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ABSTRACT

Forward osmosis (FO) is an osmotic process that uses a semi-permeable membrane to effect
separation of water from dissolved solutes by an osmotic pressure gradient. Unlike RO, FO does
not require high pressure for separation, allowing low energy consumption to produce water.
Therefore FO, a potential alternative to conventional membrane process, has been considered a
novel technology for seawater desalination. There is no forward osmosis (FO) process simulation
program yet, though. Therefore, the main objective of this paper is to develop such computer
program based on the solution-diffusion model modified with the film theory for simulating and
optimizing the FO, RO, and FO-RO hybrid process. The effect of concentration polarization on
FO and RO process efficiency was also considered in the model. A MATLAB-based graphical user
interface (GUI) program was used to develop the simulation program. Using the program, the
effects of various factors, including the draw solution concentration, feed concentration, and feed
pressure and temperature, on the FO and RO process performance were examined. The simulation
results showed that the FO-RO hybrid process has higher recovery (66.8%) with reasonable flux
(13.1 L/m*h) and permeate concentration (382 mg/L) than the FO and RO process. Thus, the advan-
tages of the FO-RO hybrid process over the FO and RO process are its low permeate concentration

and high recovery, which are difficult to attain in the FO and RO process, respectively.
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1. Introduction

As the global water shortage become serious by
rapid population growth, desalination of seawater and
brackish water is becoming more important [1,2]. Re-
cently, the reverse osmosis (RO) membrane process has
been considered a promising technology for desalina-

* Corresponding author.

tion. The performance of the RO membrane process is
very sensitive to the quality of the feed water and the
plant operating conditions, though. This means that the
availability of reliable RO models is very important for
process design and operation [3,4]. Thus, RO membrane
makers have developed several computer programs
such as ROSA, IMSDesign, and TorayRO to help pos-
sible customers simulate an RO process. RO membrane
processes are expensive and energy-intensive yet, though.
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Their limited recovery of seawater, typically 35-50%,
is another drawback [5]. Forward osmosis (FO) is an
osmotic process that uses a semi-permeable membrane
to effect separation of water from dissolved solutes by
an osmotic pressure gradient. Unlike RO, FO does not
require high pressure for separation, allowing low en-
ergy consumption to produce water [6]. Therefore FO, a
potential alternative to conventional membrane process,
has been considered a novel technology for seawater de-
salination [6]. There is no FO process simulation program
yet, though. Therefore, the main objective of this paper
is to develop such computer program based on the solu-
tion—diffusion model modified with the film theory for
simulating and optimizing the FO, RO, and FO-RO hybrid
process. The effect of concentration polarization on FO
and RO efficiency was also considered in the program. A
MATLAB-based graphical user interface (GUI) program
was used to develop the program. Using the program,
the effects of various factors, including the recovery, flux,
draw solution concentration, feed concentration, and feed
pressure and temperature, on the FO, RO, and FO-RO
hybrid process performance were examined.

2. Mathematical model

The solution-diffusion model modified with the film
theory was used to simulate the FO, RO, and FO-RO hy-
brid process. According to the solution-diffusion model,
the water flux (J ) and solute flux (J)) equations for FO
process can be defined as follows:

J. =L, (TCD,b - nF,b) (1)
and
J.=L(C,-C,) &)

wherein L_is the water transport parameter, L_ is the
solute transport parameter, 7, is the osmotic pressure
on the draw solution side, T, is the osmotic pressure on
the feed side, and C and C, are the concentrations of the
draw solution and the feed solution, respectively. The
external concentration polarization (ECP) and the internal
concentration polarization (ICP), which take place in the
FO membrane process, reduce the permeate water flux
due to the decrease in the effective osmotic pressure. The
general water and solute flux equations were modified
as follows, considering ECP and ICP to make accurate
predictions [7]:

J. =L, [nD,h exp[— I{w j_ T, €XP [%JJ 3)

and

J.=1.C, =L, (Cb exp[i—wj—cpj 4)

F

wherein k, is the mass transfer coefficient for the external
concentration polarization, and k, is the mass transfer
coefficient for the internal concentration polarization.
Based on the mass transfer correlations, k, and k,, are
given as follows [8]:

D

kF = 1.85w(ReSC)O'33 (5)
h
and
ky =28 (6)
l

wherein D is the diffusion coefficient, d, is the hydraulic
diameter, Re is the Reynolds number, Sc is the Schmidt
number, ¢ is the porosity of the support layer, [ is the
thickness of the support layer, and t is the tortuosity of
the support layer.

For an RO system, the water flux (J,) and solute flux
(J,) equations can be defined as follows:

Jo =L, (AP-An,) %)
and
J.=L(c,-C,) ®)

wherein L is the solvent transport parameter, L_is the
solute transport parameter, C, is the solute concentration
in the bulk feed solution, Cp is the solute concentration
at the permeate side, At is the osmotic pressure at the
solute concentration of C,, and AP is the transmembrane
pressure. As the filtering proceeded, however, the con-
centration polarization occurred. Using C  (the solute
concentrations on the membrane surface) instead of C,
the aforementioned equations can be modified as follows:

Jo =L, (AP-An) )
and
J.=L.(C.-C,)

C,, is calculated according to the film theory to in-
terpret the concentration polarization, and the solvent
concentration profile on the surface can be calculated
according to the following equation:

(10)

_ Juw
C,-C, L

e (11)
C,-C,

wherein k is the mass transfer coefficient for the back
diffusion of the solute from the membrane to the bulk
solution on the high-pressure side of the membrane [9],
as follows:

0.4 0.17 -0.77 -0.77
k= 0.5510(ﬂj (lj Sy (D
v D p d,

(12)
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wherein u is the crossflow velocity, d, is the hydraulic
diameter, v is the kinematic viscosity, and p is the solu-
tion density.

3. Solution methods

The procedure for solving the model equations are
shown in Fig. 1. The models were developed in one di-
mension on the basis of the flux equations, while consider-
ing the ECP and ICP. The developed mathematical models
should be solved iteratively because the equations in the
model are highly nonlinear since the model considers
the ECP and ICP. To solve the model, the membrane was
divided into small segments, and their sizes were chosen
to be small enough until the change in the calculated
results was tolerable.

4. Program structure

The GUI data processing program allows a user to
simulate the FO and FO-RO hybrid system immediately
after data acquisition. The components of the program

Guess permeate flux,

are shown in Fig. 2. The program is a set of m-files and
has six major parts (an m-file is a user-defined function
or script file composed of existing MATLAB commands
and functions): Main window, FO optimization, RO opti-
mization, FO process simulation, RO process simulation,
and FO-RO hybrid process simulation.

In the Main window, the project information, user
information, and design condition were inputted, and the
simulation sub-module was selected. The optimization
module used the permeate water flow rate, feed water
qualities, and membrane properties as the input param-
eters. The simulation results for the optimum operating
conditions of the FO and RO process were explored to
minimize the energy consumption and sufficient boron
rejection (less than 1.0 mg/L) for seawater desalination.
The FO and RO process simulation module used the
results of the optimization sub-module as input data.
Using the FO and RO process simulation sub-module,
the flux and recovery from each element was calculated
to compare the local characteristics with the overall per-
formance. In this program, only one kind of combined
FO and RO system was considered. FO was used to treat

i=1
I
¥
Calculate osmotic pressure, m,(7)
with feed solution

()

l

Calculate permeate flux J, *(i)
considering ECP and ICP
(Eq.1.3.9

|

Calculate error
Ermr@)=1,0) - J*(0)

Err(i)
<tolerance

Update J,(i)
J D) = T (1) +Err*k

Calculate Q(i), v(i), J.(i) and C(i)
from the mass balance

(Eq.2)

|

izn

To the next step, i=i+1

End

a) FO process

Fig. 1. Flowchart for the solution method of the model.

N2
Calculate general permeate flux,

A0
(Eq.5)
B

Calculate C,(i) and Cyy(i)
(Eq. 7.9, 10)

i

Calculate osmotic pressure, m,(7)
with C,(1)

Calcualte J,*(i) with new
osmotic pressure

SO - L)

< tolerance

Update J,1)
J 1) =J*(@1)

Calculate Qfi), v(i), J.(1)
from the mass balance

(Eq.8)
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End

b) RO process
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Fig. 2. Components of the simulation program.
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Fig. 2. Components of the simulation program.
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Fig. 2. Components of the simulation program.
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the concentrate from RO for high recovery. A recovery
system for the drawn salt was assumed to have been
used. The simulation program can predict any operating
and performance parameter of the FO and RO process.
Using the program, the effects of various factors, includ-
ing the recovery ratio, permeate flux, temperature, and
concentration polarization, on the FO and RO process
performance were examined. Moreover, the optimum
operating conditions were explored to minimize the
energy consumption.

5. Results and discussion

The FO and RO process parameters and operating
conditions that were used in this study are presented in
Table 1. They were obtained from literature [9,10]. L_, of
the FO membrane was assumed to have been the same
as that of the RO membrane and the geometry of the FO
membrane element was assumed to have been the same
as that of the RO element.

Fig. 3 shows the simulation results for the optimum
operating conditions of the FO and RO process, which
were explored to minimize energy consumption and suf-
ficient boron rejection (less than 1.0 mg/L) for seawater
desalination. The FO process has the same permeate
flow rate, feed water temperature, and feed water TDS
conditions as the RO process. In this simulation, the
required feed pressure was 61.0 bars in the RO process,
and the concentration of the draw solution was 6 M in
the FO process. Due to internal concentration polariza-
tion, though having the Lv that is similar to RO, FO
process required high concentration draw solution. The
recovery (40% vs. 55%) and water flux (11.2 L/m*h vs.
16.2 L/m?-h) of the FO process were higher than those
of the RO process. Moreover, the specific energy of the
RO system was significantly higher than that of the FO
system (3.25 kWh/m® vs. 1.16 kWh/m?®). The energy ef-
ficiency of the FO process that was used in this program
was obtained from literature [11]. But the FO process
has much larger permeability to NaCl than RO process
(487 mg/Lvs. 292 mg/L). This implies that the FO process
may require another process to sufficiently reject salt.

Fig. 4 shows the simulation results for the FO and RO
process in a spiral wound module. Under similar operat-
ing conditions, the recovery (39.1% vs. 54.8%) and water
flux (11.4 L/m?-h vs. 16.2 L/m?-h) in the FO process were
much higher than those in the RO process. The perme-
ate TDS of the RO process was significantly lower than
in the FO process (218 mg/L vs. 478 mg/L), though. The
first element showed the highest flux (34.0 L/m*-h), but
the flux was significantly reduced in the elements near
the outlet. This is attributed to the increased feed solution
concentration and the decreased draw solution concen-
trations, which resulted in the decrease in the effective
osmotic pressure. A significant decrease in flux from each
element was also observed in the RO process.

Table 1
Process parameters and operating conditions
Parameter FO RO
L, m*s/kg 4.2x1072[10] 3.6x10"2[9]
L, m/s 4.5x10%[10] 1.96x107 [9]
L, s/m 5.3x107[9] 5.3x1077 [9]
k,, s/m 1.25x10° [10] -
Geometry The sameasan  The same as an
8040 element 8040 element
Feed NaCl 35,000 35,000
concentration, mg/L
Draw solution Ammonium —
carbon dioxide
(2-6 M)
Temperature, °C 25 25

Fig. 5 shows the simulation results for the FO-RO
hybrid process of seawater desalination. It was calcu-
lated that the FO-RO hybrid process has higher recovery
(66.7%) with reasonable flux (13.1 L/m?-h) and permeate
concentration (389 mg/L) than the FO and RO process.
Thus, the advantages of the FO-RO hybrid process over
the FO and RO system are its low permeate concentration
and high recovery, which are difficult to attain in the FO
and RO process, respectively.

6. Conclusions

In this study, a computer program for simulating
and optimizing the FO, RO, and FO-RO hybrid pro-
cess was developed using the MATLAB-GUI program.
The program can make predictions of any operating
and performance parameter of the FO, RO and FO-RO
hybrid process. Under similar operating conditions, it
was calculated that the FO process has higher flux and
recovery than the RO process. But the permeate TDS of
the FO process was significantly higher than in the RO
process and FO process required high concentration draw
solution due to internal concentration polarization. The
FO-RO hybrid process performed better than the FO and
RO process. This program is useful to test the developed
FO membranes and design of the FO and FO hybrid pro-
cess. Further studies are required to find the optimum
configurations of FO and RO for various applications.
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