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  A B S T R AC T  

 Topographic attributes are key parameters in numerous models to assess sediment or nutrient 
input into surface waters. A broad range of digital elevation models (DEM) and algorithms 
bring, however, uncertainty to topographic interpretations. This may raise the question whether 
empirical, semi-distributed models can cope with such uncertainty. In this study, primary and 
complex topographic attributes related to soil loss and distributed sediment delivery were com-
puted from DEM with cell widths between 10 and 1,000 m. Correlation and regression analyses 
were conducted with average values of the catchments of 138 German gauges spanning differ-
ent terrain. Two slope, single-fl ow routing and slope-length algorithms were also included to 
evaluate their effects. Although either choice mostly induces signifi cant changes of catchment 
means of slope, fl ow length, slope-length factor and sediment delivery ratio (SDR), Spearman’s 
rank correlation coeffi cients are generally above 0.9. It is suggested from the data that linear or 
slightly curved functions are suitable to adapt average topographic attributes computed from 
differently resolved DEM or by different methods. Empirical catchment-based models can thus 
cope with topographic uncertainty and model users may implement these equations to com-
pare model outputs. However, the catchment delineation and stream defi nition may constrain 
their application. 
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 1.  Introduction  

 Topography is a fundamental controlling factor for 
many processes within the landscape [1]. Consequently, 
primary topographic attributes such as slope and spe-
cifi c catchment area (SCA) or more complex indices have 
been used in numerous environmental models. However, 
the wide range of resolutions of digital elevation models 
(DEM), their inherent accuracy and the algorithms 
applied to compute topographic attributes are sources of 
uncertainty in any topographic analysis [2]. 

 The underlying processes of soil erosion and sedi-
ment transport are complex and spatially heterogeneous 

thus limiting the application of physics-based models to 
comparatively small areas [3, 4]. Empirical approaches 
are therefore common in large-scale models. The univer-
sal soil loss equation (USLE) is widely applied to assess 
soil loss within catchments and its slope steepness ( S ) 
and slope length ( L ) factors refl ect the infl uence of ter-
rain. However, most mobilised soil particles are depos-
ited along the transportation path and do not reach the 
outlet. In empirical models, the relationship between 
observed sediment yield (SSY) at the outlet and modelled 
gross erosion is called sediment delivery ratio (SDR) and 
various relationships between the SDR and simple catch-
ment parameters such as area or average slope have been 
proposed [5]. The complex relationships and the cumber-
some prediction of SSY using the catchment area alone 
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are extensively discussed in [6]. Distributed approaches 
implement therefore environmental information like land 
use or topography to spatially disaggregate the SDR [7]. 

 Many studies have been conducted to evaluate 
scale, cell size or algorithmic impacts on topographic 
attributes. Either choice will signifi cantly alter the 
derived values and may infl uence the outcome of 
subsequent models [2]. The impact thereby depends 
on terrain  complexity. Previous studies mostly focus 
on cell-based statistics [8–10] or spatial patterns [11, 
12]. However,  semi-distributed or lumped models use 
average values for (sub-)catchments. Only few studies 
have specifi cally assessed cell size effects on catchment 
means of topographic attributes. Comparing average 
values between a 100 m- and a derived 1,000 m-DEM 
in 1°�1° blocks spatially scattered across the U.S. lin-
ear relationships for slope β, SCA and the topographic 
index defi ned as ln(SCA/tan  β ) are proposed in [13]. 
Testing areas across China, a more recent study sup-
ports these results by covering more pronounced ter-
rain and by comparing a 100 m- and an independent 
1,000 m-DEM [14]. 

 Based on these fi ndings, the main problem addressed 
in this paper is: Can empirical catchment-based sediment 
or nutrient input models cope with uncertainty in terrain 
representation? This leads to the following questions: 

 (a) Can catchment means of topographic attributes 
be converted between different DEM resolutions? 

 (b) Is this, in addition to [13, 14], also possible for 
complex parameters related to soil erosion and 
sediment delivery and for DEM resolutions below 
100 m? 

 (c) Are results of common GIS algorithms correlated 
as well? 

 2.  Methods  

 2.1.  Study area and input data  

 Case study areas are the catchments of 138 gauges 
in North-Rhine Westphalia (NRW, West Germany) and 
Bavaria (South Germany). They span various terrains 

from lowland to alpine conditions as well as a wide range 
of areas between 20 and 8,800 km2 (median of 326 km2) 
and are partly nested. Offi cial gauge positions and cor-
responding catchment areas have been provided by [15, 
16]. 

   Table 1 lists the available DEM with their horizon-
tal and vertical resolutions. Since DEM correction com-
promises topographic parameters [18], these DEM were 
pre-processed as little as possible. Even projections were 
left unchanged, except for DEM100 whose geographic 
projection was transformed to UTM using bilinear inter-
polation. However, bridges are abundant in DEM10 and 
DEM50 and had to be eliminated prior to any assessment. 
All GIS operations were performed with ESRI ArcGIS 9.2. 

 2.2.  Bridge removal  

 Bridges are artifi cial barriers impeding correctly 
modelled water fl ow paths. High-resolution ATKIS 
polygon data on land use and land cover in 2007 
(Germany Survey, NRW) was used to remove obstacles 
in water bodies after a visual comparison revealed its 
geometrical agreement with DEM10 and DEM50. ATKIS 
classes like rivers, wetlands and weirs were reclassifi ed 
as streams and a local rectangular minimum fi lter was 
applied to the elevation of stream cells. The expected 
maximum width of bridges determined the neighbour-
hood size. It had to be large enough to contain at least 
one water cell for each barrier cell. 

 In mountainous areas, however, roads span val-
leys that are not characterised as water bodies in ATKIS. 
So (and if no suitable dataset was available), a simple 
topographic approach was developed to approximate 
continuous fl ow paths. At fi rst, raster cells with a catch-
ment area above 5 km2 in a minimum-fi ltered DEM were 
considered as stream cells. This arbitrary threshold was 
chosen to limit the removal of potential fl ow barriers to 
well-established streams. These preliminary streams were 
then iteratively expanded to cover neighbour cells below 
or at the same height in the original DEM. Expanding and 
shrinking by half of the minimum fi lter size connected the 
separate segments and led to the stream mask. All ras-
ter cells lower or equal to the local average height were 

Table 1
Specifi cations of DEM.a

Name Resolution XY
(m)/Z (m)

Coverage Source

DEM10 10/0.01 Eastern NRW NRW Surveying and Mapping Agency
DEM50 50/0.1 NRW NRW Surveying and Mapping Agency
DEM100 100/1 Germanya SRTM [17]
DEM250 250/1 Germany Federal Agency for Cartography and Geodesy
DEM1000 1,000/1 Germanya GTOPO30
aand adjacent areas
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 ArcGIS and TauDEM furthermore implement dif-
ferent slope algorithms. As this may be relevant for soil 
erosion and sediment input modelling [21], the sensitiv-
ity to the choice of methodology was compared against 
DEM resolution effects. Due to technical constraints, 
TauDEM could not be applied to DEM10. 

 2.4.  Statistics  

 Statistics about each topographic parameter listed 
in Table 2 were calculated for all catchments whose 
areas deviated less than 25% from DEM100 (slope) or 
offi cial values (other statistics). Spearman’s rank corre-
lation coeffi cients and regression equations were then 
determined to assess the relationships between the 
datasets. Additionally, Wilcoxon tests were applied to 
estimate the signifi cance of differences. Although STI 
and LS are only meaningful for land areas, the stream 
delineation may vary according to the chosen approach 
(upper catchment area threshold, SCA-slope relation-
ship among others). Therefore, statistics were computed 
with and without stream cells to obtain a general idea 
of dependencies on stream cell defi nition. All statistical 
analyses were performed using the R-based software 
Statistical Lab 3.7 [22]. 

   3.  Results and discussion  

 3.1.  Catchment area and stream delineation  

 After bridge removal and manual adjustment of the 
gauges, the median of the ratios between modelled and 
offi cial catchment areas is close to 1.0 for all DEM and all 
fl ow algorithms. Inter-quartile ranges and the number of 
outliers, however, increase with raster cell size (Fig. 1). 

considered as belonging to such a segment. Each cell 
within the mask higher than a threshold above the local 
minimum was eventually classifi ed as barrier cells to be 
fi ltered. A centreline approximation (THIN function) was 
implemented to exclude shoreline cells. 

 2.3.  DEM processing  

 After fi lling sinks, fl ow direction and upslope area 
were calculated for each DEM. As a change of DEM res-
olution or fl ow routing algorithm also changes upslope 
areas of raster cells, gauges then had to be manually 
adjusted to cells of high fl ow accumulation. Raster 
cells comprising an upslope area of at least 2 km2 were 
defi ned as stream cells after a visual comparison with a 
river net of Germany [19]. These stream cells were thus 
considered as to be congruent with the river network. If 
possible, the spatial relations of gauges were also taken 
into consideration. 

 Grid-based fl ow routing algorithms behave dif-
ferently in distributing the outfl ow of raster cells to 
downslope neighbours. The simplest and widely-applied 
approach is to follow the steepest descent along one of 
the eight cardinal directions in a raster (D8 algorithm). 
Disadvantages are the poor spatial congruence [12] and 
the SCA distribution with a high proportion of raster cells 
having low values [10]. Therefore, the D∞ (D-infi nity) 
approach [11] was also included. It expresses the fl ow 
direction as a continuous angle between 0 and 2� and 
thus enables the fl ow to be diverted to a maximum of 
two neighbour cells. D∞ functionality was provided by 
the freely available TauDEM extension for ArcGIS [20]. 
An own fl ow accumulation routine was developed to 
circumvent problems with fl oating-point numbers and 
for automation purposes. 

Table 2 
Parameters derived from DEM.

Topographic parameter Methodology

Catchment area A Flow accumulation including outlet cell

Flow length to outlet and stream ArcGIS fl ow length function (D8 fl ow only, TauDEM D8 fl ow 
 direction recoded to ArcGIS scheme)

SDR Ref. [7] without land use factor and dj = 0.9997/30 m for 
 stream cells

Sediment transport capacity index  
[23]

SCASTI  
22.13

1.30.6 sin
0.0896

b=
⎛ ⎞⎛ ⎞ ⎟⎟ ⎜⎜ ⋅ ⎟⎟ ⎜⎜ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

Slope β Neighbourhood (NS) (ArcGIS) and maximum slope method 
 (MS) (ArcGIS, TauDEM)

Slope length factor L Ref. [24], with cutoff slope angles of 0.7 (β < 5%) and 0.5 (β ≥ 5%) 
 (D8 fl ow only, TauDEM D8 fl ow direction recoded 
 to ArcGIS scheme)

Slope steepness factor S [25]
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 3.2.  Slope and fl ow length  

 The highly signifi cant increase ( p  < 0.001) of average 
slope angles with DEM resolution can also be seen in 
Table 3. With raster cell sizes becoming smaller, average 
slopes also converge (Fig. 4). This pattern is similar for 
both slope algorithms, although the impact is slightly 
lower for the maximum (D∞) than for the neighbour-
hood slope algorithm (Fig. 2). Correlation coeffi cients 
exceeding 0.9 in all cases support the inter-scale correla-
tion of average slopes observed by [13, 14]. Linear regres-
sion models describe well the relationships, especially 
between fi ne DEM resolutions. Seven virtual gauges 
with catchment means of slope angles between 10% and 
35% have been included in the statistics to increase the 
sample size for DEM10 and DEM50. 

 Differences between slope algorithms are compara-
tively small and proportional to cell width (Fig. 3). They 
are signifi cant ( p  < 0.001) for all DEM besides DEM10. The 
D∞ algorithm returns the highest slope angles. This is a 
fl ow routing effect because maximum slopes computed 
with both D8 algorithms do not differ signifi cantly apart 
from DEM250 ( p  = 0.03). The respective coeffi cients of lin-
ear regression models are 1.00 (0.99 for DEM250). 

 Average fl ow lengths prove to be reciprocal to DEM 
cell size (Table 3) because fl ow paths meander more if 
grid cells become smaller. However, the deviations are 
not as high as for slope angles. The relationships for 
fl ow lengths to the outlet are linear and correlation coef-
fi cients exceed 0.98. Flow lengths to streams in DEM10 
to DEM250 behave in a similar manner, although the 
impact is larger and  r  S  values are slightly smaller. In 
contrast to these DEM, fl ow lengths in DEM1000 are 
not only considerably shorter (Fig. 5) but they are 
also moderately correlated to other DEM resolutions. 
These correlation coeffi cients are reciprocal to the pro-
portion of stream cells (Table 3;  r  S  = 0.65 for TauDEM 
D8). 

 The choice of methodology plays a marginal role 
for average slope and fl ow length to outlet. Flow length 
values are only slightly higher in TauDEM- than in 
ArcGIS-processed DEM. Differences are reciprocal to 

Nonetheless, individual errors occur for every DEM and 
do not follow any clear trend. 

 The catchment area of each raster cell obviously 
depends on DEM resolution as larger raster cells also 
accumulate more area. Consequently, with a given area 
threshold, the proportion of stream cells in catchments 
is expected to be proportional to cell width (see Fig. 2). 
Nevertheless, fl ow routing algorithms can also have a 
considerable impact (Fig. 3). The D∞ algorithm of Tau-
DEM returns more stream cells than ArcGIS for DEM1000 
(median ratio 1.37). This is not only a bifurcation effect 
but partly a result of fl ow routing in fl at terrain as Tau-
DEM’s D8 algorithm returns streams which are also 19% 
longer. Such areas are more prominent in the smooth 
surface of DEM1000 (see Section 3.2). The differences for 
the other DEM are small and found to be signifi cant for 
DEM50 ( p  < 0.001) and DEM100 ( p  = 0.02 for D∞,  p  = 0.06 
for D8). They are not signifi cant for DEM250. 

 By contrast to topographic attributes, correlation 
coeffi cients are not only relatively low between DEM 
resolutions (Table 3) but also between fl ow routing 
algorithms. For the latter,  r  S  values depend on DEM 
resolution being lowest for DEM1000 with  r  S  ≈ 0.65 
(ArcGIS),  r  S  < 0.5 (TauDEM) and increasing to  r  S  ≈ 0.8 for 
all other DEM. The statistical relationships are linear. 

Fig. 1. Modelled area to offi cial area for different DEM reso-
lutions and fl ow routing algorithms.

Fig. 2. Effect of DEM resolution on stream delineation and 
average topographic attributes.

Fig. 3. Method effects on stream delineation and average 
values of topographic attributes.
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Table 3 
Coeffi cients of regression equations y = a2x² + a1x respectively y = a1x with x = DEM100.

Neighbourhood slope Maximum slope (D∞)

Parameter DEM 10 50 250 1,000 50 250 1,000

Streams a1 0.11 0.52 2.38 6.89 0.53 2.39 9.60
N 59 63 112 91 61 108 91
rS

0.79 0.90 0.79 0.66 0.80 0.83 0.49
Slope a1 1.37 1.23 0.70 0.31 1.20 0.73 0.37

n 66 71 113 94 61 108 91
rS

0.98 0.99 0.98 0.93 0.99 0.98 0.94
Flow length 
 to outlet 
 (to streamsa)

a1 1.11
(1.16)

1.03
(1.08)

0.87
(0.88)

0.83
(0.51)

1.04
(1.09)

0.87
(0.88)

0.83
(0.21)

n 59 63 112 91 61 108 91
rS

0.98
(0.85)

0.98
(0.92)

0.99
(0.93)

0.99
(0.73)

0.98
(0.94)

1.00
(0.95)

1.00
(0.51)

STIa (STI) a2 0.00 0.00 0.01 0.01 0.00 0.00 0.01
a1 0.88

(0.76)
1.05
(1.11)

0.78
(0.82)

0.35
(0.27)

1.02
(1.01)

0.94
(0.92)

0.59
(0.51)

N 59 63 112 91 61 108 91
rS 0.99

(0.94)
0.99
(0.99)

0.99
(0.99)

0.93
(0.93)

1.00
(1.00)

0.99
(0.99)

0.96
(0.97)

USLE LSa 

 (USLE LS)
a2 0.00 0.00 0.01 0.01 0.00 0.00 0.01
a1 1.02

(1.05)
1.09
(1.11)

0.70
(0.67)

0.21
(0.19)

1.08
(1.10)

0.90
(0.86)

0.38
(0.27)

n 59 63 112 91 61 108 91
rS 0.99

(0.99)
0.99
(0.99)

0.99
(0.99)

0.93
(0.94)

0.99
(0.99)

0.99
(0.99)

0.95
(0.96)

SDRa (SDRb) a1 0.20
(0.20)

0.56
(0.23)

1.82
(2.80)

3.43
(13.92)

0.50
(0.11)

2.12
(2.59)

5.68
(22.23)

n 59 63 112 91 61 108 91
rS 0.71

(0.85)
0.97
(0.62)

0.97
(0.80)

0.87
(0.72)

0.95
(0.63)

0.92
(0.69)

0.82
(0.69)

anon-stream cells; bTauDEM (D8).

Fig. 4. Average slope (NS) in relation to DEM100.
Fig. 5. Average fl ow length to streams (ArcGIS) in relation 
to DEM100.

DEM resolution and statistically signifi cant ( p  < 0.001) 
except for DEM1000. Correlation coeffi cients are above 
0.99 for both parameters and linear regression models 
fi t well (Table 4). In contrast, the impact is considerable 
for DEM1000 when fl ow lengths are calculated to the 

streams (Fig. 3). In accordance to Section 3.1, the cor-
relations are only moderate (Table 4;  r  S  = 0.76 between 
ArcGIS and TauDEM D8). Although the slight differ-
ences for all other DEM are also signifi cant ( p  < 0.001, 
 p  = 0.005 for DEM50 and D∞), rS values are higher. 
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           3.3.  Sediment transport capacity index (STI) and USLE 
LS factor   

 Besides the slope angle, three factors infl u-
ence the dependency of both attributes on cell 
size changes. At fi rst, the DEM resolution deter-
mines the minimum possible erosive slope length 
and SCA. Secondly, the terrain-smoothing effect 
of coarse DEM resolution (Section 3.2) can further 
increase slope length values. Finally, average slope 
angles decrease and so does the exponent of the 
L factor. 

 The inter-scale correlation of SCA values [13, 14] is 
supported by the high correlation of average STI val-
ues between DEM (Table 3). However, the relationships 
between coarse and fi ne DEM are not linear but slightly 
curved. In accordance to the equivalence of STI and the 
LS factor [23], both attributes show a similar pattern of 
resolution dependency, although the impact on LS is 
higher than on STI (Figs. 6 and 7). They are also highly 
correlated ( r  S  > 0.99) and second-order polynomial 
regression models describe the relationship between 
average LS and STI values. 

     The largest average values occur in DEM50, nonethe-
less DEM100 differs only slightly ( p  > 0.03). The reason 
for the observed drop of average STI and LS in DEM10 
has to be the decrease of both SCA and erosive slope 
length prevailing higher average slopes. This corre-
sponds with observations by [26] on a cell-by-cell basis. 
In addition, Fig. 2 shows that values calculated by the 
neighbourhood slope method are stronger infl uenced 
by DEM resolution changes, although differences to the 
maximum slope method decline with raster cell size. 
The  r  S  values between DEM are high (Table 3). However, 
calculated values and differences are somewhat extreme 
because neither land use patterns nor reasonable slope 
length caps were applied. 

 Changing methods has a signifi cant ( p  < 0.001) infl u-
ence on average STI and LS values aside from DEM1000 
(STI) and DEM250 (LS) between both D8 algorithms. 

Table 4
Coeffi cients of regression equations y = a1x with x = ArcGIS (NS).

ArcGIS (MS) TauDEM (D∞)

Parameter DEM 10 50 100 250 1,000 50 100 250 1,000

Slope a1 0.99 1.03 1.02 1.08 1.21 1.05 1.04 1.10 1.23
Flow length 
 (to streams)

a1 1.00
(1.00)

1.00
  (1.00)

1.00
(1.00)

1.00
(1.00)

1.00
(1.00)

1.02
(0.99)

1.01
(0.98)

1.00
(0.99)

1.00
(0.40c)

STIa (STI)
a1 0.93

(0.75)
0.90

(0.62)
0.93

(0.76)
0.97

(0.71)
1.38

(0.73)
0.95

(0.65)
1.00

(0.81)
1.00

(0.73)
1.45

(0.75)
USLE LSa 
 (USLE LS)

a1 0.95
(0.95)

0.95
(0.94)

0.92
(0.91)

0.91
(0.88)

1.46
(1.12)

0.97
(0.96)

0.94
(0.93)

0.91
(0.88)

1.50
(1.14)

SDRa (SDRb)
a1 0.98

(0.83)
0.86

(0.53d)
0.87

(0.52)
0.93

(0.43)
1.04

(0.68)
0.76

(0.24)
0.82

(0.52d)
0.93

(0.45d)
1.39

(0.69)
anon-stream cells; bTauDEM (D8); crS = 0.55; d0.85 < rS < 0.90.

Fig. 6. Average STI (NS) for non-stream cells in relation 
to DEM100.

Fig. 7. Average LS (NS) for non-stream cells in relation to 
DEM100.
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area whereas the maximum slope only includes the fl at-
ter downslope relief. Due to the shorter distance to either 
streams or outlet, the slope angle at a foot of slope has a 
higher signifi cance than the slope itself where maximum 
slope returns higher values. Terrain characteristics as well 
as DEM resolution determine thus the spatial pattern 
and absolute values of slope differences and, eventually, 
empirical relationships. The considerably larger average 
SDR for the TauDEM-processed DEM1000 is equivalent to 
the larger number of stream cells (Section 3.1). 

 Without stream delineation, the raster cells next to the 
outlet are most important and maximum slopes are mostly 
gentle here. The neighbourhood method can consider 
(steeper) slopes. This is more probable in coarse DEM, 
given the fact that the differences between regression 
equations with and without stream cells are higher there 
(Table 4). However, the opposed trend of surface smoothing 
seems to partly overlay. Correlation coeffi cients are slightly 
lower between both DEM resolutions and algorithms. The 
relationships still follow a linear trend although the coef-
fi cients change noticeably (Tables 3 and 4). 

 4.  Conclusions  

 Previous studies suggested that average slope 
angles and SCA computed from a 100-m DEM can be 
downscaled to 1,000 m resolution using linear equations 
[13, 14]. Supporting these fi ndings, the results show that 
linear or slightly curved regression models are princi-
pally suitable to transform catchment means of topo-
graphic attributes for DEM resolutions between 10 m 
and 1,000 m. This is not only possible for simple but also 
for complex parameters such as USLE’s slope–length 
factor or spatially distributed SDR. Furthermore, linear 
equations describe suffi ciently the relations between 
outcomes of different single-fl ow routing and slope 
algorithms. This is important as often only one version 
is implemented in standard GIS software. Despite sig-
nifi cant changes in absolute values, catchment-based 

Following the pattern for slope angles, the effect is pro-
portional to DEM resolution (Fig. 3). While the maxi-
mum slope methods (D8 and D∞) return higher STI and 
LS values for DEM1000, the effect declines and even 
reverses for fi ner resolved DEM. Correlation coeffi cients 
are also very high ( r  S >  0.98) and linear regression mod-
els describe the observed relationships (Table 4). 

 Stream cell defi nition affects both topographic attri-
butes differently. The equations in Tables 3 and 4 for 
the LS factor generally change a little when stream cells 
are included in the statistics. Only in DEM1000 with 
its many stream cells, the inter-algorithmic relation-
ships are affected (Table 4). Besides, the impact on STI is 
much higher because stream cells have  per defi nitionem  
large SCA values resulting in high STI values if slope 
angles β > 0°. This is especially relevant for the neigh-
bourhood slope method which may induce high slope 
angles along narrow valleys or non-corrected bridge 
cells. Consequently, the difference is comparatively 
large and the correlation low for DEM10 (Table 3). The 
relationship between neighbourhood and maximum 
slope changes considerably for all DEM, particularly for 
DEM1000 (Table 4). Nonetheless, correlation coeffi cients 
remain high ( r  S  > 0.98;  r  S  = 0.95 for DEM10). 

 3.4.  Sediment delivery ratio  

 Modifying the DEM resolution or GIS algorithms does 
not affect many lumped SDR approaches provided that 
the catchment area does not change. If appropriate, the 
empirical relationships for average slope may be applied 
to transform SDR values to other DEM resolutions or 
methods. Given the high correlations for the STI and USLE 
LS factor, the sediment input could also be estimated. 

 By contrast, the distributed algorithm is inherently 
resolution-dependent as the number of raster cells 
along each fl ow path increases with cell sizes becoming 
smaller. Therefore, the impact of changing DEM 
resolution is highest among topographic attributes (Fig. 
2,  p  < 0.001). If means are corrected for cell width, they 
are proportional to average slope. Correlation coeffi -
cients between DEM are low in comparison to other top-
ographic parameters (Table 3). The moderate values for 
DEM10 (0.59 <  r  S  < 0.71 for ArcGIS NS; 0.52 <  r  S  < 0.64 for 
ArcGIS MS) indicate an information content that cannot 
be fully explained by coarser DEM. The relationships 
are linear (Fig. 8). 

     Average SDR values also change signifi cantly if fl ow 
routing or slope calculation are altered (Fig. 3). Mostly, 
 p  is below 0.001 except for DEM10 ( p  = 0.01) and the D8 
comparison for DEM250 ( p  = 0.003). At a fi rst glance, the 
results may contradict the slope pattern. However, higher 
average maximum slope angles do not mean higher val-
ues for each raster cell. At the feet of slopes, for example, 
the neighbourhood slope algorithm considers the upslope 

Fig. 8. Normalised average SDR (NS) for non-stream cells in 
relation to DEM100.
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models are thus capable to handle topographic uncer-
tainty. However, there are three constraints. 

 Firstly, the relations are only valid as long as catchment 
delineation is not compromised. If catchment areas have 
to be derived from a DEM, higher resolution means 
better conformance with offi cial values. Discrepancies 
here will also affect many lumped SDR approaches. 
Nevertheless, if DEM become too detailed artefacts 
may emerge interfering with the calculation of fl ow 
directions and catchment area. Secondly, the regression 
models for the spatially distributed SDR and the STI 
seem to be susceptible to stream defi nition. However, 
the two tested alternatives of a constant threshold of 
upper catchment area for all DEM resolutions and no 
streams, respectively, give only a general impression. 
Finally, the inter-resolution correlations are compara-
tively low for the distributed SDR approach. The mod-
erate correlations between DEM10 and the other DEM 
indicate a content being not fully explicable. 

 DEM and method choice signifi cantly infl uences 
estimates of sediment or nutrient input to surface waters. 
Although it is feasible to expect better results with higher 
DEM resolution, this study shows that this may not be 
true for empirical, semi-distributed models. Pre-process-
ing and computing time does not only increase rapidly 
but benefi ts of better resolved DEM or elaborate algo-
rithms are marginal. Model users may use the proposed 
empirical equations to compare model results based on 
different DEM resolutions or topographic algorithms. 
Nonetheless, an overall sensitivity analysis of sediment 
and nutrient models has to include other relevant factors 
such as land use or soil. 
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