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ABSTRACT

This study focuses on the modeling and optimization of the decolorization procedure of real
textile dye. The percentage of decolorization of effluent in the Erlenmeyer flask level, as
obtained by both response surface methodology (RSM) and artificial neural network (ANN),
was determined and subjected to comparative evaluation. The effect of independent vari-
ables such as pH (5–8), self-immobilized Pleurotus ostreatus, bead volume (30–50%) (Vb/Vr),
and initial effluent concentration (50–100%) was examined using three-level Box–Behnken
design. A similar design was utilized to train a feed-forward multilayered perceptron with
back-propagation algorithm. Errors were computed using error functions, and the values
obtained for RSM and ANN were compared. The maximum percentage decolorization and
COD reduction of effluent under optimized conditions over a 24-h period were observed as
89 and 72%, respectively. The parameters optimized in the flask level were adapted in an
inverse fluidized bed bioreactor of 6 l working volume, in which the quantity of decoloriza-
tion and COD reduction over a 24-h period was observed as 92 and 76%, respectively.

Keywords: Artificial neural network; Response surface methodology; Genetic algorithm;
Industrial dye effluent; Inverse fluidized bed bioreactor; P. ostreatus

1. Introduction

The bequest of hasty urbanization and industrial-
ization has a corollary in major pollution problems,
both in terrestrial and aquatic environments [1].
Textile, cosmetic, food, leather, pharmaceutical, and

paper industries consume substantially large amounts
of dye [2]. The textile industry, in addition, requires
huge amounts of water, energy, and allied chemicals.
The daily production of fabric in India averages
around 600,000 m. In the process, approximately 1.5
million liters of effluent are formed and discharged
without proper treatment, into the surrounding
natural water bodies. A total of 20–50% dye remains
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in the dye bath in an unfixed hydrolyzed form that
has no binding capacity with fabric, thus resulting
in colored effluent. Highly colored untreated efflu-
ents from the textile industry are a potential environ-
mental hazard if discharged into open water. Rigid
environmental regulations are imposed in several
countries.

Effluents from the textile industry are of different
colors based on market demand. Major pollutants,
present in the effluent organic compounds, color, inhi-
bitory compounds, toxicants, pH, salts, chlorinated
compounds, and so on, have high BOD, COD, turbid-
ity, TDS, and TSS [2]. Among these, the chief pollutant
is color. Upon consideration of the volume and
composition of pollutants from various industries, the
textile industry is foremost in the discharge of recalci-
trant contaminants into the receiving water [3]. This
leads to an enragement of the ecological system by a
reduction of sunlight penetration and dissolved
oxygen concentration. Additionally, dyes are toxic,
mutagenic, and a potential source of carcinogenic ami-
nes [2,4]. Decolorization by conventional methods is
difficult. Physical and chemical engineering methods
of remediation such as adsorption, coagulation, and
ozonation are prevalent, of which ozonation is
complex, requires expensive equipment and chemi-
cals, and is therefore not economically feasible [1].
Biological methods of remediation are efficient, dur-
able, and fiscally viable. A wide range of microorgan-
isms such as bacteria [5–7], fungi [8–10], yeast [11,12],
and algae [13–16] may be successfully used for
effluent treatment [1]. Biodegradation of dyes by fun-
gus is more advantageous. Lignin-modifying enzymes
present in white rot fungus such as lignin peroxidase,
manganese peroxidase, and laccase have oxidative
bioremediation properties, thereby making the
microorganism more suitable for the efficient treat-
ment of textile effluents and dye removal. The active
surface area between the enzyme and environment is
greater, facilitating rapid conversion of pollutant to
nontoxic products [17].

Pleurotus ostreatus, an edible mushroom, was first
cultivated in Germany as a means of subsistence
during World War II. P. ostreatus, a paramount biosor-
bent, is an economical choice as an efficient decoloriz-
ing agent for industrial effluents [18]. Reactors of
different types have been developed, to study the
decolorization of azo dyes using white rot fungus. It is
found that fed batch fluidized bed bioreactor is
particularly suitable for orange (II) decolorization [19].
Maximum decolorization of azo dyes has been
achieved using immobilized enzymes from Trametes
versicolor U97 or Pestalotiopsis sp. NG007, using a
vertical bioreactor system [20].

A majority of the previous reports on the treatment
of textile dyes using biological systems involve one-
variable-at-a-time (OVAT) on the experimental output,
while other parameters remain constant. This makes
the process arduous and time consuming. The OVAT
method does not provide any information on interac-
tion effect between variables, which is an important
determinant of output response in wastewater man-
agement. The inability to predict the complete interac-
tion effects between variables is a limitation of
conventional methods [21].

Response surface methodology (RSM), a statistical
experimental design, has been in use for the last two
decades to overcome the limitations of traditional
methods and to consider the interactive effect between
variables [22]. RSM means to optimize an unknown
and noisy function by means of simple function, for a
small region under designed experimental conditions.
RSM can define the effect of an independent variable
either alone or in combination with one or more
dependent variables in the process [21,23–27].

A suitable mathematical model has been devel-
oped based on the RSM data and is found to be
convenient with minimum process knowledge,
thereby saving time and experimental cost. However,
RSM-based models are accurate only for a limited
range of input process parameters, and this limits the
usage of RSM models. Treatment of textile effluents is
a highly nonlinear process. In order to overcome this
limitation, an artificial neural network (ANN) can be
applied to develop an empirical model [28,29] for the
highly nonlinear process of treatment of textile indus-
try effluents.

ANN, an artificial intelligence algorithm, is an
attractive option for modeling complicated and non-
linear systems. ANN can be defined as a group of
small elements arranged in parallel that are intercon-
nected with weights. The important characteristic of
ANN is learning. There are two modes of operation in
ANN: one is training and the other is normal mode.
The training mode modifies the parameters of a net-
work, whereas the normal mode applies the trained
network(s) for simulating response. In the training
phase, the input/output data sets are introduced into
the neural network. When the difference between the
actual and predicted output values from ANN is
calculated, the difference in error can be reduced dur-
ing the training process by adjusting the weight, till
the error has reached the predetermined goal. Experi-
mental design by RSM itself is sufficient to build an
effective ANN model. ANN could work better than
RSM, since it does not require a prior specification of
fitting function. Moreover, it has the potential of
universal estimation [21]. To our knowledge, there is
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no report available for decolorization of textile dye
effluent using inverse fluidized bed bioreactor (IFBBR)
by P. ostreatus. Therefore, in this study, the decoloriza-
tion procedure was carried out using Box–Behnken
design (BBD) with three factors at three levels.
ANN-based models have been developed to predict
the relationship between dependent and independent
variables. The results predicted by the ANN and RSM
techniques were compared by error function measures
such as root mean square error (RMSE), mean abso-
lute error (MAE), standard error of prediction (SEP),
model predictive error (MPE), chi-square statistic (χ2),
and coefficient of determination (R2). Evaluation of the
results was followed by the optimization of process
variables through RSM and ANN–GA. Finally, the
efficiency of the entire process was reviewed in order
to arrive at the most suitable module for optimum
decolorization.

2. Materials and methods

2.1. Sampling, chemicals, and analytical methods

Wastewater from a small-scale industry textile dye-
ing unit at Kanchipuram district, Tamil Nadu, India,
was sampled and characterized, based on its physico-
chemical features (Table 1). Samples were stored at
4˚C to avoid biological activity. All the chemicals used
in the study were procured from SRL and Qualigen,
India, as analytical reagents. Standard analytical meth-
ods were followed [30]. The percentage decolorization
of effluent was determined by measuring the absor-
bance of the sample through UV–vis spectrophotome-
ter (Systronics model No. 2203, India) at 575 nm.
Decolorization (%) was calculated using the following
equation (Eq. (1)),

% Decolorization ¼ A0 � At

A0

� �
� 100 (1)

where A0 is the initial effluent absorbance, At is the
absorbance at incubation time t. Samples were
analyzed for absorbance after centrifuging them at
10,000 rpm for 10 min.

2.2. White rot fungus (WRF)

A hyperlaccase producing white rot fungus P.
ostreatus 4954 (oyster mushroom) was procured from
Microbial Testing and Collection Centre (MTCC),
Institute of Microbial Technology (IMTech), Chandi-
garh, India. The fungus sample was maintained in
agar slant with a medium composition of glucose
(10 g/l), yeast extract (5 g/l), and agar (15 g/l) at pH
5.8. It was subcultured and grown in a submerged
medium encompassing glucose (10 g/l), yeast extract
(5 g/l), and salt solution (10 ml/100 ml media) con-
taining KH2PO4 (0.2 g/l), MgSO4 (0.05 g/l), CaCl2
(0.01 g/l), and KCl (0.05 g/l). The pH was adjusted to
5.8 using 3 M HCl prior to sterilization (15 psi, 15 min,
121˚C). The culture was maintained at 37˚C for not
less than 8 d in a shaker at 120 rpm to form beads of
average diameter 5–10 mm. Viable beads formed
through shake flask were utilized for the treatment of
real textile dye effluent to study the percentage of
decolorization and COD reduction in an IFBBR.

2.3. Inverse fluidized bed bioreactor (IFBBR)

Inverse fluidized bed column is made of borosili-
cate glass. It comprises four sections—one at the base,
two in the middle (test sections), and one at the top.
The internal diameter of the bottom-most and test sec-
tions is 7.6 cm, and its height is 200 cm. The top sec-
tion serves as a disengagement section; its internal
diameter and height being 13 and 17 cm, respectively.
The centrally located test sections are provided with
equally spaced pressure tappings, numbering ten in
all, which are connected to water-filled manometers.
A compressor was used to pump atmospheric air into
the ring sparer of diameter 5 cm with perforations of
0.1 mm diameter. Both upper and lower test sections
were provided with a mesh, which acted as a support
for the packing material or self-immobilized fungal
beads. The experimental setup is shown in Fig. 1.

2.4. Experimental design by RSM

A statistical modeling technique named RSM was
employed for regression analysis using quantitative

Table 1
Physicochemical and biological characteristics of
wastewater

Physical examination Units Results

Temperature Celsius 25˚C
Color – Blackish
Odor – Foul
Total dissolved solids mg/L 1,736
BOD mg/L 1,200
COD mg/L 3,768
TSS mg/L 52
pH – 6.77
Chromium mg/L 0.064
Sulfates mg/L 80
Chlorides mg/L 425
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data obtained through appropriately designed experi-
ments for solving multivariate equations [28]. In this
study, BBD with three factors at three levels was
applied to evaluate the interactive effect of the vari-
ables considered for the decolorization of the effluent.
Initial pH (X1), bead volume (Vb/Vr) % (X2), (Vb-bead
volume and Vr- reactor volume), and initial effluent %
(X3) were selected to study the percentage decoloriza-
tion (Y) of the industrial effluent sample. Process
parameters (coded and uncoded) and their ranges are
shown in Table 2.

Second-order polynomial model was developed
based on the relationship between response and
independent variable. The following equation was
used (Eq. (2)),

Y ¼ bo þ
Xk
j¼1

bixi þ
Xk
i¼1

biix
2
i þ

Xk�1

j¼1

Xk
i[ jj¼2

bijxixj þ ei (2)

where Y is the decolorization (%), xi and xj are the
variables (i and j range from 1 to k); bo is the
intercept, bj, bij are the interaction of coefficient for
laminar, quadratic, and second-order term, respec-
tively, k is the independent parameter (k = 3), and ei
is the error.

Adequacy of the model developed was judged by
analysis of variance (ANOVA), f-test, and coefficient
of determination (R2). The plots of response surface
with contour were developed to examine the relation-
ship between independent and dependent variables.
Numerical optimization technique was followed to
optimize the independent variable. Statistical analyses
was carried out with the help of Stat-Ease Design-
Expert Trial version 8.0.7.1 statistical software package
(Stat-Ease Inc., Minneapolis, USA) [31].

2.5. Experimental procedure for studies in flask level and
IFFBR

Experiments based on BBD matrix were performed
in an Erlenmeyer flask as shown in Table 3.
Self-immobilized beads of P. ostreatus of average
diameter 5–10 mm were used for the studies. Bead
loading (Vb/Vr), pH, and initial effluent concentration
were considered as independent variables, and these
were altered according to the design matrix of BBD.
Bead volume was considered based on Vb/Vr ratio,
where Vr is the reactor holdup volume (100 ml) and
Vb is the bead volume, normally 30–50% of Vr. Kinetic
studies on the percentage decolorization were con-
ducted at regular time intervals. Optimal conditions
were maintained for maximum decolorization.
Optimized conditions were validated by performing
kinetic studies on both flask level and IFBBR in a
completely fluidized state, to accurately measure
percentage decolorization and COD reduction. The
experiments were duplicated and the mean values
were considered for evaluation.

2.6. Modeling by ANN

The ANN model used in the study was similar to
the structural and functional aspects of biological neu-
ral network. Such a model becomes a powerful tool in
the comparative study of the behavior of a new pro-
cess with an existing one. The basic building blocks of
an ANN are constituted by an input layer (indepen-
dent variable), a number of hidden layers, and an out-
put layer (dependent variables). Each layer consists of
inter connected units called neurons. The role of the
neuron is to send signals to other neurons with interac-
tion along the weighted connections. The neurons in

Fig. 1. Schematic diagram of IFBBR.

Table 2
Independent variables and its level in BBD

Variables (Units) Factors
Levels

X −1 0 1

pH X1 5 6.5 8
Bead volume (%(Vb/Vr)) X2 30 40 50
Effluent (%) X3 50 75 100
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each layer are connected to all other neurons in
preceding and following layers through links. The role
of the input layer is to get information from the exter-
nal and convey it to the hidden layer for processing.
The individually weighted input values are prepro-
cessed before they enter the hidden layer. The hidden
layer processes all data obtained in this manner and
produces an output by summing up the modified
input values using sigmoidal transfer function.

In this study, tan-sigmoidal transfer function was
applied between the input layer and hidden layer and
purelin was applied between the hidden layer and
outer layer. The network was trained by Levenberg–
Marquardt back-propagation algorithm. The factors
considered in the RSM were identical to those in the
ANN, as was the response (output). The topology of
the ANN architecture is illustrated in Fig. 2. The data
generated from the experimental design planned
through BBD (Table 3) were used to constitute the
optimal architecture of ANN. The original dataset
(comprising 17 data points) was divided into three
subsets, namely 70% training (12 data points), 15%
validation (3 data points), and 15% test sets (3 data
points). Splitting of data for training, validation, and
test subsets was carried out to estimate the
performance of the neural network which, in turn,
would assist in the prediction of “unseen” data that
were unused for training. This step makes possible the
assessment of the generality of the ANN model. The

number of neurons in the hidden layer can be
calculated from the expression 2(n + m)0.5 to 2n + 1
where n is the number of neurons in the input layer
and m the number of neurons in the output layer [32].

With the aim of achieving fast convergence to the
minimal RMSE, the inputs and outputs were scaled
within the uniform range of −1 (new xmin) to 1 (new
xmax), with the help of the following two equations
(Eqs. (3) and (4)), where xnor is the normalized input/
output data (data of independent and dependent
variables), xac is the actual variable, and xmax and xmin

are the maximum and minimum values of the particu-
lar variable, respectively [33]. This ensured uniform
attention during the entire training process.

Table 3
BBD of independent uncoded variables and their corresponding experimental and predicted values

Run pH
Bead volume
(%(Vb/Vr)) Effluent (%)

% Decolorization

Experimental value
Predicted
RSM value

Predicted
ANN value

1 6.5(0) 40(0) 75(0) 79.10 79.10 79.10
2 6.5(0) 40(0) 75(0) 79.10 79.10 79.10
3 6.5(0) 40(0) 75(0) 79.10 79.10 79.10
4 5(−1) 40(0) 50(−1) 71.30 70.70 70.96
5 6.5(0) 40(0) 75(0) 79.10 79.10 79.10
6 8(+1) 30(−1) 75(0) 70.71 70.11 70.74
7 5(−1) 30(−1) 75(0) 73.15 73.38 73.15
8 5(−1) 40(0) 100(+1) 85.00 84.77 84.98
9 6.5(0) 30(−1) 50(−1) 72.46 72.82 72.55
10 8(+1) 50(+1) 75(0) 73.80 73.57 73.79
11 5(−1) 50(+1) 75(0) 79.13 79.73 79.14
12 6.5(0) 30(−1) 100(+1) 71.62 71.62 71.61
13 6.5(0) 40(0) 75(0) 79.10 79.10 79.10
14 8(+1) 40(0) 50(−1) 73.00 73.24 73.00
15 8(+1) 40(0) 100(+1) 72.20 72.80 72.20
16 6.5(0) 50(+1) 100(+1) 84.90 84.54 84.63
17 6.5(0) 50(+1) 50(−1) 69.71 69.71 69.37

Fig. 2. Schematic diagram of multilayered perceptron
neural network.
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xnor ¼ 2ðxac � xminÞ
xmax � xmin

� 1 (3)

xac ¼ xnor þ 1ð Þðxmax � xminÞ
2

þ xmin (4)

All ANN calculations were carried out using Neural
Network Toolbox of MATLAB Version 7.9 (R2009b).

2.7. Optimal conditions based on genetic algorithm

Genetic algorithms have been a thriving method
for solving both linear and nonlinear problems. It is
encouraged by the process of natural selection and
genetic evaluation. Mutation, crossover, and selection
operations were applied to a population of encoded
variable space. The algorithm expands different areas;
the parameter space and it searches to the area of high
probability of global optimum [34]. GA is used to
optimize the input space (X) representing the process
variable, with the objective of maximizing the effluent
decolorization. The objective of optimization is to
ascertain the optimal level of the variable X* = [X1, X2,
X3] and maximize the objective function f(X*, w)
where “w” represents the corresponding weights of
the variables and “b” denotes the bias between firstly,
input and hidden layer, and secondly, hidden and
output layers. The input variables are pH (X1), bead
volume (Vb/Vr) % (X2), and initial effluent concentra-
tion (X3) with percentage decolorization as the objec-
tive. In this study, an ANN model was used as the
fitness function for genetic algorithm to optimize the
percentage decolorization of effluent [35].

% Decolorization ¼ Purelinðw2� tansig w1� Xð1Þ;½ð
Xð2Þ; Xð3Þ� þ b1Þ þ b2Þ

(5)

3. Results and discussion

3.1. RSM model

The results from the studies on the decolorization of
textile dye effluent at maximum time according to BBD
are presented in Table 3. The quadratic second-order
model was formed in terms of coded variables, devel-
oped through design expertise, and is given by Eq. (6),

% Decolorization ¼ 79:1� 2:358X1 þ 2:45X2 þ 3:406X3

� 0:722X1X2 � 3:625X1X3

þ 4:0075X2X3 � 2:1X2
1 � 2:8025X2

2

� 1:625X2
3

(6)

where X1, X2, and X3 are the coded values of the
given variables.

The ANOVA is a useful tool, in the testing of the
significance of the response surface quadratic model.
From the ANOVA (Table 4), it is observed that the
model was highly significant, the evidence being
Fisher’s f-value (151.82) with low probability value
(p < 0.0001). R2, a correlation coefficient between
experimental and predicted value, was checked to find
the goodness of fit. The high values of R2 as 0.9949
indicate that the model was statistically significant
and only 0.51% of the variation was not explained by
the model. The values of predicted R2 and adjusted R2

are 0.9189 and 0.9884, respectively, showing good
agreement between the two. A coefficient of variance
(CV) of 0.6% proposed better precision and reliability
of the data obtained from the experiments. The
p-value which is more than 0.05 points to nonsignifi-
cant lack of fit which can be interpreted as validity of
the model [36]. Hence, ANOVA analysis designates
the applicability of the model for the decolorization of
textile dye effluent using P. ostreatus.

Table 4 shows regression analysis of the model
equation on main, square as well as the interaction
effects of the independent process variables. p-values
less than 0.0001 indicate that the variables are highly
significant. Normal % probability graphs (Fig. 3) were
used to evaluate the suitability of the model. Results
showed that a close relationship exists between the
experimental and predicted values. The data lie very
close to the diagonal, which represent the proximity of
the experimental and simulated data. It is concluded
therefore that the developed mathematical model has
the ability to describe the decolorization process
energetically [31].

3.2. Effect of process variables and its interaction with
decolorization

A 3D response surface plot was constructed to
investigate the interaction effects of the variables from
the developed mathematical models [Fig. 4(A–C)].
From the graph, it is pragmatic that all the combined
process variables show significant effect on percentage
decolorization [31]. From the plots, it is observed that
an increase in pH does not show remarkable changes
in the quantity of decolorization and that maximum
decolorization was observed between pH 5 and 6.
Decolorization percentage increases on increasing
bead volume. This could mean that the more the bead
volume, the more the active surface area in which
dyes can either be biosorbed by the whole cells or
degraded by the enzyme laccase. Maximum decol-
orization was observed at 50% Vb/Vr. It is factual that
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increase in the initial effluent concentration increases
the rate of decolorization, which is predictive of a
highly loaded organic pollutant which can either be

degraded or biosorbed by the P. ostreatus easily. It is
evident that P. ostreatus shows its potential for applica-
tion in wastewater treatment.

Table 4
ANOVA for the experimental results of BBD

Source Coefficient estimate Sum of squares df Standard error Mean square F-value p-value

Model 79.1 373.88 9 0.233 41.542 151.82 <0.0001 Significant
X1 −2.35 44.509 1 0.184 44.509 162.66 <0.0001
X2 2.45 48.02 1 0.184 48.02 175.49 <0.0001
X3 3.40 92.820 1 0.184 92.82 339.22 <0.0001
X12 −0.72 2.0880 1 0.261 2.088 7.6309 0.0280
X13 −3.62 52.562 1 0.261 52.56 192.09 <0.0001
X23 4.00 64.240 1 0.261 64.24 234.77 <0.0001
X2

1 −2.1 18.568 1 0.254 18.56 67.860 <0.0001
X2

2 −2.80 33.069 1 0.254 33.06 120.85 <0.0001
X2

3 −1.62 11.118 1 0.254 11.118 40.633 0.0004

Notes: Residual: 1.92; lack of fit: 1.92; error: 0.00; mean: 76.03; C.V. (%): 0.69; Adeq. precision: 37.529. R2 = 0.9944; Adj. R2 = 0.9884; and

Pred. R2 = 0.9185.

Fig. 3. Normal probability plot of studentized residues for (A) % decolorization; (B) pH; (C) bead volume (V/V %); and
(D) initial effluent concentration.
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3.3. ANN model

ANN appears as a powerful tool in the simulation
and optimization of processes [37,38]. Therefore, in
this study, an ANN-based model was also developed
for describing the decolorization of real textile dye
effluent. The number of hidden layers and neurons
was established in this study by training different
feed-forward networks of various topologies and
selecting the optimal one, based on minimization of
the performance function—mean square error. The
resultant optimal architecture (topology) of the ANN
model for the present problem involved a feed-for-
ward neural network with one input layer (3 neurons),
one hidden layer (7 neurons), and one output layer (1
neuron). This feed-forward network topology is
termed as multilayer perceptron, MLP (3:7:1). To
comprehend the optimal values of weights and biases,
the network MLP (3:7:1) was trained using back-
propagation method based on Levenberg–Marquardt
algorithm. The model formed through weights and
biases is shown in Eq. (7).

% Decolorization ¼ �0:821þ ð2=ðð1þ expð�2� ððXð1Þ
� ð�1:8806Þ þ Xð2Þ � 0:56984Þ þ Xð3Þ
� ð1:2593ÞÞ � 1Þ þ 3:0459ÞÞÞÞ
� ð�0:925Þ þ ð2=ðð1þ expð�2� ððXð1Þ
� ð2:6028Þ þ Xð2Þ � ð�1:34141Þ þ Xð3Þ
� ð0:89325ÞÞ � 1Þ þ 3:0729ÞÞÞÞ
� ð1:0693Þ þ ð2=ðð1þ expð�2� ððXð1Þ
� ð�2:3075Þ þ Xð2Þ � ð1:4788Þ þ Xð3Þ
� ð�2:131ÞÞ � 1Þ þ 1:7346ÞÞÞÞ
� ð0:90149Þ þ ð2=ðð1þ expð�2
� ððXð1Þ � ð�1:0822Þ þ Xð2Þ
� ð�1:464Þ þ Xð3Þ � ð�1:9271ÞÞ � 1Þ
� 0:16887ÞÞÞÞ � ð�0:56156Þ þ ð2=ðð1
þ expð�2� ððXð1Þ � ð0:7455Þ þ Xð2Þ
� ð0:41638Þ þ Xð3Þ � ð2:8893ÞÞ � 1Þ
þ 0:32738ÞÞÞÞ � ð0:63474Þ þ ð2=ðð1
þ expð�2ððXð1Þ � ð0:32565Þ þ Xð2Þ
� ð1:9351Þ þ Xð3Þ � ð2:587ÞÞ � 1Þ
þ 1:1976ÞÞÞÞ � ð�0:1992Þ þ ð2=ðð1
þ expð�2� ððXð1Þ � ð�1:3621Þ
þ Xð2Þð�0:5908Þ þ Xð3Þð0:1779ÞÞ � 1Þ
� 2:3015ÞÞÞÞ � ð�0:07115Þ

(7)

Fig. 4. Three dimensional response surface plot of % decolorization as a function of (A) pH and bead volume (v/v %),
(B) pH and effluent %, and (C) bead volume (v/v %) and effluent %.
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The plots for the output with respect to training,
validation, and test data are given in Fig. 5. The good-
ness of fit between the experimental and the predicted
response given by the ANN model is also shown in
Fig. 6. High correlation coefficients indicate the relia-
bility of the developed ANN model. The output fol-
lows the targets very well, and the R-value is over
0.999. In this case, the network response is satisfactory.
On comparing the data predicted by the ANN model
with the experimental data, the ANN results are very
close to the observed experimental values. The pre-
dicted values are in agreement with the experimental
values and fall on the diagonal line. Almost all the
data fall on this line, confirming the accuracy of the
ANN model [39].

3.4. Comparison of RSM and ANN models

The newly constructed ANN and RSM models
were compared statistically for their predictive ability.
The parameters forming the basis for evaluation
included RMSE, SEP (%), MAE, MPE (%), chi-square,

and R2. The models used for error calculation are
given in Table 5. Fig. 6 demonstrates clearly that ANN
displayed greater predictive ability than RSM. Fig. 7
details residuals between the experimental and the
predicted values of RSM and ANN. A close look at
the values of error function (Table 6) reveals that the
gap between ANN model values and experimental
values is extremely narrow. In contrast, RSM model
values show a higher error function. It may be
inferred that the ANN model is more superior and
reliable in its predictive accuracy than RSM when
compared with experimental values. These findings
therefore firmly establish that ANN may be attributed
with the universal ability of approximating nonlinear-
ity of the system [39].

3.5. Optimization by derringers desirability

Attention was given to the following constraints
during optimization of the decolorization process of
textile dye in the effluent: pH (5–8), bead volume
(30–50%) (Vb/Vr), and initial effluent concentration

Fig. 5. Neural network model with training, validation, test, and all predicted set for % decolorization.
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(50–100%); each of which was set for maximum
desirability. In numerical optimization, the desired
goal was preferred for each variable and response
from the menu. The achievable goals were within
range (for three independent variables) and maximum
(for response only). Applying the methodology of the
desired function, optimum levels of process parame-
ters were obtained. The results indicated that maxi-
mum decolorization was observed as 88% at pH 5.35,
bead volume 50%, and initial effluent concentration of
98.98%. Fig. 8(A) shows a ramp desirability that was
developed from optimum points via numerical
optimization.

3.6. Optimization by ANN-genetic algorithm

The newly developed ANN model aimed at
optimization of process conditions (i.e., input vari-
ables) in order to increase percentage decolorization of
textile dye. With this objective in mind, genetic
algorithms with trained ANN were used as the princi-
pal. The optimization problem studied is represented
mathematically by:

Max net
pH

Bead volume ðv=vÞ
Int. effluent conc:

0
@

1
A

¼ % Decolorization as objective function (14)

Bound constraints

¼
5�pH� 8

30% � Bead volume ðv=vÞ� 50%

50%� Int. effluent conc: � 100%

8><
>:

(15)

Different parameters of GA such as population size,
crossover probability value, and mutation probability
value were set to be 50, 0.90, and 0.01, respectively.
The selection, crossover, and mutation operators were
chosen as roulette, heuristic, and uniform methods,
respectively. Several GA studies were performed by
the authors with different applications [34]. Using
ANN as fitness function, optimum solutions were
determined after the evaluation of GA operators for
100 iterations to achieve highest possible color
removal. The trend in maximum and mean fitness
function of response is demonstrated in Fig. 8(B).
After successful conversion of responses in neural
architecture, the ANN–GA technique evaluated high-
est percentage decolorization as 89% at pH 5, bead
volume 50% (Vb/Vr), and initial effluent concentration
of 100% over time 24 h.

3.7. Validation of optimization condition using shakes flask
and IFBBR studies

The optimization studies conducted both by
derringers desirability function and genetic algorithm
were followed for process condition, viz. pH 5, bead
volume 50% Vb/Vr, and initial effluent concentration
100%. Decolorization and COD reduction were
observed with the above operating conditions at
various time intervals. Fig. 9(A) shows percentage
decolorization and percentage COD reduction values.
It was observed that these two criteria rose to their
maximum levels of 89 and 72%, respectively, after
18 h, and thereafter, there was no marked change in
the same.

Hydrodynamic studies were conducted for opti-
mizing the operating condition of IFBBR. Bead loading
and superficial gas velocity were considered as impor-
tant operating parameter. It was observed that 30–50%
bead volume (Vb/Vr) with density close to water and
superficial gas velocity of 0.31 cm/s favoured complete
bed expansion in the column, which in turn enhanced
the mixing, mass transfer, and contact between the
three phases. In this experiment, superficial gas veloc-
ity of 0.31 cm/s was taken as operating variable, while
the process variables included the conditions opti-
mized by derringers desirability function and genetic
algorithm. Percentage decolorization and degradation
were observed at constant time interval. Maximum
levels for these criteria were found to be 92 and 76%,
respectively (Fig. 10(A)). It is inferred that the factors
responsible for this phenomenon could be either the
laccase enzyme secreted by P. ostreatus or surface prop-
erty of the fungus in the form of greater active surface
area of the fungus, resulting in degradation of the dye
by the enzyme or its enhanced biosorption.

Fig. 6. Comparison of experimental and predicted values
of RSM and ANN for % decolorization.
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The experimental and model output (Figs. 8(A)
and 9(A)) states that decolorization and COD reduc-
tion of the effluent were growing at the exponential
rate up to time interval 18 h, beyond which the rates
decreased, probably due to saturation.

3.8. Kinetic studies in Erlenmeyer flask and inverse
fluidized bed reactor

The decolorization and degradation kinetics were
studied for the treatment of real textile dye effluent
under optimized condition of pH, bead volume
(Vb/Vr %), and initial effluent concentration, to
establish the rate constant. Utilization of the substrate
for the decolorization and degradation in both flask
and reactor level could biosorb or degrade the con-
tents by the action of P. ostreatus. First-order kinetic
expression can be used to explain the decolorization
and degradation process [40].

dCs

dt
¼ �kCs (16)

Cs is the substrate concentration, t is the time taken
for decolorization and degradation in an hour, and k
is the rate constant (t−1). Modified first-order studies
were conducted to simulate the inverse fluidized bed
reactor system, which follows batch reactor [40].

�dðCs � C1Þ
dt

¼ k Cs � C1ð Þ (17)

On integration we get

Cs � C1
C0 � C1

¼ e�kt (18)

where C0 is the initial concentration (mg/l), C1, final
concentration (mg/l), and k is the pseudo first-order
constant (h−1). The concentration of the reactant was

Table 5
Error functions and its models

Error function Equation and number Ref.

Root mean square error
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1

Yi;e � Yi;p

� �2s
ð8Þ [41]

Standard error of prediction SEP ð%Þ ¼ RMSE
Ye

� 100 ð9Þ [42]

Mean absolute error MAE ¼ 1
n

Pn
i¼1

Yi;e � Yi;p

�� �� ð10Þ [42]

Model predictive error (%) MPE %ð Þ ¼ 100
n

Pn
i¼1

Yi;e�Yi;p

Yi;p

��� ��� ð11Þ [35]

Chi-square statistics (χ2) v2 ¼ Pn
i¼1

Yi;p�Yi;eð Þ2
Yi;p

ð12Þ [43]

Correlation coefficient (R2) R2 ¼ 1�
Pn

i¼1
ðYi;p�Yi;eÞPn

i¼1
ðYi;p�YeÞ2

ð13Þ [44]

Notes: n is the number of experiments; Yi;e is the experimental value of the ith experiment; Yip is the predicted value of the ith

experiment by model; and Ye is the average value of experimentally determined.

Fig. 7. Distribution of residuals.

Table 6
Error comparisons between RSM and ANN

% Decolorization

Statistical parameters ANN RSM

RMSE 0.00 0.00
SEP (%) 0.00 0.00
MAE 0.07 0.24
MPE (%) 0.09 0.31
Chi-square 0.0 0.03
R2 1.00 1.00
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reduced gradually by the P. ostreatus to become con-
stant after a certain time period: The concentration at
that time was C1. Experimental data obtained from
the flask level and IFBBR were embodied by the above
model. The model applied for decolorization and
degradation under optimized condition by BBD is
shown in Figs. 9(B) and 10(B). A good fit was revealed
in the plot between lnðCs � C1Þ=ðCso � C1Þ vs. t.
When the R2 value for levels in the flask (decoloriza-
tion (0.826) and COD (0.866)) and reactor (decoloriza-
tion (0.976) and COD (0.947)) were compared, R2

value for reactor stood better than the flask values.
The value of k in both the systems was >0.256 h−1,
which is indicative of low activity [40], this could be
interpreted as the high substrate concentration possi-
bly causing inhibition of microbial action.

3.9. Sensitivity analysis

As shown in Table 4, the model term of (A) has
the largest coefficient (79.1) which suggests that bead

volume is the most dominating factor. In comparison
with other interactions, this model term has a signifi-
cant effect on the system. ANN, a black box model,
does not give such direct insight into the system.
Black box neural network models are allowed to gain
the relationships that exist between important vari-
ables and are used to predict system variables. Except
for a small network, it is almost impractical to expect
that the models would easily describe the equations
on a short-term basis. It follows that the practical
execution of ANNs is difficult. Desai et al. found that
ANN is uniformly efficient in sensitivity analysis and
interestingly quite comparable to the coefficient of
first-order terms in the quadratic RSM equation. How-
ever, the nature of the black box for ANN is such that
one can perform sensitivity analysis for neural net-
works with different input variables on the results
obtained from the model [32]. There exist numerous
methods which describe the procedure for sensitivity
analysis of a system using the inherent nature of
ANN. Applying Eq. (19), the effect of each input

Fig. 8. Optimized desirability ramp (A) derringers desirability ramp and (B) optimization of GA using MATLAB and
average fitness value with successive generation showed convergence to optimal value.

Fig. 9. (A) Performance of Erlenmeyer flask and ability of ANN model to simulate % decolorization and % COD
reduction under various operating conditions with respect to contact time. (B) Kinetic study on % decolorization and %
COD reduction in Erlenmeyer flask.
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variable on the output variable modeling matrix was
obtained by the network weight

Ij ¼
Pm¼Nh

m¼1 ðð Wih
jm

��� ���=PNi

k¼1 Wih
km

�� ��Þ� Who
mn

�� ��ÞPk¼Nh

k¼1

Pm¼Nh

m¼1 Wih
km

�� ��=PNi

k¼1 Wih
km

�� ��� 	
� Who

mn

�� ��n o (19)

where Ij is the relative importance of the jth input
variable on the output variable, Ni and Nh are the
numbers of input and hidden neurons, respectively,
and Ws are connection weights. The superscripts h
and o refer to input, hidden, and output layers,
respectively; and subscripts m and n refer to input,
hidden, and output neurons, respectively [21]. The
relative importance of the input variables and their
contribution toward decolorization is 31% by pH. A
total of 38% is contributed by initial effluent concen-
tration and rest 31% is by bead volume.

4. Conclusion

Treatment of real textile dye wastewater was
carried out using P. ostreatus under various operating
conditions. It was found that decolorization and
degradation of dye effluent was more in IFBBR than
in the Erlenmeyer flask level. Maximum levels were
attained at 50% Vb/Vr of beads, acidic pH of 5 and at
100% initial effluent concentration, with a COD of
3,768 mg/l. Air flow was continuously maintained at
a superficial velocity of 0.31 cm/s. It was observed
that maximum decolorization and COD reduction
were 89 and 71%, respectively, in flask, and 92 and
76%, respectively, in IFBBR. Kinetic studies showed
that both the decolorization and degradation processes
adhered to the first-order system. From this study, it

may be concluded that RSM can be successfully
employed in IFBBR for the management of textile
wastewater. Compared to RSM, ANN–GA showed
itself to be additionally advantageous for simulation
and prediction of experimental results with minimum
error. Thus, ANN–GA could be a better alternative
than RSM in wastewater treatment.
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