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A B S T R AC T

In this paper, a new and integrated approach to easily calculate pollutant loads from agricul-
tural watersheds was suggested and verifi ed. The basic concepts of this empirical tool were 
based on an assumption that variations in event mean concentrations (EMCs) of pollutants 
from a given agricultural watershed during rainstorms were only attribuTable to the rainfall 
pattern. Fifty one sets of EMC values were obtained from nine different watersheds, and these 
data were used to develop prediction tools for the EMCs in rainfall runoff. The results of sta-
tistical tests of these formulas showed that they were fairly good in predicting actual EMC 
values of some parameters, and useful in terms of calculating pollutant loads for any rainfall 
event time span such as daily, weekly, monthly, and yearly. As part of this study, we were able 
to examine the fi eld applicability of the empirical model. In an effort to improve the water qual-
ity of a reservoir, all water were drained and followed by a cleanup of the sediments. Later, the 
rainfall water storage and the change in water level began. The predicted values of the chemical 
oxygen demand (COD) corresponded well with observed values. The predicted total nitro-
gen (TN) moderately matched the observed values. However, there was a great difference in 
suspended solid (SS) and total phosphorus (TP) between the two parts. Finally, we concluded 
that the EMC-based empirical model could be considered as a simpler, more feasible, and use-
ful solution in evaluating timely distribution of nonpoint pollution loads in agricultural and 
forested watersheds in constructed and other complicated watershed models.
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1. Introduction

For many years, nonpoint pollution in rural areas has 
been identifi ed as a signifi cant cause of surface water 
quality degradation and has been studied widely in the 
world. For instance, agricultural sources are responsible 
for impairment of more than one-half of the rivers and 
lakes in the United States [1]. However, the causes and 
processes involved in the problems of nonpoint pollu-
tion are complicated and locally vary because of a variety 

of precipitation, soil erosion, agricultural drainage, the 
infl uence of topography, and types of land use [2].

To estimate nonpoint pollution loads in rural areas, 
many efforts have been conducted to develop prediction 
models and to produce some detailed models which have 
been successfully applied to specifi c sites. Regarding com-
plexity, the estimating methods can be categorized as: 

1. simple methods; 
2. mid-range models; and 
3. detailed models.

Simple methods are widely used in the United States 
for nonpoint management in small rural watersheds 
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due to their simplicity, practicality and easy identifi ca-
tion [1]. Nevertheless, they are typically derived from 
empirical relationships between physiographic charac-
teristics of watershed and pollutant export, and focus 
on continuing monitoring efforts. Accordingly, the out-
put is in mean annual values or storm loads, and the 
predictive results are rough and have low transferabil-
ity to other regions due to empirical details. In addition, 
simple methods consider few detailed representations 
of pollutant transport within and from the watershed.

Mid-range watershed models are generally midway 
between the cost, complexity, and accuracy of simple 
methods. The Agricultural Nonpoint Source (AGNPS) 
model is widely used as a kind of mid-range model 
and is validated for different conditions ranging from 
agricultural to forest areas, and can be used to simulate 
runoff, sediments, and chemical transport from a single 
storm event. Although AGNPS is a distributed model 
in the sense that watershed geometry is represented by 
uniformly distributed cells, its components are primar-
ily empirical and lumped. For example, the AGNPS 
model uses the curve number (CN) and universal soil 
loss equation (ULSE) in estimating runoff and erosion 
from agriculture land [3]. The Annualized Agricultural 
Nonpoint Source (AnnAGNPS) is further improved and 
upgraded as a distributed parameter model for water-
shed scale and continuous simulation [4].

For a more accurate estimation of the load of non-
point source pollutants, comprehensive models have 
been developed. The Hydrological Simulation Program–
Fortran (HSPF), Soil and Water Analysis Tools (SWAT), 
and Better Assessment Science Integrating Point and 
Nonpoint Sources (BASIN) are used in watershed man-
agement to simulate nonpoint pollutant transportation 
under various hydrological conditions [5]. Incorporated 
with the ̀ (GIS), these models cover a range of variations in 
complex physical, chemical, and biochemical processes, 
and help estimate the effects of agricultural management 
measures and practices [1]. Conversely, these models are 
complicated and require considerable time and expen-
diture for data collection and model application. They 
involve many parameters such as velocity, settling, decay, 
and other processes. Hence, the calibration and applica-
tion of this model requires professional training.

As mentioned previously, the simple methods lack 
detail and application to different regions, while detailed 
models are complex and diffi cult to apply. In this paper, 
we develop general and useful empirical tools with a 
simple and reasonable approach.

Basic concepts of this empirical tool were based on 
the assumption that variations in event mean concen-
trations (EMCs) of pollutants from a given agricultural 
watershed during rainstorms were only attribuTable 

to the rainfall pattern; this pattern includes rainfall 
intensity, rainfall duration, antecedent dry days and 
rainfall [6]. EMCs represent the concentration of a spe-
cifi c pollutant contained in stormwater runoff coming 
from a particular land-use within a watershed, which 
are generally calculated from local stormwater moni-
toring data.

Obtaining the necessary data for calculating site-
specifi c EMCs can be cost-ineffective, and researchers 
often use the values which can be available in the litera-
ture. If site-specifi c fi gures are unavailable, regional or 
national averages can be used, although the accuracy of 
these data is not reasonable to apply the model. Due to 
the specifi c meteorological and topographical character-
istics of individual watersheds, agricultural and urban 
land uses can be shown in wide range of variability in 
nutrient export.

Developing a simple prediction model for general 
application in a small rural area would make the man-
agement of nonpoint pollution become convenient and 
effi cient [7,8]. We seek to establish a useful empirical 
model through the compilation and analysis of EMC 
data sets obtained from different watersheds. The predic-
tion model developed in this study is a new and integrated 
approach to easily calculate pollutants loads from agricultural 
watershed. It can be applied with some simple and general 
parameters such as watershed and rainfall characteristics. 
Also it can be effectively applied to other watersheds.

Based on these backgrounds, this study has three 
objectives: 1) to statistically characterize EMCs and 
loads in nine different rural watersheds; 2) to develop 
an equation to predict the runoff volume, loads, and 
EMCs using easily-measurable physical parameters 
such as watershed information and rainfall; and 3) to 
examine the application of the proposed model based 
on a comparison between the predicted and observed 
values in a reservoir.

2. Model development

The most important variable for a prediction model 
is event mean concentration (EMC) which can be 
defi ned as [9]:
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total i
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× Δ
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∑  
(1)

where EMC = event mean concentration of a particu-
lar event (mg/l); Qi = discharge during time interval 
Δt (m3/h); Ci = concentration of pollutant during time 
interval Δt (mg/l).
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If the EMCs from the rainfall events are available, 
the pollutant load can be estimated based on the simple 
method, described as

ReL EMC C A f= × × × ×  (2)

where L = nonpoint source load of pollutant in the nth 
rain event (kg); EMC = event mean concentration of pol-
lutant (mg/l); Re = rainfall depth (mm); C = runoff coef-
fi cient (dimensionless); A = area of the watershed (ha); 
f = conversion constant (0.01).

Even though there are same watersheds, the EMC 
range changes signifi cantly with diverse rainfall pat-
terns. For that reason, we focused on fi nding a rela-
tionship among the main infl uence factors including 
the characteristics of watershed, rainfall information, 
and fl ow parameters. The general description can be 
expressed as:

EMC ∝ f(LANDUSE, SLOPE, RAINFALL, ADD) (3)

where EMC is a function of LANDUSE, SLOPE, RAIN-
FALL, Antecedent Dry Days (ADD) and other factors.

If reasonable results from a prediction EMC model were 
acquired, it can estimate the cumulative pollution load 
based on rainfall events for any time scale, as described 
in Eqs. (4)–(7) [10]:
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Fig. 1 describes procedures to estimate the load of 
nonpoint source pollutants in a rural area. Starting 
with the rainfall depth and pollutant concentration, 
hydrograph, pollutograph, and loadograph data 
were produced. If an EMC value is obtained from 
Eq. (3) for the rainfall event, the pollution load can 
be easily computed using Eq. (2), and the cumula-
tive load for the specific time span can be calculated 
using Eqs. (4)–(7).

3. Material and methods

3.1. EMC data collection

To ensure the diversity of rural watersheds based 
on different land uses and regional specifi cations, nine 
watersheds in Korea were selected to analyze the char-
acteristics of EMC and pollution load. Each watershed 
is comprised of agricultural areas, forest, agricultural-
forest, and hybrid areas as shown in Fig. 2 (A–D).

The watershed of Rural 1 and Rural 2 is located in 
Seosan City. They drain out to the agricultural reservoir, 
and then fl ow into a regional class II River (status of the 
stream defi ned by Korean Government) located down-
stream. Rural 3 is mainly composed of unpolluted for-
est, and Rural 4 consists of a hybrid area of rice paddy 
and forest.

The data for the other fi ve watersheds (Rural 5 to 
Rural 9) are collected from the agricultural NPS pol-
lutant investigation programs granted by the Korea 
Rural Community Corporation. The specifi c site infor-
mation is summarized in Table 1. NPS monitoring was 
conducted from March to September, 2002. The spe-
cifi c information regarding sampling is presented in 
Table 2. The measurement of all water quality param-
eters was performed in accordance with standard 
methods [11]. A total of 51 data sets (the number of the 

Fig. 1. Procedure for calculating nonpoint pollution load.
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rainfall events) from nine watersheds were collected 
and analyzed.

3.2. Model establishment

Statistical software SPSS 10.0 was employed to ana-
lyze the 51 sets of EMC data. The specifi c procedure was 
performed as follows:

1. Descriptive statistical analysis;
2.  Analysis of infl uence factors on the EMC values 

based on correlation matrices. The factors selected 
include the characteristics of watershed (area, land 
use, slopes, etc.); rainfall information (rainfall depth, 
rainfall intensity, duration, dry days, etc.); and hydro-
logic parameters (average fl ow rate, maximum fl ow 
rate, dry fl ow rate, etc.);

3.  Forward-stepwise multiple regressions to relate 
EMC to the ratio of agricultural land use (AGRO), 
watershed slope (SLOPE), the depth of rainfall (Re), 
and advanced dry days since the last rainfall event 
(ADD), which are generally thought to be the most 
crucial factors [8,10].

Since the EMCs refl ect the contributions of many 
factors, a multiplicative equation was used to fi t the 

nonlinear model. Microsoft Excel® spreadsheet software 
was used to solve for the adjusTable parameters of the 
four factors previously mentioned, and the optimized 
solution was acquired.

3.3. Site used for examining model application

An opportunity to examine the field applicability 
of the empirical model came while a water quality 
problem in a reservoir on Backryeong Island in Korea 
was being studied. The reservoir was constructed by 
the local government and designated exclusively for 
head water. During the operation of this reservoir, it 
was determined that the water quality of the reser-
voir did not meet the water quality standards guar-
anteed by the consulting company. In an effort to 
improve the water quality of reservoir, all the water 
was drained out and followed by a clean-up of the 
sediments. Afterward, the reservoir started to store 
rainfall runoff. The changes of the water level and 
water quality parameters were monitored at various 
locations in the lake.

The watershed is covered with forest and agricul-
tural area (See Fig. 2 (E)). This island is a military protec-
tion zone, so no further information can be provided. 
A scene showing the dredging of sediments can be seen 
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Fig. 2. Location of water quality monitoring points: (A) Study watershed 1—the Kyeryong Mountain; (B) Study watershed 
2—Seosan city; (C) Study watershed 3—Haemi, Seosan City; (D) Study watershed 4—Shinheung, Daejon city; (E) The water-
shed and reservoir for model verifi cation in Backryeong Island.
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Table 1
Hydrological and land use descriptions of the study watersheds

Site Location Areaa 
(km2)

Lengthb 
(km)

Mean widthb

A/l (km)
Shape factorc 
A/l2

Densityd 
l/A

Mean 
slopee (%)

Land use (%)

Rural 1a Seosan city 
Chungnam 
province

2.85 1.575 1.575 2.003 0.317 22.641 Rice paddy 1.8, 
cropland 0.7, 
forest 94.2, road 
0.7, others 2.6

Rural 2a Seosan city 
Chungnam 
province

4.97 1.649 2.652 1.827 0.487 41.17 Rice paddy 8.4, 
cropland 6.4, forest 
82.3, road 1.4

Rural 3a Daejon city 
Chungnam 
province

3.38 2.875 0.991 0.345 1.009 62.614 Forest 99.5, 
road 0.1, others 0.4

Rural 4a Daejon city 
Chungnam 
province

27.37 6.173 4.434 0.718 0.226 5.97 Rice paddy 35.9, 
forest 44.8, road 
4.7, residential 
13.3, others 1.3,

Rural 5b Iksan city 
Jeonbuk 
Province

2.28 1.560 1.67 1.07 0.60 26.0 Rice paddy 12.3, 
cropland 8.2, road 
1.2% Forest 78.3

Rural 6b Iksan city 
Jeonbuk 
Province

1.19 2.39 0.94 0.39 1.07 15.3 Rice paddy 27.5, 
cropland 9.2, 
forest 63.3

Rural 7b Muhan city 
eonnam 
Province

5.87 2.95 2.15 0.73 0.47 7.2 Rice paddy 3.7, 
cropland 7, 
forest 89.3

Rural 8b Muhan city 
Jeonnam 
Province

5.05 3.78 1.34 0.35 0.75 19.0 Rice paddy + 
cropland 38.2, 
forest 61.8

Rural 9b Andong City 
Kyungbuk 
Province

8.33 3.32 2.51 0.76 0.40 3.32 Rice paddy + 
cropland 20.9, 
forest 79.1

aFrontier Research Program; bKARICO BMP Design Project.

Table 2
Hydrological and land use description of the study watersheds

Event 
number

Rural 1 Rural 2 Rural 3 Rural 4 Rural 5

RAINa Tb ADDc RAIN T ADD RAIN T ADD RAIN T ADD RAIN T ADD

1 1.0 3 3 1.0 2 3 18.5 7 7 18.5 7 7 3.0 1 9
2 16.5 5 6 16.5 5 6 67.0 12 13 66.5 12 13 15.7 6 1
3 44.2 15 9 22.0 13 14 14.4 5 3 14.4 5 3 33.8 3 2
4 129.5 13 2 129.0 13 2 43.5 6 2 43.5 6 2
5 24.0 12 7 24.0 12 7 44.5 12 1 44.5 12 1
6 0.1 1 1 0.1 1 1 259.8 6 2 259.8 6 2
7 19.5 20 7 19.5 20 7 35.0 9 2 35.0 9 2
8 89.5 34 2 89.5 34 2 4.5 6 5 4.5 6 5
9 12.0 8 7 12.0 8 7 37.0 5 5 135.0 10 1
10 118.0 12 2    135.0 10 1        

Event 
number

Rural 6 Rural 7 Rural 8 Rural 9

RAIN T ADD RAIN T ADD RAIN T ADD RAIN T ADD

1 15.7 4 2 49.0 6 1 28.0 7 1 28.0 7 1
2 33.8 3 2 32.5 5 7 36.0 12 5 80.0 13 1
3 38.5 2 1 47.7 6 18    36.0 12 5    
aRainfall depth (mm); bDuration (h); cAdvanced dry days.
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in Fig. 3. Specifi c information about the reservoir and its 
watershed is summarized in Table 3.

The reservoir or lake is normally assumed to be a continu-
ously stirred tank (CSTR). Consequently, the pollutant con-
centration in the reservoir water (initially there was no water) 
can substitute for the EMC value within a short period of time 
after a rainstorm has passed.

For this purpose, a sampling program was estab-
lished and the instantaneous pollutant concentrations 
at the various upper and lower layers of the reservoir 
during 17 consecutive rainfall events from 1 July to 15 
August in 2007 were monitored. In order to validate 
the model, EMC values calculated from the EMC-based 
model we developed was compared to the values mea-
sured in the reservoir.

4. Result and discussion

4.1. Characterization of storm water runoff

Table 4 summarizes the EMC values from nine 
individual watersheds during different rainfall events. 
Apparently, it was observed that the SS shows great 
variability across two or more magnitude in most water-
sheds, which indicates that the SS transport is associated 
with rainfall patterns and also with characteristics of 
individual watersheds.

The EMC values for COD, TN, and TP have less vari-
ability compared to SS. It implies that these types of pol-
lutants have relatively sTable establishing mechanisms. 
As an overall analysis for the EMC data, Fig. 4 gives the 
statistical distribution of different pollutants, and clearly 
shows that the EMC of SS lies in wide range comparable 
to other parameters such as COD, TN, and TP.

Correlation coeffi cients were calculated between 
EMC of pollutants and infl uence factors (See Table 5). 
Generally, SS, COD, and TP has a correlation with rain-
fall depth, rainfall intensity, and runoff volume. In par-
ticular, all the parameters were associated with rainfall 
intensity, and it is natural that heavy intensity can carry 
more pollutants during the surface runoff process. As a 
practical application of model development, only event 
rainfall depth was selected as an explanatory variable.

The agricultural activity in the watershed was identi-
fi ed as the most important factor infl uencing the discharge 
of pollutants. As shown in Table 1, Rural 1 and Rural 3 are 
dominated by forested area with proportions of 94.2% and 
99.5%, respectively. Other watershed areas are undergo-
ing agricultural activity (rice paddy and cropland) with a 
range of 10.7% (Rural 7) to 38.2% (Rural 8) of agricultural 
area. Based on this fact, watershed was classifi ed into two 
groups: forest area and hybrid area. In order to determine 
the difference between these two groups, the distribution 
of the pollutant is provided in Fig. 5. It is observed that in 
the hybrid area, the EMC values of TSS, COD, TN, and TP 
are much higher than that in the forest area, which indi-
cates that agricultural activity probably has a predomi-
nant infl uence over other factors.

ADD seems to have a weak relationship with EMC 
in this rural watershed, unlike many observations in 
impervious area. In paved area, as ADD becomes lon-
ger, a higher EMC value can be attained [7] because of 
the longer accumulation time for pollutants.

A weak relationship between EMC and ADD may 
be due to several reasons. In an agricultural area, a lon-
ger ADD does not mean a higher accumulation of pol-
lutants because pollution is mainly related to farming 
activity and changes with seasonality. Even though 
there is no such evidence, a longer ADD would prob-
ably provide more time for plant uptake and microbial 
activity, thereby decreasing the amount of pollutants 
during storm water discharges. And the EMC can also be 
affected by the rainfall intensity, runoff volume and land use 
et al., in most runoff studies, EMCs vary from event to event 
[6], this declines the relationship between EMC and ADD to 
a certain extent.

The transport of pollutants during a rainfall event is 
determined by ADD and other factors such as rainfall 
pattern, watershed characteristics, and pollutant types. 

Fig. 3. Reservoir on Backryeong Island: (a) Sediments before 
clean-up; (b) The reservoir after clean-up.

Table 3
Reservoir and watershed examined for applicability of the EMC-based equations

Watershed Reservoir

Area Land use Slope Area Storage capacity Mean depth

71 ha Cropland 21.9% 
Forest 69.2 % Reservoir 8.9%

0.15~0.45 6.3 ha 200,000 m3 9.6 m
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and this refl ects the combined effect of many factors on 
EMC in rural areas. However, including more variables 
in the model may decrease model effi ciency and lead to 
the diffi culty of applicability in different regions.

In an effort to make prediction equations, the four 
main factors—agricultural land ratio (AGRO), water-
shed slope (SLOPE), rainfall depth (Re), and advanced 
dry day (ADD)—were taken into account in establish-
ing multiplicative nonlinear regression models for esti-
mating the EMC induced by rainfall events. These four 
factors were chosen based on two considerations: fi rst, 
as described previously, agricultural activity was iden-

Table 4
Descriptive statistics of runoff EMCs by the site

Parameters Watershed n Mean SD Minimum Maximum

SS Rural 1 10 62.2 67.4 3.1 195.4
Rural 2 9 122.5 174.8 5.6 523.5
Rural 3 10 5.1 11.3 0.5 37.0
Rural 4 9 110.0 208.8 8.4 662.0
Rural 5 3 35.7 26.9 5.0 55.0
Rural 6 3 177.3 131.1 30 281.0
Rural 7 3 78.0 68.2 25 155.0
Rural 8 2 52.0 32.5 29 75.0

 Rural 9 3 98.0 135.5 10.0 254.0

 COD Rural 1 10 7.2 2.8 3.2 10.9
Rural 2 9 16.6 14.4 2.8 49.8
Rural 3 10 6.9 4.7 2.8 16.6
Rural 4 9 20.7 11.0 6.0 37.5
Rural 5 3 16.0 6.1 9.0 20.0
Rural 6 3 17.3 5.5 11.0 21.0
Rural 7 3 15.0 11.5 6.0 28.0
Rural 8 2 6.5 0.7 6.0 7.0

 Rural 9 3 8.7 2.9 7.0 12.0

TN Rural 1 10 0.9 0.2 0.7 2.3
Rural 2 9 2.1 0.5 1.3 2.6
Rural 3 10 0.9 0.7 0.1 2.2
Rural 4 9 4.8 2.4 1.9 10.6
Rural 5 3 6.0 2.6 4.0 9.0
Rural 6 3 4.7 2.1 3.0 7.0
Rural 7 3 6.7 2.1 5.0 9.0
Rural 8 2 – – – –

 Rural 9 3 – – – –

TP Rural 1 10 0.16 0.07 0.03 0.28
Rural 2 9 0.62 0.52 0.09 1.77
Rural 3 10 0.29 0.13 0.10 0.52
Rural 4 9 1.34 0.53 0.88 2.29
Rural 5 3 0.67 0.46 0.40 1.20
Rural 6 3 0.70 0.26 0.40 0.90
Rural 7 3 0.67 0.29 0.50 1.00
Rural 8 2 1.15 0.07 1.10 1.20

 Rural 9 3 1.20 0.26 1.10 1.50

n = number of data, SD = standard deviation.

In other words, it can be caused by comprehensive 
infl uencing mechanisms. Even on shorter dry days, the 
heavy rainfall can discharge more pollutants, while on 
longer dry days the small amount of rainfall can cause 
less transport of pollutants. This can be observed from 
the collected EMC data with a wide range of rainfall 
events (data not shown).

4.2. Empirical EMC-based model

As noted previously, linear correlations between 
EMC values and explanatory variables are not strong, 
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For the other parameters, the ADD and Re values 
indicate a buildup/wash-out mechanism of the pollut-
ants. As previously mentioned, the basic assumption 
underlying the development of the model is that the 
change of EMC is only a function of the rainfall pattern 
as long as land use has not changed. As such, longer 
dry days until the next rainfall event would accumulate 
more pollutants in the watershed, and the rainfall run-
off will carry out pollutants established during the ADD 
period, which is clearly refl ected in Eqs. (8) and (9).

From Eq. (8) to Eq. (11), the index of Re decreased 
gradually, which indicates the different weighing fac-
tors on different pollutants. SS has the largest index 
value of 0.7, while TP shows the smallest index of 0.1. 
This was unexpected—it was thought that phosphorus 
and ammonium are easily combined or adsorbed well 
with fi ne particles such as clay soil, whose transporta-
tion from cultivated farms does not require heavy rain.

It is noteworthy that SLOPE was included only in 
the SS equation, suggesting that particle transportation 
is strongly associated with topography factors. In fact, 
in USLE, the slope factor of the drainage area is one of 
the main parameters in estimating erosion and soil loss.

On the contrary, the ADD is not included in the TN 
and TP in Eqs. (10) and (11), which means that shorter or 
longer ADD does not signifi cantly affect nutrient level 
in stormwater from agricultural areas; e.g., the accumu-
lation effect is not signifi cant, which was discussed in 
the previous section.

EMC values in the nine watersheds were calculated 
and compared with the measured values to evaluate 
the prediction accuracy of the empirical model (Fig. 6). 
The Figure shows that the increases and decreases in 
predicted and observed EMC values are well simu-
lated. TSS and TP give fi ne regressions (R2 = 0.64, 0.60), 
while the prediction of COD and TN is relatively weak 
(R2 = 0.28, 0.32). As previously discussed, TSS and 
COD are associated with soil particles and they 
are convenient to be estimated, while the other two 
parameters have more complicated components and 
transposition mechanisms. It must be noted that above 
proposed equations presents a useful approach in esti-
mating general nonpoint source pollutant for an indi-
vidual area.

Maniquiz et al. developed some modes using rainfall vari-
ables (antecedent dry days, rainfall, rainfall duration and 
rainfall intensity) to predict the EMCs of urban runoff, it was 
found out that most important rainfall variables to estimate 
loads and EMCs were total rainfall, rainfall duration and 
average rainfall intensity, and all were associated with run-
off volume [6]. Some EMCs predictive models of stormwater 
runoff in urban area were established using rainfall variables 
(precipitation, rainfall duration, rainfall intensity and ante-
cedent dry days) and watershed variables (watershed area, 

Fig. 4. Box plots of different pollutants.

Table 5
Correlation coeffi cient between EMC and rain and 
watershed variables

Storm variables

 Depth Duration Intensity Runoff ADD

TSS 0.217 0.244 0.100 0.185 0.041
COD 0.195 –0.007 0.175 0.251 –0.026
TN –0.047 –0.290 0.131 –0.013 –0.047
TP 0.142 –0.027 0.157 0.168 –0.129

tifi ed as the most important infl uence factor. Second, 
slope in the watershed refl ects the easiness or diffi culty 
concerning with pollutant transport for particles con-
tained in the storm water runoff especially.

As a result of the analysis and solution for the 51 
data sets, the following equations were obtained:

1.3 0.5 0.71.3 ReSSEMC AGRO ADD SLOPE=      (8)
0.17 0.34 0.321.5 ReTCODEMC ADD AGRO=     (9)

0.37 0.191.5 ReTNEMC AGRO=    (10)

0.64 0.11.1 ReTPEMC AGRO=    (11)

As mentioned earlier, land use is generally regarded 
as the most important index in estimating nonpoint 
source pollutant. In agricultural areas, the higher AGRO 
values refl ect, the more heavy pollutant load due to 
farming activity. Thus, it is natural to fi nd the occur-
rence of AGRO in the four equations.
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residential area, and land-use fraction) [12], the results indi-
cated that the most useful variables to predict runoff EMCs 
were rainfall duration and antecedent dry days.

4.3. Application of the prediction model

The developed model has several advantages over 
similar models. A distribution of EMC values can be 
easily acquired with limited information (watershed 
and rainfall factors) for a given rural watershed. Fur-
thermore, calculation of the temporal pollution load 
distribution also can be pursued. In order to provide an 
example for the application of the model, the monthly 
calculated EMC distribution and total load in watershed 
Rural 5 during three years (2000 to 2002) was computed 
and the results were shown in Fig. 7. Rural 5 is a water-
shed for a small agricultural reservoir. The probabil-
ity distribution of EMCs is shown in Fig. 8, and some 

random dry sampling data collected during a similar 
period were added to the graph so that the comparison 
between two different data sets can be made.

Fig. 8 shows that both the EMC and dry day con-
centration of nitrogen does not show a signifi cant differ-
ence. The load distribution graph indicates that heavy 
rainfall causes the major pollution, while light rainfall 
could be neglected (see Fig. 7). It is reasonable that heavy 
rain highly affects pollution due to high fl ow.

4.4. Examination of model application

Although the prediction model is certain to be effec-
tive in this study, it should be applied to other watersheds 
to determine its application. We tried to examine the 
empirical model in a reservoir as discussed in Section 3.

Fig. 9 shows the rainfall information and sampling 
trips. The rainfall events were very concentrated in July 
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Fig. 5. Comparison between forest area and hybrid area.
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Fig. 6. Comparison between observed and predicted EMCs.
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Fig. 7. Monthly distributions of predicted pollutant loads in Rural 5.
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and the fi rst two weeks of August, and consecutively 17 
events occurred in this period. Nine fi eld experiments 
were conducted, and water was collected from the 
upper and lower layers at three points in the reservoir.

Fig. 10 shows comparative result between the pre-
dicted EMC values and measured concentrations for 

TSS, COD, TN, and TP. The predicted values of COD 
correspond well with observed values. Similarly, we cal-
culated concentrations of TN and TP and also compared 
them with measured concentrations, which shows 
that predicted total nitrogen moderately matched the 
observed values. However, there was a large difference 
in SS and TP between the two parts. This was thought 
to be due to the fact that these components were largely 
associated with particles; i.e., some portion of particle-
nitrogen and phosphorus was deposited at the bottom 
of reservoir between periods of ADD.

Based on the examination of models developed in this study 
using other watershed measured values, we can conclude that 
the prediction models can be applied to other cases effectively.

The matching of COD values between the predicted 
and the measured values further validates the utility of 
the estimation method. For TN and TP, it also preserves 
stability in the reservoir. On a long term scale, the nutri-
ents in the reservoir will approach balance and stability. 
It is noteworthy that the pollutants in the reservoir are 
unsTable after the dredging.
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Fig. 10. Comparison between predicted and observed pollutant concentrations in the reservoir.
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5. Conclusions

The EMC values for nine small rural watersheds 
in Korea were collected and statistical analysis was 
employed to determine the most important infl uence 
factors affecting the nonpoint source pollution load. 
AGRO, SLOPE, ADD, and Re were identifi ed as the 
main infl uence variables.

Based on these variables, we developed an empirical 
prediction model with the objective of evaluating pol-
lutant loads. Four equations involving TSS, TCOD, TN, 
and TP were developed. As an application of this model, 
the EMCs and loads in Rural 5 were calculated and com-
pared with the monitoring data.

The prediction model was applied to solve the problem 
of water quality in a reservoir. The EMC of TSS, TCOD, 
TN and TP can be determined just using the four variables: 
AGRO, SLOPE, ADD, and Re, which can be easily collected. 
It indicated that the proposed equations can be successfully 
applied in other unmonitored areas, especially when most of 
the information is not easily available.

References

 [1] USEPA. National management measures for the control of non-
point pollution from agriculture. Washington D.C., USA, (2000).

 [2] V. Novotny and H. Olem, Water quality: prevention, identifi -
cation, and management of diffuse pollution. Van Nostrand 
Reinhold, New York, (1994).

 [3] J. Cho, S.W. Park and S.J. Im, Evaluation of Agricultural Non-
point Source (AGNPS) model for small watersheds in Korea 

applying irregular cell delineation. Agr water manage., 
9(5) (2008) 400–408.

 [4] S. Shrestha, M.S. Babel, A.D. Gupta and F. Kazama, Evaluation 
of annualized agricultural nonpoint source model for a water-
shed in the Siwalik Hills of Nepal. Environ. Modell. Softw., 
21(7) (2006) 961–975.

 [5] A. Nasr, M. Bruen, P. Jordan, R. Moles, G. Kiely and P. Byrne, 
A comparison of SWAT, HSPF and SHETRAN/GOPC for mod-
elling phosphorus export from three catchments in Ireland. 
Water Res., 41(5) (2007) 1065–1073.

 [6] M.C. Maniquiz, S. Lee and L.H. Kim, Multiple linear regres-
sion models of urban runoff pollutant load and event mean 
concentration considering rainfall variables. J. environ. sci., 
22(6) (2010) 946–952.

 [7] A.S. Donigian and W.C. Huber, Modeling of nonpoint source 
water quality in urban and non-urban areas. Environ Research 
Lab, Off Res Develop, US Environmental Protection Agency, 
Washington, D.C., (1991).

 [8] P.L. Brezonik and T.H. Stadelmann, Analysis and predic-
tive models of stormwater runoff volumes, loads, and pol-
lutant concentrations from watersheds in the Twin Cities 
metropolitan area, Minnesota, USA. Water Res., 36(7) (2002) 
1743–1757.

 [9] J.B. Ellis, Pollution aspects of urban. In: H.C. Torno, J. Marsalek 
and M. Desbordes, eds., Springer Verlag, Berlin, New York, 
(1986).

[10] Y. Kim, G.H. Kim and D.R. Lee, Development of the EMC–
based Empirical Model for Estimating Pollutant Loads from 
Small Agricultural Watersheds Proceeding of Korea Water 
Recourse Association, 36(4) (2002) 691–703.

[11] APHA, AWWA and WEF. Standard Methods for Examina-
tions of Water and Wastewater, 18th edition. Washington 
D.C., USA, (1993).

[12] P.L. BreBrezonik, and T.H. Stadelmann, Analysis and predic-
tive models of stormwater runoff volumes, loads, and pollutant 
concentrations from watersheds in the Twin Cities metropoli-
tan area, Minnesota, USA. Water Res., 36 (2002) 1743–1757.


