-
alytic reaction to promote the charge transfer
between TiO2 and RhB [30]. The injected electron
reacts with the absorbed O2 on the surface to yield
active oxygen radicals (e.g. O2−, �OH) which can
degrade or mineralize the dyes in system. Thirdly,
the self-doping of N, the advantage is much more
prominent under visible light.

Fig. 7. XPS patterns of ZTRH550. (a) The whole survey; (b) high-resolution spectra of Zn2P; (c) high-resolution spectra of
N1S; and (d) high-resolution spectra of C1S.

Fig. 8. The XRD patter of RH550, TRH550, and ZTRHs.
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In Fig. 11, the RhB was photodegraded by
ZTRH550 nanocomposites under visible light at
different pH values (2.5, 4.0, 6.3, and 10.5). As shown
in Fig. 10, the photocatalytic performance of ZTRH550
does not depend on heavily on the pH value.
Therefore, the strict chemical environment is not
necessary for its application in degradation of
wastewater.

4. Conclusion

This work employed RH as a biotemplate for the
generation of morph-structured TiO2 by sol–gel
method and exhibited the potential application in pho-
todegradation of pollutants in water. The specific area
of ZTRHs calcined at 450, 550, and 650˚C was larger
than the TRH550 demonstrated that the addition of
Zn could obviously increase the specific area of the
ZTRH samples. This method not only maintained the
RH structure but also simultaneously introduced self-
nitrogen-doped and Zn-doped in ZTRH sample. The
photocatalytic performance of RhB degradation under
visible light is better than those prepared with classic
routes because of the hierarchical structure feature,
the presence of active carbon, and the effective

Fig. 11. Effect of the pH values on photocatalytic degrada-
tion of RhB under visible light irradiation.

Fig. 9. (a) The kinetic curve of the photodegradation of RhB and (b) Comparison of first-order degradation rates of RhB.

Fig. 10. The schematic illustration of the mechanism of the
activation of visible light photocatalytic activity for the
ZTRH nanoporous composites.
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nitrogen and Zn doping during synthesis. Nearly 95%
RhB was photodegraded in 100 min in the presence of
ZTRH450, ZTRH550, and ZTRH650 but no obvious
indication about photodegradation of RhB was
appeared in the presence of TRH. Moreover, RH as
the catalyst support made the nanocomposites
easy-recycled and durability. Owing to above merits,
the ZTRH nanoporous materials are a kind of promis-
ing recyclable photocatalyst in photodegradation of
pollutants in water.
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