Desalination and Water Treatment

www.deswater.com

∧ 1944-3994/1944-3986 © 2009 Desalination Publications. All rights reserved

Modeling the effect of anti-scalant on CaCO₃ precipitation in continuous flow

Dmitry Lisitsin, David Hasson^{*}, Raphael Semiat

Rabin Desalination Laboratory, Grand Water Research Institute, Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel Tel. +972 (4) 829-2936/2009; Fax +972 (4) 8295672; email: hasson@tx.technion.ac.il

Received 25 December 2008; Accepted 28 December 2008

ABSTRACT

Scale inhibition by anti-scalants is known to involve blockage of active growth sites by adsorbed inhibitor molecules, but there is virtually no quantitative information on the kinetics of anti-scalant retarded precipitation. This paper presents a model integrating the process of anti-scalant adsorption on precipitated CaCO₃ particles with the kinetics of the ensuing retarded precipitation. Adsorption is analyzed according to the Langmuir, Freundlich and Langmuir–Freundlich models, and CaCO₃ precipitation is described by the commonly used surface reaction controlled model. The proposed model is validated by experimental data measured in a continuous flow precipitation system over a wide range of conditions.

Keywords: CaCO₃ precipitation; Anti-scalants; Scale inhibition; Adsorption isotherms; Kinetics

1. Introduction

Anti-scalants are commonly used to control scale formation in cooling water systems and in desalination applications. Their conspicuous advantage is that, when properly applied, an anti-scalant can suppress effectively scale formation at very low dosages (typically below 10 ppm) and hence, at an affordable cost.

Despite the widespread use of anti-scalants, there is very limited quantitative information on the inhibition mechanisms involved. Models that describe the effect of an inhibitor on the growth rate of a crystallizing particle generally assume that the retardation effect is achieved via its adsorption on active growth sites. Sawada et al. [1] studied the adsorption of inorganic phosphates and organic polyphosphonates on calcite surfaces. In most cases, the adsorption process could be adequately described by the Freundlich and the Langmuir isotherms.

Bliznakov and Nikolaeva [2] proposed the following model to describe the effect of inhibitor adsorption on the crystal growth rate:

$$\frac{v - v_{\infty}}{v_0 - v_{\infty}} = 1 - \theta = 1 - \frac{K_L \cdot C}{1 + K_L \cdot C} \tag{1}$$

where θ is the fractional degree of crystal surface coverage, *C* is the concentration of the growth inhibiting impurity in the crystallizing solution and K_L is the equilibrium constant of the Langmuir adsorption isotherm. The step velocity *v* of a crystal face in the absence of an inhibiting impurity ($\theta = 0$) is v_0 and for full surface coverage ($\theta = 1$) it reaches a limiting value v_{∞} . Reddy and Nancollas [3] correlated the effect of organic scale inhibitor on CaCO₃ precipitation kinetics using the above model with limited success.

Kubota and Mullin [4] modified the growth retardation expression based on the Langmuir isotherm by introducing an additional parameter α , which represents the effectiveness of the inhibitor:

$$\frac{v}{v_0} = 1 - \alpha \cdot \left(\frac{K_L \cdot C}{1 + K_L \cdot C}\right) \tag{2}$$

^{*}Corresponding author.

With a highly effective inhibitor of $\alpha > 1$, the step velocity is stopped at $\theta_{eq} < 1$ (incomplete coverage of the crystal surface). In the case of $\alpha = 1$, the velocity reaches zero just at $\theta_{eq} = 1$, and for a weak inhibitor of $\alpha < 1$, the step velocity never becomes zero even at $\theta_{eq} = 1$ (complete coverage) but approaches a limiting value. Eq. (2) enables better correlation of experimental data [5–7] as it is based on two fitting parameters, K_L and α , instead of the single parameter K_L of the Langmuir expression. In a study of the retardation of the growth rate of CaCO₃ crystals in the presence of metallic impurities such as Zn²⁺, Pb²⁺ and Cu²⁺, Hasson et al. [8] adopted the Langmuir–Freundlich adsorption isotherm [9]:

$$\frac{v}{v_0} = 1 - \frac{K_{L-F} \cdot C^{\frac{1}{n}}}{1 + K_{L-F} \cdot C^{\frac{1}{n}}}$$
(3)

Eq. (3), which also embodies two fitting parameters $(K_{L-F} \text{ and } n)$, was found to provide very good correlation of a wide range of experimental data with values of n in the narrow range of 0.50 to 0.83.

The assumption that inhibited growth rate of CaCO₃ crystals occurs by a rapid equilibrium adsorption process seems to hold for most reported literature data. However, in a study of CaCO₃ precipitation in a continuous stirred tank in the presence of sodium hexa-meta phosphate (SHMP), Hasson and Cornel [10] found that the rate of SHMP adsorption varied inversely to the square root of the residence time. This result indicated that adsorption of the anti-scalant on the precipitated particles was a diffusion-controlled process. A possible reason for this deviation from the generally accepted assumption of almost instantaneous adsorption is that the Hasson and Cornel study was conducted with unusually high supersaturation conditions of the feed solution ($Ca^{2+} = CO_3^{2-} =$ 2000 ppm as CaCO₃) and with high inhibitor concentrations reaching 100 ppm.

2. Modeling the effect of anti-scalant on CaCO₃ crystallization kinetics

The kinetics of surface reaction controlled CaCO₃ precipitation is commonly described by the following equation [11–14]:

$$r_{s} = k_{Rs} \cdot \left(\left[\operatorname{Ca}^{2+} \right] \cdot \left[\operatorname{CO}_{3}^{2-} \right] - K_{sp} \right)$$
(4)

where r_s is the precipitation rate per unit surface of precipitated particles, k_{RS} is a surface based precipitation reaction constant and K'_{sp} is the solubility product of CaCO₃. Since determination of particles mass concentration is easier than measurement of particles surface,

Eq. (4) is often defined alternatively on the basis of the mass of the precipitated seeds:

$$r_{m} = k_{Rm} \cdot \left(\left[\operatorname{Ca}^{2+} \right] \cdot \left[\operatorname{CO}_{3}^{2-} \right] - K_{sp}^{'} \right)$$
(5)

where r_m is the precipitation rate per unit mass of precipitated particles and k_{Rm} is a mass based precipitation reaction constant. The calcium depletion, ΔCa^{2+} [mol/L], in a well stirred continuous flow crystallizer is therefore related to particles surface and particles mass respectively by:

$$\frac{\Delta \left[\operatorname{Ca}^{2^{+}}\right]}{\tau} = k_{RS} \cdot S_{CaCO_{3}} \cdot \left(\left[\operatorname{Ca}^{2^{+}}\right] \cdot \left[\operatorname{CO}_{3}^{2^{-}}\right] - K_{sp}\right)$$

$$= k_{Rm} \cdot m_{CaCO_{3}} \cdot \left(\left[\operatorname{Ca}^{2^{+}}\right] \cdot \left[\operatorname{CO}_{3}^{2^{-}}\right] - K_{sp}\right)$$
(6)

where S_{CaCO3} is the specific seeds area [m²/L solution] and m_{CaCO3} is the seeds concentration [gr/L solution].

Retardation of CaCO₃ precipitation due to the presence of impurities, such as inhibiting metal ions or common anti-scalants, has been analyzed assuming equilibrium adsorption of the impurity on some of the active sites available for crystal growth [8]. The decrease in CaCO₃ precipitation rate is attributed to the occupation of a fraction θ of the crystal active growth sites by adsorbed impurity molecules.

The CaCO₃ precipitation rate constant k_R^0 is reduced to the value of k_R in the presence of adsorbed anti-scant molecules according to the fraction (1– θ) of unoccupied growth sites:

$$\frac{k_R}{k_R^0} = 1 - \theta \tag{7}$$

The relation between θ and residual anti-scalant concentration $P_f[mg_{AS}/L]$ can be described by three alternate

Table 1 Equations defining θ and k_R for the various adsorption models

Occupied growth sites fraction	Crystallization rate coefficient
$\theta = \frac{K_L \cdot P_f}{1 + K_L \cdot P_f}$	$k_R = \frac{k_R^0}{1 + K_L \cdot P_f}$
$\theta = \frac{k}{b} \cdot P_f^{\ n} = K_F \cdot P_f^{\ n}$	$k_{R} = k_{R}^{0} \cdot \left(1 - K_{F} \cdot P_{f}^{n}\right)$
$\theta = \frac{K_{L-F} \cdot P_{f}^{\frac{1}{n}}}{1 + K_{L-F} \cdot P_{f}^{\frac{1}{n}}}$	$k_{R} = \frac{k_{R}^{0}}{1 + K_{L-F} \cdot P_{f}^{1/n}}$
	Occupied growth sites fraction $\theta = \frac{K_L \cdot P_f}{1 + K_L \cdot P_f}$ $\theta = \frac{k}{b} \cdot P_f^{\ n} = K_F \cdot P_f^{\ n}$ $\theta = \frac{K_{L-F} \cdot P_f^{\frac{1}{n}}}{1 + K_{L-F} \cdot P_f^{\frac{1}{n}}}$

adsorption models: Langmuir, Freundlich and Langmuir– Freundlich [9]. Table 1 summarizes the equations defining the occupied growth sites fraction θ and the reduced precipitation rate constant k_R according to the three models.

3. Verification of the anti-scalant inhibition kinetic model

3.1. Experimental system and methods

Fig. 1 shows the continuous flow system used to study the effect of an anti-scalant on the rate of $CaCO_3$ crystallization. Crystallization experiments were conducted in a 21 L thermo-insulated crystallizer.

3.1.1. Analytical techniques

Particle size distributions were measured using a Coulter LS230 instrument. Dissolved calcium concentration was determined according to ASTM standard method D 511, by EDTA titration, using Murexide as the indicator. The total Ca and Mg hardness was measured by EDTA titration, using Erichrome Black T as the indicator. Total alkalinity of the solution was determined according to ASTM standard method D 1067, by HCl titration to the end point of pH 4.3.

In the analysis of the phosphonate anti-scalant investigated in this work, free phosphate ion in solution was determined by the phosphorus reactive method (Hach method No. 8048) using the Hach spectrophotometer DR 2010. Total dissolved phosphate ion in solution was determined by the Acid Persulfate digestion method (HACH method No. 8190).

3.1.2. Experimental routine

The feed tank solution was maintained at a sufficiently low pH level in order to avoid CaCO₃ precipitation. Precipitation conditions in the crystallizer were induced by increasing the pH in the intermediate vessel to a desired controlled level. Each experiment lasted for a period corresponding to at least 5 crystallizer retention times so as to ensure steady state conditions. Crystallizer solution composition (pH, Ca²⁺ concentration and total alkalinity) and particle size distribution were periodically measured during an experimental run.

3.2. Analysis of retarded crystallization

Analysis of retarded crystallization was carried out by experimental determination of both kinetic and adsorption parameters. Values of the reaction constants k_R on both area and mass basis (k_{Rs} and k_{Rm}) were extracted from

November 1 in the second states by the mean space is such as such as the space in the total space.

Fig. 1. Continuous flow CaCO₃ crystallization system.

measurements of the reaction conversion and of the specific surface area and mass of the seeds. The degree of anti-scalant adsorption was evaluated from measurements of anti-scalant concentrations in the solutions entering and leaving the crystallizer.

The fractional coverage of the crystal surface by adsorbed anti-scalant was characterized by determining both $\phi_{mass'}$ the mass of anti-scalant adsorbed per unit mass of precipitated particles and $\phi_{area'}$ the mass of anti-scalant adsorbed per unit surface of precipitated particles. The values of ϕ_{mass} and $\phi_{area'}$ were obtained from:

$$\varphi_{mass} = \frac{P_0 - P_f}{m_{\text{CaCO}_3}} \left[\frac{\text{mg}_{A/S}}{\text{g}_{\text{CaCO}_3}} \right]$$
(8)

$$\varphi_{area} = \frac{P_0 - P_f}{S_{\text{CaCO}_3}} \left[\frac{\text{mg}_{A/S}}{\text{m}^2_{\text{CaCO}_3}} \right]$$
(9)

where $P_0 [\text{mg}_{A/S}/\text{L}]$ is the feed concentration of the antiscalant, $P_f [\text{mg}_{A/S}/\text{L}]$ is the residual anti-scalant concentration in the crystallizer, $m_{CaCO3}[\text{g}_{CaCO3}/\text{L}]$ is the mass concentration of the precipitated particles and S_{CaCO3} $[\text{m}^2_{CaCO3}/\text{L}]$ is the specific seeds surface area.

The measured values of ϕ_{mass} and ϕ_{area} are proportional to the fractional coverage θ of the precipitated particles by adsorbed anti-scalant molecules so that experimental values of the adsorption coefficients can be extracted from the expressions listed in Table 2.

3.3. Experimental results

Retarded CaCO₃ crystallization was studied using Permatreat PC 191-a phosphonate-based anti-scalant. The effect of anti-scalant on the kinetics of CaCO₃ crystallization was investigated by varying the feed anti-scalant concentration from 5 to 50 ppm and a retention time from

Table 2 Equations used to evaluate the adsorption coefficients

Langmuir

$$\phi_{\text{area}}, \phi_{\text{mass}} = b \cdot \theta = \frac{b \cdot K_L \cdot P_f}{1 + K + P_f}$$

Freundlich

$$\phi_{\text{area}}, \phi_{\text{mass}} = k \cdot P_{e}^{n}$$

Langmuir-Freundlich

$$\varphi_{\text{area}}, \varphi_{\text{mass}} = b \cdot \theta = \frac{b \cdot K_{L-F} \cdot P_{f}^{/n}}{1 + K_{L-F} \cdot P_{f}^{/n}}$$

1 to 3 h. Table 3 shows the feed solution composition and the range of experimental parameters investigated.

Table 4 summarizes the experimental results; it displays values of the kinetic coefficients and of the antiscalant adsorption on precipitated particles at various anti-scalant feed concentrations and at different retention times. It is seen that increase of the anti-scalant feed concentration leads to a substantial increase in the amount

Fig. 2. Effect of Permatreat feed concentration on the degree of $CaCO_3$ precipitation at a retention time of 2 h.

Fig. 3. Effect of Permatreat feed concentration on the residual supersaturation at a retention time of 2 h.

Table 3

Solution composition and parameters investigated in the study of retarded \mbox{CaCO}_3 crystallization

Ion	Concentration (ppm)	Parameter	Range
Ca ²⁺	680	Retention time, h	1–3
Na^+	2800	Permatreat feed	5-50
		concentration, ppm	
Cl⁻	3700	Temperature, °C	33
\boldsymbol{T}_{Alk}	2400 (as CaCO ₃)	Agitation, rpm	500

Run no.	Retention time, h	Feed AS conc., ppm	Crystallization rate coefficients		Anti-scalant adsorption		Seeds concentration	
			k_{RS} [L ² /mol·s·m ²]	k_{Rm} [L ² /mol·s·g]	$\frac{\phi_{mass}}{\left[\frac{mg_{{\scriptscriptstyle A}/{\scriptscriptstyle S}}}{g_{CaCO3}}\right]}$		$\begin{bmatrix} m_{CaCO3} \\ \frac{g_{CaCO3}}{L} \end{bmatrix}$	$\begin{bmatrix} S_{CaCO3} \\ \boxed{\frac{m^2_{CaCO3}}{L}} \end{bmatrix}$
71	1	25	36	1.07	19.78	659	1.13	0.034
58		25	nm	1.08	17.81	nm	1.12	nm
91		25	41	1.2	16.96	574	1.39	0.041
92		25	44	1.16	12.98	488	1.69	0.045
103		10	69	2.86	3.91	94	1.90	0.079
51	2	25	36	1.04	11.89	414	1.85	0.053
52		25	23	0.81	15.42	436	1.41	0.05
53		25	34	0.92	9.59	354	2.44	0.066
57		25	nm	0.71	14.68	nm	1.47	nm
65		25	26	0.6	12.27	525	1.84	0.043
67		10	100	3.82	4.72	122	1.81	0.07
68		50	5.2	0.17	29.39	910	1.18	0.038
69		5	121	4.45	3.47	94	1.41	0.052
70		40	5.9	0.19	22.4	690	1.48	0.048
76		40	5.4	0.16	27.1	882	0.98	0.03
80		40	8.4	0.27	26.67	826	1.05	0.034
93	1.5	25	38	1.05	10.09	365	2.13	0.059
59	3	25	nm	0.45	7.86	nm	1.49	nm

Table 4	
Kinetic coefficients and adsor	ption levels of Permatreat PC 191

Table 5 Best fit parameters based on alternate adsorption isotherms

Model	Based on seeds area	Based on seeds mass
Langmuir	$K_L = 0.46 \left(\frac{L}{m_{CaCO3}^2}\right); b = 0.038 \left(\frac{mg_{A/S}}{m_{CaCO3}^2}\right)$	$K_L = 0.5 \left(\frac{L}{\mathrm{mg}_{\mathrm{A/S}}}\right); b = 14 \left(\frac{\mathrm{mg}_{\mathrm{A/S}}}{\mathrm{g}_{\mathrm{CaCO3}}}\right)$
Freundlich	$K_F = 10.7 \left(\frac{L}{m_{CaCO3}^2}\right)^{2.86}; n = 0.35$	$K_F = 0.03 \left(\frac{L}{mg_{A/S}} \right)^{2.5}; n = 0.4$
	$b = 0.032 \left(\frac{\mathrm{mg}_{\mathrm{A/S}}}{\mathrm{m}_{\mathrm{CaCO3}}^2}\right)$	$b = 8.2 \left(\frac{\mathrm{mg}_{\mathrm{A/S}}}{\mathrm{g}_{\mathrm{CaCO3}}}\right)$
Langmuir–Freundlich	$K_{L-F} = 0.19 \left(\frac{L}{mg_{A/S}}\right)^{0.625}$; n = 0.625;	$K_{LF} = 0.3 \left(\frac{L}{\text{mg}_{A/S}}\right)^{0.50}$; $n = 0.50$
	$b = 0.017 \left(\frac{\mathrm{mg}_{\mathrm{A/S}}}{\mathrm{m}_{\mathrm{CaCO3}}^2}\right)$	$b = 2.93 \left(\frac{\mathrm{mg}_{\mathrm{A/S}}}{\mathrm{g}_{\mathrm{CaCO3}}}\right)$

of adsorbed anti-scalant and decreases dramatically the CaCO₃ crystallization rate constant k_R .

Figs. 2 and 3 show the effect of anti-scalant feed concentration on the amount of precipitated $CaCO_3$ and on the residual supersaturation level. Increase of anti-

scalant feed concentration is seen to reduce considerably the degree of CaCO₃ precipitation and to augment significantly the supersaturation level maintained in the crystallizer solution.

The data in Table 4 characterizing retarded crystalli-

Fig. 4. Anti-scalant adsorption based on seeds area vs. residual anti-scalant concentration.

Fig. 6. Anti-scalant adsorption based on seeds mass vs. residual anti-scalant concentration.

zation of CaCO₃ by anti-scalant adsorption were correlated according to the three alternate adsorption models. Table 5 gives the best fit values of the kinetic coefficients and the adsorption coefficients listed in Table 2; these values were obtained by statistical regression of the experimental data, minimizing the sum of squares of the error (SSE). It is interesting to note that the values of n =

Fig. 5. Kinetic constant based on seeds area vs. residual anti-scalant concentration.

Fig. 7. Kinetic constant based on seeds mass vs. residual anti-scalant concentration.

0.625 and n = 0.503 of the model based on the Langmuir–Freundlich isotherm are in good agreement with values in the range of 0.5 to 0.83 reported by Hasson et al. [8] for CaCO₃ inhibition by trace metallic concentrations of various metal ions.

The fit of the data to the correlating models can be assessed by comparing the experimental results with

Fig. 8. Comparison of the kinetic rate coefficient k_{Rs} induced by various anti-scalants.

calculated values based on the parameters listed in Table 5. Figs. 4 and 6 display the effect of residual antiscalant concentration on the level of anti-scalant adsorption on the precipitated particles. Figs. 5 and 7 show the effect of anti-scalant concentration on the magnitude of the crystallization reaction kinetic coefficient k_R . It is seen that all adsorption models describe reasonably well the experimental trends. The best fit of both the adsorption and reaction constant data is obtained by the Langmuir-Freundlich model.

It may be also noted from Figs. 4 and 6 that the amounts of anti-scalant adsorbed on particles precipitated at different retention times extending from 0.5 to 3 h, all fall substantially on the same line. This result supports the hypothesis that the adsorption process is fast, justifying the assumption of equilibrium adsorption.

3.4. Comparison of inhibition effect of various anti-scalants

A comparison of the inhibited $CaCO_3$ crystallization rate coefficient induced by various anti-scalants was performed by determining values of k_R as a function of anti-scalant inlet concentration. The comparison was carried out with four commercial anti-scalants: Permatreat PC 191, SHMP, Coatex EM 201 and Genesys LS. The experimental conditions were the same as listed in Table 3.

Fig. 8 compares values of the CaCO₃ crystallization rate coefficient, based on seeds area k_{Rs} , as a function of anti-scalant feed concentration of different anti-scalants. All commercial anti-scalants except SHMP are seen to

exhibit a substantially similar inhibitory effect on the CaCO₃ rate coefficient. SHMP displayed the strongest inhibition effect, inducing a reduced crystallization rate by a factor of 4 to 5 at anti-scalant concentrations of 10 PPM. Another interesting observation is that, irrespective of the anti-scalant nature, all anti-scalants lead to the same asymptotic value of 6–12 $L^2 \cdot mol^{-1} \cdot s^{-1} \cdot m^{-2}$ when the feed anti-scalant concentration exceeds 30 ppm. This phenomenon merits further investigation.

4. Conclusions

The major problems in the application of anti-scalants are that available products are largely shrouded in commercial secrecy and that the effects of operating parameters on inhibition effectiveness are largely unpredictable. The main contribution of this paper lies in providing quantitative data relating to the kinetics of $CaCO_3$ precipitation in the presence of anti-scalants.

5. Symbols

- *b* Factor relating anti-scalant mass to occupied crystal area, mg_{AS}/m²_{CaCO3} or mg_{AS}/g_{CaCO3}
- C Anti-scalant concentration, mg_{AS}/L
- K_L Langmuir isotherm coefficient, L/mg_{A/S} or L/g_{CaCO3}
- K_F Freundlich isotherm coefficient, (L/m²_{CaCO3}) 1/n or (L/mg_{AS}) 1/n
- K_{LF} Langmuir–Freundlich isotherm coefficient, (L/m²_{CaCO3})n or (L/mg_{AS})n
- k_R^0 CaCO₃ crystallization rate coefficient in the absence of inhibition, units of k_{Rm} or k_{Rs}
- k_R CaCO₃ crystallization rate coefficient in the presence of inhibition, units of k_{Rm} or k_{Rs}
- k_{Rm} CaCO₃ crystallization rate coefficient based on seeds mass, L²/mol s/g seeds
- k_{Rs} CaCO₃ crystallization rate coefficient based on seed area, L²/mol s m²
- K'_{sp} Solubility product of CaCO₃ corrected for ionic strength, $[mol/L]^2$
- m_{CaCO3} Specific seeds mass, g/L
- *n* Power index in adsorption isotherms
- P_o Feed anti-scalant concentration, mg/L
- *P_f* Residual anti-scalant concentration, mg/L
- r_s CaCO₃ crystallization rate based on seeds area, mol/s m²
- *r_m* CaCO₃ crystallization rate based on seeds mass, mol/s g seeds
- S_{CaCO3} Specific seeds area, m²/L
- T_{Alk} Total carbonate alkalinity,eq./L
- *v* Step velocity of a crystal face in the presence of an impurity, m/s

- v_0 Step velocity of a crystal face in a pure solution, m/s
- v_{∞} Limiting step velocity in impure solution, m/s

Greek

α	—	Effectiveness factor of the inhibiting impurity		
θ		Fractional coverage of crystal growth sites		
τ	—	Mean residence time of solution in crystallizer,		
		h		
ф _{ma}	ass	Specific mass of the adsorbed anti-scalant,		

 ϕ_{area} — Specific area of the adsorbed anti-scalant, $mg_{A/S}/m^2$

Acknowledgment

This work forms part of a research project supported by the Israel Water Authority, BMBF Germany and MOST Israel. Their financial assistance is gratefully acknowledged. This paper also forms part of the doctoral thesis submitted by D.L. to the Technion–Israel Institute of Technology.

References

 K. Sawada, N. Abdel-Aal, H. Sekino and K. Satoh, Adsorption of inorganic phosphates and organic polyphosphonate on calcite, Dalton Trans., 3 (2003) 342–347.

- [2] R. Bliznakov and R. Nikolaeva, Kristall Tech., 2 (1967) 161 (cited in [4]).
- [3] M.M. Reddy and G.H. Nancollas, Calcite crystal growth inhibition by phosphonates, Desalination, 12 (1973) 61–73.
- [4] N. Kubota and J. W. Mullin, A kinetic model for crystal growth from aqueous solution in the presence of impurity, J. Crystal Growth, 152(3) (1995) 203–208.
- [5] J. Ulrich and S. Al-Jibbouri, The influence of impurities on crystallization kinetics of sodium chloride, Crystal Res. Technol., 36(12) (2001) 1365–1375.
- [6] M. Rauls, K. Bartosch, M. Kind, S. Kuch, R. Lacmann and A. Mersmann, The influence of impurities on crystallization kinetics —a case study on ammonium sulfate, J. Crystal Growth, 213(1/2) (2000) 116–128.
- [7] K-J Westin and A.C. Rasmuson, Crystal growth of aragonite and calcite in presence of citric acid, DTPA, EDTA and pyromellitic acid, J. Coll. Interf. Sci., 282(2) (2005) 359–369.
- [8] D. Hasson, R. Semiat, M. Ilevicky, D. Damiano and A. Sher, Inhibition of CaCO₃ scale deposition by trace concentrations of some common ions, Proc. AWWA Water Quality Conference, San Antonio, Texas, 2004.
- [9] C. Tien, Adsorption Calculations and Modeling, Butterworth-Heinemann, 1994.
- [10] D. Hasson and A. Cornel, Kinetics of CaCO₃ precipitation in the presence of SHMP, NACE Corrosion/2007, Science and Technology of Industrial Water Treatment Symposium, Nashville, Tennessee, Paper No. 07051, 2007.
- [11] G.H. Nancollas and M.M. Reddy, Crystallization of calcium carbonate. II: Calcite growth mechanism, J. Coll. Interf. Sci., 37(4) (1971) 824–830.
- [12] G.H. Nancollas and M.M. Reddy, Crystal growth kinetics of minerals encountered in water treatment processes, in: Aqueous Environmental Chemistry of Metals, A.J. Rubin, ed., Ann-Arbor Science, 1974, Chap. 6.
- [13] H.N.S. Wiechers, P. Sturrock and G.V.R. Marais, CaCO₃ crystallization kinetics, Water Res., 9 (1975) 835–845.
- [14] D. Hasson, H. Sherman and M. Biton, Prediction of calcium carbonate scaling rates, Proc. 6th Intern. Symp. on Fresh Water from the Sea, 2 (1978) 193–199.

24