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ABSTRACT

The variation in downstream river water quality was investigated using three multivariate
statistical techniques: factor analysis (FA), cluster analysis (CA), and discriminant analysis
(DA). Four main factors (FA1, FA2, FA3, and FA4) were defined as changes of “organic
matter and nitrogen,” “suspended solid and climate conditions,” “phosphorous and electri-
cal conductivity,” and “discharge,” respectively. The states of each factor were clustered
into Low, Normal (Normal_low and Normal_high), and High groups using CA. These groups
used to summarize water quality data measured as a series of numbers of contaminants for
fast evaluation of water quality and enhanced monitoring capability. To set up a procedure
for enhanced monitoring of water quality, Fisher’s linear discriminant functions were
deduced to determine the groups in which newly obtained water quality data should be
included. To investigate the effectiveness of the proposed tool for enhanced monitoring of
river water quality, a case study was conducted of the data analysis procedures applied to
Nakdong River downstream and the monitoring results were examined.

Keywords: River water quality; Multivariate statistical techniques; Factor analysis; Cluster
analysis; Discriminant analysis

1. Introduction

River water quality monitoring is so essential for
ensuring healthy water usage that the automated
monitoring systems or equipments have been
distributed widely. For real-time checking of river
water quality, many water quality monitoring systems

have been continuously evaluated using various water
quality databases.

To evaluate the river water quality variation, the
pollution index (PI) method [1,2], fuzzy synthetic eval-
uation [3–5], and neural network method [6,7] have
been investigated. However, the PI method suffers the
disadvantage that the calculated water quality index
often tends to be overestimated because of unnecessary
correlations within objective measured parameters. In
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fuzzy synthetic evaluation, the weight value is
calculated by monitoring data. However, the presence
of abnormal monitoring data can prevent the deter-
mination of suitable weight values. The neural network
method can provide excellent estimation accuracy, but
the network structure can be complicated and analyz-
ing the reasons for the deduced results can be difficult.

Multivariate statistical analysis, which is an
effective tool to extract some useful information from a
historical database or to reduce the dimensions, has
been applied in various fields to investigate target
characteristics. Various researchers have already used
the methodology to assess the water quality of rivers
or lakes with high dimensional data [8–14]. The exist-
ing cases were focused on investigating the target
water system and showed successful data interpreta-
tion results. However, few studies have used multi-
variate statistical analysis to develop an algorithm
generating useful target information. Due to its advan-
tages in analyzing relationships between variables,
multivariate statistical analysis can be applied as an
enhanced monitoring tool that generates results in the
form of linguistic information such as “under high
nutrient loading,” rather than a series of water quality
data. Such results may be useful when water quality is
checked by inexperience personnel who are not experi-
enced with variations in such water quality data.

Therefore, in this study, the quantitative and qual-
itative variations of the river water quality were
assessed using multivariable statistical techniques. To
extract the water quality patterns in river downstream
and to develop a tool capable of generating linguistic
information for enhanced monitoring, factor analysis
(FA), cluster analysis (CA), and discriminant analysis
(DA) were used. FA was used to reveal the hidden
factors and variable groups having the same factor.
Then, each factor was clustered into groups indicating
high, normal, or low loading. DA was used to deduce
the Fisher’s linear discriminant functions giving the
final monitoring results of the current state. The water
quality in river downstream was classified according
to the changes of the organic matter, nitrogen, sus-
pended solid (SS), climate condition, phosphorous,
electrical conductivity (EC), and discharge. Based on
these classifications, a case study of the enhanced
monitoring of river water quality was conducted for
Nakdong River downstream.

2. Materials and methods

2.1. Study area

The study area was downstream in the Nakdong
River, which is located in the South Korea between

127˚–129˚E and 35˚–37˚N, as shown in Fig. 1. The
Nakdong River is 506.17 km long with a basin area of
23,384.21 km2 what comprises 24% of South Korea.
The basin consists of 780 streams and 7 dams.
Approximately 6.7 million people populate the basin,
which is comprised of agricultural (23.52%), industrial
(0.58%), commercial (0.24%), and forest (70.34%) areas.
The total annual precipitation of the basin is approxi-
mately 1,200 mm, 60% of which falls from June to
September. The monsoon climate and typhoons in the
Korean Peninsula substantially affect the precipitation
pattern. In addition, eight weirs were built in the
Nakdong River basin to maintain the river capacity
from December 2009 to January 2012. Therefore, the
variations in the river’s water quality were attributed
to the changes in its hydraulic features.

The Nakdong River was geographically divided
into three large streams [15]. Sixteen and twenty cities
are located on the upstream and midstream, respec-
tively. In particular, large-scale industrial estates are
sited on the midstream section and the effluents from
two wastewater treatment plants (WWTPs) are dis-
charged in midstream. Therefore, high pollutant con-
centrations in upstream and midstream often flowed
downstream and degraded the downstream. More-
over, the accumulated pollutants often caused the
eutrophication in an estuary dam located downstream.
The presence of these hazards necessitates continuous
monitoring of water quality variations.

Fig. 1. The Nakdong River basin and the monitoring point,
South Korea [27].
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Table 1 lists the statistical information of variables
in monitoring point from 2004 to 2010. The collected
data were monthly average values that were obtained
from the water environment information system,
South Korea. The selected items were Q (discharge),
pH, DO, BOD, COD, SS, T-N, NH4-N, NOx-N, T-P,
EC, E coli (coliform count), ST-N, ST-P, PO4-P, and
Chl-a (chlorophyll a), respectively. The RH (relative
humidity) and rainfall were the meteorological data
related to river discharge.

2.2. Algorithm for enhanced monitoring of the water
quality variation

Fig. 2 shows a flowchart for the enhanced monitor-
ing of the water quality variation in Nakdong River

downstream. The procedure for generating monitoring
results in the form of linguistic information was
processed sequentially using FA, CA, and DA.

FA: Before FA was used, the data treatment pro-
cess was applied for collected datasets. To verify the
adequacy of the FA results, the Kaiser–Meyer–Olkin
(KMO) measure of sampling adequacy and Bartlett’s
test were performed. FA is more significant as the
KMO value approaches 1 and is not significant if this
value is less than 0.5. FA is also suitable when the
significance probability is less than 0.05.

FA was used to extract the main factors repre-
sentative of the entire variables, FA was used to iden-
tify the underlying main factors that explain the
correlations among a dataset. Varimax rotation was
used to prevent multiple variables from being loaded

Table 1
Statistical information of variables from 2004 to 2010

Variables Units K Median Maximum Average Standards deviation Variance Skewness Krutosis

Q m3/s 289.30 436.68 182.60 743.96 720.32 518,861.11 2.32 4.39
pH pH unit 6.40 7.60 9.20 7.70 0.69 0.48 0.21 −0.67
DO mg/l 6.30 9.30 17.10 10.35 2.82 7.95 0.60 −0.90
BOD mg/l 1.40 2.30 5.20 2.64 0.99 0.99 0.81 −0.39
COD mg/l 3.80 5.90 9.90 6.09 1.24 1.55 0.78 0.48
SS mg/l 6.90 14.65 112.50 18.37 15.30 234.18 3.86 18.60
T-N mg/l 1.95 2.84 4.72 3.04 0.66 0.44 0.60 −0.52
NH4-N mg/l 0.01 0.10 0.53 0.13 0.12 0.01 1.77 3.10
NOX-N mg/l 0.95 1.74 3.07 1.86 0.48 0.23 0.59 −0.38
T-P mg/l 0.08 0.13 0.31 0.14 0.04 0.00 1.52 4.63
EC μmhos/cm 143.00 253.00 581.00 267.65 82.05 6,732.57 1.26 2.37
E coli MPNa100 ml 0.00 9.00 485.00 39.40 89.02 7,925.33 3.68 13.99
ST-N mg/l 1.41 2.46 3.83 2.60 0.51 0.26 0.44 −0.29
ST-P mg/l 0.02 0.07 0.26 0.07 0.04 0.00 1.88 5.83
PO4-P mg/l 0.00 0.05 0.19 0.05 0.03 0.00 1.50 6.18
Chl-a mg/m3 7.40 33.10 182.60 55.15 47.40 2,246.99 1.33 0.58
Rainfall mm 40.28 8.96 40.28 10.16 7.74 59.96 1.36 2.82
RH % 37.00 61.10 85.00 61.38 12.72 161.92 0.01 −1.08

Note: where Q, EC, ST-N, ST-P, and RH mean discharge, electrical conductivity, soluble T-N, soluble T-P, relative humidity, respectively.

Fig. 2. Flowchart of the proposed tool for enhanced monitoring of water quality.
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to a single factor, allowing for easy interpretation of
the factor. Moreover, because the unit of each variable
was different, the experimental data were standard-
ized [16,17]. The major variables were selected as
those with an impact degree value of 0.5 and over
[16]. Next, the selected variables were used as the
factors for the CA.

CA: To classify the unknown cluster for each
factor, the K-means CA was used considering
nonhierarchical cluster. It is a method for assigning
similar clusters by comparing the distance between
the center of each cluster and the measured values of
selected variables. In this study, the Euclidean
distance was calculated as follows:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðpi � qiÞ2
s

(1)

where i is the ith measured value, n is the number of
datasets, and p and q are the variables of p and q.

The process of K-means clustering was that a
number, K, of data values was set in the centers and
then the data values are allotted to the center whose
data values were close to the number of data values.
The values allotted in the center form a cluster. Once
a cluster was formed with similar data values, the
center of each other cluster was moved to another
location. This process was repeated until the center
remained unchanged using the objective function. This
objective function is used for squared error and
defined as follows [18]:

E ¼
Xk
i¼1

X
p2ci

p�mij j2 (2)

where E is the sum of the squared error for all
measured values, p is a point in space for variables,

and mi is the center of cluster Ci. It was confirmed by
the number of groups belonging in the cluster [19].

DA: DA was used to derive the discriminant func-
tion for identifying the groups that each factor
belonged to. FA determined the most accurate data
representation in a lower dimensional space [20].
However, the directions of maximum variance might
be useless for classification. To solve this problem,
Fisher’s linear DA was used to preserve the directions
that were useful for data classification [21]. The dis-
criminant function for each group by Fisher’s linear
DA is defined as follows [22]:

fðGiÞ ¼ ki þ
Xn
j¼i

wij pij (3)

where f (Gi) is the discriminant function for group i, ki
is a constant, n is the number of datasets, wj is the
weight value of the jth variable, and pj is the mea-
sured value of the jth variable. The values of wj and ki
are determined by linear function to maximize the
between groups and within group variance. The raw
data were used in DA because the coefficient sign of
the discriminant was the allotted the weight per vari-
able and could not be interpreted using another vari-
able. The group of the current pollution state was
determined using this derived discriminant function.
All statistical computations were made using SPSS
ver. 18.

2.3. Application of the developed monitoring tool for the
new dataset

Fig. 3 shows the application flowchart of the devel-
oped enhanced monitoring tool for the new dataset.
When the new dataset was obtained, the values calcu-
lated with the discriminant function were compared
and as a result, the function having the highest value

Fig. 3. Application flowchart of the enhanced monitoring tool developed using the new dataset.

M. Kim et al. / Desalination and Water Treatment 57 (2016) 12508–12517 12511



in each factor (i.e., FA1, FA2, FA3, and FA4) was
determined by the belonging group. Finally, the water
quality variation for the new dataset could be accessed
using the developed monitoring tool based on the
multivariable statistical techniques.

3. Results and discussion

3.1. FA results and definition of classified factors

The four main factors were extracted using FA in
terms of the 16 variables. In order to verify the good-
ness of the applied variables, the KMO measure and
Bartlett’s test were evaluated. All variables were found
to be suitable for FA because the KMO value was 0.81
with a significance probability of 0.00. Table 2 shows
the impact degree of each variable on each factor. The
selected variables having impact degree of over 0.5
are indicated in bold letters.

The characteristics in the Nakdong River down-
stream were classified into four factors, which
explained 76.7% of the total variance. FA1 was
selected as pH, DO, BOD, COD, T-N, NOX-N, and
Chl-a. From this result, the characteristic of FA1 was
defined as “Changes of organic matter and nitrogen.”
By the same definition, the FA2, FA3, and FA4 were
extracted by the characteristics of belonging variables
and defined as “Changes of SS and climate condi-
tions,” “Changes of phosphorous and EC,” and
“Change of discharge,” respectively. Table 3 shows
the definition of each factor and belonging variables.

3.2. Group classification for the each factor using CA

Based on the variables that were selected using
the FA, the pollution state of each factor was
grouped using CA. As shown in Table 4, the each
factor was divided into the groups of qualitative
pollution levels. The four belonging groups for FA1
were defined as Low, Normal_Low, Normal_High, and
High loading, respectively. The three belonging
groups for each of FA2 and FA3 were defined as
Low, Normal, and High loading. The groups for FA4
were defined as Low, Normal, and High flowrate due
to the single variable.

3.3. Discriminant functions of the belonging groups for
each FA

The Fisher’s linear DA was applied to the derived
discriminant function. When the newly obtained data-
set was used for generating linguistic information of
the water quality variation, each discriminant function
was firstly calculated. Then, the group having the
highest value among the calculated values was
selected as the defined pollution state for each FA.
FA1: Changes of organic matter and nitrogen

Group 1 (Low) = 58.14 × pH − 5.15 ×DO – 16.01 ×
BOD + 16.41 ×COD + 5.15 × T-
N + 19.43 ×NOx−N − 0.36 ×
Chl-a − 239.10

Table 2
Impact degrees of each variable derived by FA

Variables FA1 FA2 FA3 FA4

pH .765 −.383 −.028 −.248
DO .887 −.344 −.091 −.076
BOD .912 −.026 −.081 −.225
COD .834 .279 .186 .034
SS .004 .610 .134 .662
T-N .819 −.086 .287 −.118
NH4-N .076 .049 .443 −.546
NOx-N .824 −.195 .054 .027
T-P .147 .255 .876 .108
EC .170 −.495 .647 −.193
E coli −.067 .671 −.069 .122
PO4-P −.541 .139 .698 −.165
Chl-a .925 −.095 −.046 −.052
Q −.195 .037 −.019 .813
Rainfall −.226 .720 .211 −.142
RH −.603 .643 .190 .074
Eigenvalue 7.45 2.41 2.12 1.05
(%) Total variance 43.84 14.20 12.47 6.18
Cumulative (%) variance 43.84 58.04 70.51 76.69

Table 3
Definitions and belonging variables extracted using FA

FA1 FA2 FA3 FA4

Definition Changes of organic matter
and nitrogen

Changes of SS and
climate conditions

Changes of phosphorous and
electrical conductivity

Change of
discharge

Variables
included

pH, DO, BOD, COD, T-N,
NOx-N, Chl-a

SS, E coli, Rainfall, RH T-P, EC, PO4-P Q
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Group 2 (Normal_Low) = 57.93 × pH − 5.20 ×DO −
13.66 × BOD + 15.80 ×COD
+ 5.00 × T-N + 20.07 ×NOx

−N − 0.19 ×Chl-a − 246.35
Group 3 (Normal_High) = 59.63 × pH − 6.26 ×DO −

14.66 × BOD + 16.37 ×
COD + 9.92 × T-N +
16.16 ×NOx−N + 0.34 ×
Chl-a − 298.58

Group 4 (High) = 60.52 × pH − 7.68 ×DO − 16.20 ×
BOD + 16.72 ×COD + 11.29 × T-
N + 15.13 ×NOx−N + 0.87 ×Chl-
a − 356.91

FA2: Changes of SS and climate conditions
Group 1 (Low) = 0.22 × SS + 0.34 × Ecoli − 0.21

× Rainfall + 0.94 × RH − 27.34
Group 2 (Normal) = 0.12 × SS + 1.00 × Ecoli − 0.37

× Rainfall + 1.11 × RH − 42.80
Group 3 (High) = 0.39 × SS + 0.44 × Ecoli − 1.29

× Rainfall + 1.30 × RH − 54.59

FA3: Changes of phosphorous and electrical conductivity
Group 1 (Low) = 110.51 × T-P + 0.64 × EC + 91.14

× PO4−P − 65.10
Group 2 (Normal) = 87.42 × T-P + 0.87 × EC + 79.77

× PO4−P − 107.06
Group 3 (High) = 103.61 × T-P + 1.08 × EC + 79.27

× PO4−P − 162.80

FA4: Change of discharge
Group 1 (Low) = 0.45 × Q − 76.89
Group 2 (Normal) = 0.55 × Q − 117.25
Group 3 (High) = 0.70 × Q − 189.99

3.4. Enhanced monitoring of the water quality using the
accumulated dataset

Fig. 4 shows the group variation in each FA for the
cumulated dataset. There were 45, 19, 12, and 8 cases
of the four groups Low, Normal_Low, Normal_High
loading in FA1, respectively. For the three groups
Low, Normal, and High, there were 35, 33, and 16 cases
in FA2, 12, 33, and 39 cases in FA3, respectively.
Finally, the cases of group Low, Normal, High flowrate
in FA4 were 20, 32, and 32, respectively. This result
confirmed that the cases of each group in each FA
were properly divided for the cumulated dataset.

FA1 was appeared as a characteristic of the peri-
odic variation for every year, because the belonging
variables were affected sensitively by seasonal condi-
tion. Similarly, the low loading was observed by dilu-
tion effect according to heavy rain during summer. In
addition, the pollutants in the upstream and mid-
stream were flowed into the Nakdong River down-
stream. Consequently, the high loading in FA1 was
appeared during the dry season from November to
March. In the case of FA2, the RH ratio and SS con-

Table 4
Information of pollution state based on cluster center value in each factor

FA1: Changes of organic matter and nitrogen pH DO BOD COD T-N NOX-N Chl-a

Group 1 (Low loading) 7.30 8.48 1.96 5.49 2.71 1.59 23.46
Group 2 (Normal_Low loading) 7.74 10.71 2.79 5.82 2.96 1.91 49.88
Group 3 (Normal_High loading) 8.45 13.64 3.83 7.31 3.79 2.30 109.95
Group 4 (High loading) 8.81 15.08 4.34 8.26 3.96 2.57 163.74

FA2: Changes of SS and climate conditions SS E coli Rainfall RH

Group 1 (Low loading) 13.95 4.26 6.90 52.58
Group 2 (Normal loading) 12.65 21.50 5.69 56.22
Group 3 (High loading) 24.33 6.13 14.08 74.55

FA3: Changes of phosphorous and electrical conductivity T-P EC PO4-P

Group 1 (Low loading) 0.15 165.50 0.06
Group 2 (Normal loading) 0.12 226.91 0.04
Group 3 (High loading) 0.14 282.10 0.04

FA4: Change of discharge Q

Group 1 (Low flowrate) 339.82
Group 2 (Normal flowrate) 420.70
Group 3(High flowrate) 536.49
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centration were increased by heavy rainfall during the
summer season, so that the group 3 which defined as
high loading, appeared repeatedly. Moreover, the high
loading was also affected by the growth of E coli due
to the presence of the stagnant water and air tempera-
ture. The belonging variables in FA3 were T-P, EC,
and PO4-P, respectively, and the T-P was positive
correlation to SS. Therefore, the high loading was
appeared during the summer season. In addition, the
EC value was increased by the backflow of saltwater
because of the current density and tidal distribution
due to the gate operation at Nakdong estuary during
the summer season. Therefore, the pollution state in
FA3 was affected by the EC variation [23,24]. Finally,
the pollution state in FA4 was affected by changes of
climate condition and river capacity.

3.5. Application results of the developed enhanced
monitoring tool for the new dataset

Fig. 5 shows the application results of the devel-
oped monitoring tool for the newly obtained dataset.
The groups for the each FA were confirmed using the
dataset obtained in 2011 and 2012. In FA1, group 2
(Normal_Low), which was defined as the moderately
low loading for the organic matter and nitrogen,
appeared during January to March in 2011, because
the pollutants flowed into the river downstream from

the upstream and midstream sections during the dry
season with low flowrate. After March, the pollution
state was continuously identified as low loading dur-
ing April to December. A similar pattern was identi-
fied in 2012. When the group variations between the
cumulated dataset (Fig. 4(a)) and new dataset
(Fig. 5(a)) were compared in the FA1, the annual pat-
terns of group in 2010–2012 were different to those in
2004–2009, because of a river restoration project and
the construction of weirs in the Nakdong River basin
from December 2009 to January 2012. When the project
and the construction were finished, the river capacity
was increased, which diluted the pollutants in the river
downstream. On the other hand, as shown in Fig. 5(a),
the high loading was appeared at the beginning of the
year upon completion of the project in 2012. However,
the low loading was continuously observed due to
stabilization of the river and improved self-purification
during April to December in 2012.

For FA2, the SS concentration was increased by the
construction work of the river restoration project in
2011. As a result, the group 3 (High), which was
defined as the high solids loading, appeared in
throughout 2011, as shown in Fig. 5(b). However,
when the river restoration project was finished in
January 2012, the settling of SS at the bottom of the
river downstream led to the appearance of group 2,

Fig. 4. Group variations for the cumulated dataset of 2004–2010 (for FA1, 1 = Low; 2 = Normal_Low; 3 = Normal_High;
4 = High loading and for FA2, FA3, and FA4, 1 = Low; 2 = Normal; 3 = High).
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which was defined as the normal loading was
appeared in 2012.

For FA3, group 3 (High), which was defined as the
high loading of phosphorous and EC, appeared mostly
in 2011. As shown in Fig. 6, the pollution state of FA3
was strongly influenced by EC because the other vari-
ables, T-P, and PO4-P concentration, were observed at
low concentrations. As mentioned above, the backflow
of saltwater was flowed into the river downstream
during the summer season, which increased the EC
concentration. However, the normal and low loading
appeared from August 2012 due to low EC concentra-
tion because of the stabilization of the upstream river
water level by the completed weirs [25]. The range of
fluctuation of water level was decreased by the weirs

after the barrage construction in the Nakdong River
basin [26]. As a result, the gate operation of estuary
was more reduced than in 2011 due to the
stabilization of water level and the backflow of
saltwater was not diffused by the monitoring point.

Finally, FA4 was influenced by the change of dis-
charge. Therefore, the high flowrate was appeared in
summer due to the heavy rainfall and the low flowrate
was observed for the rest of the year, as shown in
Fig. 5(d). FA4 exhibited a different pattern between the
accumulated datasets and the new datasets. The dis-
charge pattern of the accumulated datasets was irregu-
lar, whereas that of the new datasets appeared
repeatedly as high flowrate and low flowrate during two
years. This was because FA4 was affected by increasing

Fig. 5. Group variations for the newly obtained data in 2011 and 2012 (for FA1, 1 = Low; 2 = Normal_Low;
3 = Normal_High; 4 = High loading and for FA2, FA3, and FA4, 1 = Low; 2 = Normal; 3 = High).

Fig. 6. Water quality variation on T-P, PO4-P, EC in 2011 and 2012.
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the river cross section and discharge rates due to the
completion of the river restoration project.

4. Conclusion

In this study, three multivariate statistical tech-
niques, i.e., FA, CA, and DA were used for enhanced
monitoring of the water quality variation in the
Nakdong River downstream. The four main factors
were extracted and defined as “Changes of organic
matter and nitrogen,” “Changes of SS and climate
conditions,” “Changes of phosphorous and EC,” and
“Changes of discharge,” respectively. The pollution
states of each factor were grouped as low, normal
(normal_low and normal_high), and high loading using
CA. The discriminant function was derived by DA to
decide the belonging group for each factor.

In the water quality data collected in 2011 and
2012 with the new characteristics, the current pollution
state of the river downstream could be successfully
assessed using the developed tool based on the multi-
variable statistical techniques. The current pollution
states of FA1 and FA2 were influenced by the river
restoration project, which affected the river capacity
and SS concentration in the Nakdong River basin. The
pollution state of FA3 was influenced by the change of
the EC, which was affected by the backflow of saltwa-
ter in the river downstream. In FA4, the difference of
the discharge patterns between the cumulated dataset
and the new dataset was influenced by the river
restoration project.

An enhanced monitoring tool based on multivari-
ate statistical techniques was developed in this study
to assess the water quality variation in the Nakdong
River downstream and to generate some useful
linguistic information about water quality level for
personnel who are not familiar with the relevant data.
The developed tool can assist the decision-making of
gate operators and water resource managers. The
operators of WWTPs can use the information provided
by this enhanced monitoring system to optimize their
plant operational condition. Moreover, the WWTPs
discharging their effluent into the river water being
monitored by this algorithm can help to recognize the
relationship between their effluent water quality and
that of the river.

The monitoring results, obtained by application of
the newly measured data, were interpreted by con-
sidering the geographical and topographical charac-
teristics in the Nakdong River downstream.
Application of the tool developed in this study to
other river basin for assessing the water quality
variations will facilitate an assessment of the entire
river basin using various monitoring datasets. Addi-

tional variables and dataset may also be required for
investigating the characteristic of the target river basin
more effectively. Moreover, when the accumulated
datasets are used for a long-term calibration and val-
idation of the developed tool, the water quality varia-
tion in the target river basin can be assessed more
accurately.
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