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abstract
The Discriminant Analysis and Classification (DAC) method has offered remarkable results 
regarding the prediction of failures in an oil or a gas pipe network, based on the network charac-
teristics. The DAC method also proved its ability to identify the most crucial network parameters 
affecting its behavior. The present study attempts to check whether the DAC method can provide 
safe results regarding the reliability assessment of urban water networks too. The DAC method 
aims at classifying the network pipes in two groups (failures/successes), based on simple or/and 
dimensionless joint variables. Serious problems related to the quality, reliability and compatibility 
of the data provided by the Water Utilities were tackled using dummy variables based on field data. 
The distinction between the meanings of ‘failure’ and ‘success’, for a water pipe network, was also 
crucial. For the case study water pipe network of Larisa city, in Greece, the criterion used to define 
the meanings of ‘failure’ and ‘success’ was “the total water volume being lost” through a leak or 
a break in a pipe. The available pipe failure data records for Larisa city were poor and not fully 
compatible to the DAC method demands. The results showed that discrimination is good enough 
and would be even better if additional data (in line with the DAC standards) was available. Thus, 
overall, the DAC method proved to be a useful tool for pipe reliability prediction in urban water 
pipe networks.
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1. Introduction

The Discriminant Analysis and Classification method 
has been successfully used by the authors in the past to 
predict whether an oil or a gas pipe will fail or not, based 
on its characteristics, while at the same time identifying 
the most crucial factors affecting its behavior [1]. The DAC 
method classifies the pipes in two groups (failed pipes 
called ‘failures’/not failed pipes called ‘successes’), based 
on simple or/and dimensionless joint variables related to 

pipe characteristics. It proved to be very effective in de-
veloping pipe failure prediction models, as it can analyze 
the differences of the two groups using the Z-score index, 
resulting from the thorough study of a large number of 
variables [1;2]. Pipes are classified as ‘failures’ or ‘suc-
cesses’ utilizing pipe failure data records. Several pipe 
characteristics (e.g., operating pressure; length; diameter; 
material; age; fluid supplied by the pipes called ‘product’) 
were used as variables. The DAC method revealed the 
correlations amongst pipe characteristics affecting pipes 
failure rates. Joint variables resulting from simple ones 
were introduced in order for the analysis to be based on 
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dimensionless variables. Those variables were also used 
as they, compared to simple ones, tend to carry more 
information regarding the behaviour of the pipe. Results 
showed that the successful implementation of DAC 
method highly depends on how accurate and extended 
the available pipe failure data records are [1]. Such records 
are usually available for oil and gas pipe networks (due 
to the high revenue value of the fluid supplied). 

Therefore, the authors tested the DAC method for 
two oil/gas pipe networks [1].The main aim in each case 
was to develop a model that could correctly classify the 
network pipes to ‘successes’ or ‘failures’; to define the 
crucial pipe characteristics affecting its behaviour; and 
to predict whether a pipe will fail or not. The results for 
both networks were very satisfying, as the correct pre-
diction rate for the failing pipes reached 96.6% [1]. Thus 
the authors decided to check whether the DAC method 
could provide the same promising results for urban 
water networks too. The present paper deals with the 
implementation of the method in the water pipe network 
of Larisa city in Greece. The main problem that had to be 
faced was to come up with a proper way to “manipulate” 
the available pipe failure data records in order to fit the 
needs/standards of the DAC method. The distinction 
between the meanings of “failure” and “success” was 
also a very intriguing task to handle. 

2. Literature review 

There have been several attempts to identify statistical 
relationships between water main break rates and pipe 
and network characteristics such as age/diameter/mate-
rial of the pipe; soil aggressiveness; operating pressure; 
external temperature; possible external loads (including 
highway traffic); and recorded history of pipe breaks. 
Shamir and Howard [3] reported an exponential relation-
ship between failure rates and pipe age, and developed 
a methodology to estimate the optimal pipe replacement 
time. O’Day et al. [4] also studied pipe failure rates related 
to their age. Clark et al. [5] developed a linear multivariate 
equation to determine the time between the pipe instal-
lation and the occurrence of its first break. Clark et al. [5] 
developed also an exponential multivariate equation to 
determine the pipe failure rate following the first break 
incident. Kettler and Goulter [6] reported a strong linear 
correlation between the break rate of a water main and its 
diameter; and a moderate linear correlation between the 
break rate of a water main and its age. They also examined 
the break rate variation regarding the material of the pipe, 
and they analyzed the types of breaks for different pipe 
materials. The results of several studies revealed a correla-
tion between the diameter of a pipe and the type and rate 
of its breaks [7,8]. Other studies [6,7] revealed that small 
diameter pipes tend to break more often compared to 

large diameter ones under certain environmental condi-
tions. Marks et al. [9] developed a failure model that can 
calculate the probability of a pipe break in a small time 
range dt based on the pipe age; the number of previous 
breaks; and the time since its last break. Andreou et al. 
[10] suggested a probabilistic approach, consisting of a 
proportional hazards model to predict failure at early 
stages of deterioration. For the later stages of deterioration 
they developed a Poisson-type model. The base function 
relating the probability of breakage to pipe age could vary 
in the same distribution system. Therefore, the layering 
of the data set into groups (based on specific parameters) 
would increase the accuracy of the model. 

Goulter and Kazemi [11] proposed a break clustering 
model (non-homogeneous Poisson distribution model) to 
predict the probability of subsequent breaks, given that 
at least one break had already occurred. Kleiner et al. 
[12] and Kleiner and Rajani [13] developed a methodol-
ogy to assess future rehabilitation needs on the basis of 
historical water main breakage records available. These 
records included limited and incomplete data of variables 
causing pipe breaks. Prasad et al. [14] used genetic algo-
rithm methods introducing network resilience. This is a 
new reliability measure trying to provide surplus head 
above the minimum allowable head at nodes and reliable 
loops with practicable pipe diameters. Vanrenterghem 
et al. [15] used a proportional hazards model to analyze 
replacement strategies using failure data records from the 
New York City water mains. Aslani [16] and Christodou-
lou et al. [17] reported additional work using the same 
case study. Christodoulou et al. [18] used the knowledge 
gained by the New York City case study and reported a 
developed framework for integrated GIS based manage-
ment, risk assessment and prioritization of water leakage 
actions. Kanakoudis and Tolikas [19] developed indices 
to assess the performance level of the system and hier-
archically analyzed the possible preventive maintenance 
actions in a water system. They also developed a model 
to calculate the pipe optimal replacement time based on 
a technical-economical analysis taking into account the 
costs associated to the repair or replacement of failing 
system components. Park et al. [20] presented a method 
focused on modeling the failure rate and estimating 
economically optimal replacement time of an individual 
water main by using two widely used indices related to 
the rate of failure occurrence. This methodology has the 
limitation of requiring large number of recorded breaks. 
Also the data of the failure-causing parameters must be 
collected and recorded in a standardized framework in 
order to maximize the efficiency of water distribution 
system maintenance. Finally, Christodoulou [21] sets 
the “repair or replace” dilemma investigating the failure 
causing parameters and outlines a multi-criteria decision 
support system for modeling pipe behavior based on 
non-parametric survival analysis techniques.
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3. Methodology

The DAC method aims at forming two groups of 
pipes, failed and survived ones. Then, by using the linear 
discriminant function (1) the Z-scores of each group are 
identified. 

0 1 1 2 2 ...m m m i imZ U U X U X U X= + + + +  (1)

where Zm is the value (score) of the discriminant function 
for case m; Xim is the value of the variable i (from now on 
Xi will indicate variable i); Ui is the best discriminant coef-
ficient of the i variable. The constant term Uo is the adjust-
ment for the mean values, so that the mean discriminant 
score equals to zero over all cases [1]. The discrimination 
and the classification process drove to several results [1]:

 • Stability of a discriminant variable. If a discriminant 
variable is unstable it will be excluded from the further 
steps of the classification process. 

 • Importance of a discriminant variable. High impor-
tance means greater contribution to the discrimina-
tion. 

 • A statistical technique used to evaluate the discrimina-
tion function is Wilk’s Lambda (Λ) [2]. As the Λ-value 
gets closer to zero, the discrimination gets better. 

 • Another statistical technique used for the same reason 
is the canonical correlation coefficient (R). As R-value 
gets closer to 1, the discrimination gets better.

 • The classification percentages derive from the classifi-
cation matrix [1]. The classification percentages for the 
failed pipes EFf and for the survived pipes EFs indicate 
the discrimination ability related to failures or suc-
cesses respectively (percentage of population correctly 
classified), while the total classification percentage EFt 
indicates this ability over both populations. In pipe 
networks to classify a pipe as a ‘failure’ when it will 
prove to be a ‘success’ has less economic and safety 
implications than vice versa, as this would mean that 
the pipe is expected to survive but it will actually fail.

 • The critical Z-score is the criterion used to classify a 
new pipe as ‘failure’ or ‘success’ [1,22].

For the application of the method to water pipe net-
works, it is necessary first to define what both meanings 
(failed and the survived pipes) stand for. This can be done 
using one of the following two criteria: a) the water loss 
rate during a failure (in this case the surviving pipes are 
those experiencing leaks while the failing ones are those 
facing breaks); b) the total water volume being lost dur-
ing a failure (in this case the surviving pipes are those 
experiencing breaks while the failing ones are those facing 
leaks). The latter criterion is used here as the total amount 
of water being lost is what any water utility wants to de-
crease. Field studies proved that the total water volume 
lost due to leaks is even 5 times bigger that the respective 
water volume lost due to breaks [23]. 

From the implementation of the DAC method to oil 

and gas pipe networks it was found that the quality and 
the compatibility of the failure data records is crucial 
for DAC method successful implementation [1]. This 
also stands for water pipe networks. Therefore, the data 
related to the pipe characteristics must refer to each 
pipe according to its actual location. It is not possible to 
group all pipes having for example the same diameter 
and material, as each failure is unique and occurs in a 
specific place. The local conditions met (e.g., soil aggres-
siveness, external stresses) usually have a significant 
impact regarding the failure occurrence rate. The same 
conditions do not apply in all pipes of same material and 
diameter. Therefore, it is necessary to discriminate the 
pipes according to their location. Field studies proved 
that failure clustering in time and space is very common 
in water pipe networks [11,24]. 

The DAC method cannot give reliable results when the 
characteristics of the pipes per material and diameter refer 
to the total length of the network. Only rough conclusions 
can be drawn by such results that do not refer to all pipes 
included in the “sample,” as a pipe may fail just due to 
specific local conditions. It does not mean that all pipes 
of the same material and same diameter will fail in the 
future. Furthermore, usually the data records provided 
by the water utilities containing details regarding the 
characteristics of the pipes (e.g., pipe diameter, material, 
length, previous failures, age) are very poor and not accu-
rate enough. Finally, failure causing characteristics, such 
as soil conditions, pipe exact location, exact pressure, soil 
temperature, pipe previous failures, etc., are not usually 
recorded by the water utility. Thus, dummy variables 
are introduced.

4. Water pipe reliability assessment in Larisa case study

4.1. The case study network

The water supply network of Larisa city (Greece) was 
used as a case study network in order to check whether 
the DAC method can provide satisfying results. The local 
water utility keeps failure data in the form of total failures 
per pipe material and diameter per year. Pipe variables 
(mean values, standard deviation, min and max values) 
considered in the DAC method analysis are presented 
in Table 1. The network pipes are divided in failures and 
successes according to the criterion of total water volume 
losses (leaks/ repairs=failures; breaks/ replacements = suc-
cesses). For the 18-year study period (1989–2006), there 
were 319 ‘failed’ pipes recorded and 141 ‘survived’ ones. 
The variables “operating pressure”, “soil” and “external 
loads” are considered dummy variables and their values 
are not recorded but estimated based on experience and 
local conditions. As the local water utility does not keep 
analytical data records regarding the “operating pres-
sure” of the network pipes, the present study considers 
its value to range from 3 to 6 atm according to the pipe 
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diameter. The variable “soil” refers to soil conditions 
(where the pipe is embedded) regarding its “aggressive-
ness” promoting either the pipe corrosion or damage 
due to soil water frost stresses developed. This variable 
was handled as a qualitative size rather than a quantita-
tive one, taking values from 0 to 2, where 0 corresponds 
to a ‘not at all aggressive’ soil, while 2 corresponds to a 
‘very aggressive’ soil. The same concept (qualitative vs. 
quantitative) also stands for the variable “external loads” 
(frost stresses excluded). Values for this variable range 
from 0 to 2, where 0 stands for ‘minimum loads’ from 
road traffic or for pipes under the pavement, to 2 which 
stands for ‘maximum loads’ from very heavy traffic with 
heavy vehicles. The variable “material” is being expressed 

Table 1
Mean, standard deviation, min and max values of the variables used for Larisa 

Variable
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Mean Standard 
deviation

MIN MAX

Material-MAT, % 22.297 12.073 9.85 39.16 22.946 13.507 9.85 39.16
Diameter-D, mm 140.62 103.42 19 500 105.6 59.55 19 300
Length-L, m 26,461.58 33,961.95 76.32 113,095.8 36,797.81 36,851 363.63 113,095.8
Previous failures-BR, m 11.893 21.944 1 135 329.05 640.73 1 4,281.2
Age-AG, y 24 19 0 61 13 12 0 59
DIM1 73 171 0.69 1,147 29.4 48.5 0.69 392
DIM2 2 7.1 0 79 20.49 62.1 0.009 661.39
Pressure-PRES, atm 4.85 0.84 3 6 5.09 0.63 3 6
Soil-S 1 0.82 0 2 0.99 0.83 0 2
External loads-LO 0.73 0.72 0 2 0.59 0.57 0 2

Table 2
Joint variables used in the analysis

Joint variable Stands for Joint variable Stands for

DIM1 [D/L] 103 DIM2 [BR /L] 103

as a percentage of each material length over the total 
pipe length. Two dimensionless joint variables are being 
used, namely DIM1 and DIM2, which are explained in 
Table 2. Several variable combinations resulted finally in 
the analysis of 26 scenarios (Table 3).

4.2. Results and discussion

The results of the first part of the analysis (Table 4) 
show that:

 • The most important variable contributing the most 
to the discrimination of all scenarios is the variable 
“previous failures”. This is justified, since previous 
studies proved a space and time clustering of failures 
near an initial failure site [10]. 

 • Although the variable “soil” proved to be not that 
important (11/26 scenarios), it is considered stable, 
and therefore, it cannot be ignored and thus excluded 
from further analysis.

 • The variables contributing the most to the discrimi-
nation are found to be in a descending order: previ-

Table 3
The 26 scenarios analyzed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

D x x x x x x x x x x x x x x x x x x x x x x x x x x
MAT x x x x x x x x x x x x x x x x x x x x x x x x x x
AG x x x x x x x x x x x x x x x x x x x x x x x x x x
BR x x x x x x x x x x x x x x x x x x x x x x x x x x
L x x x x x x x x x x x x x x x x x x x x x x x x
DIM1 x x x x x x x x x x x x x x x x
DIM2 x x x x x x x x
S x x x x x x x x x x x x
LO x x x x x x x x x x x x
PRES x x x x x x x x x x x x x
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ous failures, diameter, DIM2, pressure, length, age, 
product, soil, load and DIM1. From the international 
literature, it is found that all these variables affect pipe 
failures at a different rate for each case (Table 5). Pre-
vious studies [25,26] showed that material (product), 
diameter, length and traffic are the most important 
risk factors for the New York City case, while previ-
ous breaks, diameter, material and traffic are the most 
important ones for the Limassol case.

The implementation of the DAC method in the water 
distribution network of Larisa (Table 6, Fig. 1a) resulted 
in satisfying classification percentages, ranging from: a) 
73.7% to 86.5% for the ‘failed’ pipes (EFf); b) from 63.8% 
to 74.5% for the ‘survived’ pipes (EFs); and c) from 72.2% 
to 82.0% in total (EFt). Thus, the majority of the pipes 
that actually survived or failed were correctly classified 
as “survivals” or “failures,” respectively. Regarding the 
discrimination level, Wilk’s Λ values ranged from 0.72 to 
0.79, revealing that the discrimination level achieved was 
quite good. Finally, the R values agree with the Λ values 

Table 4
Results for the Larisa water distribution network (characterizing the model variables)

Scen. Important 
variable

Less important 
variable

Unstable variables Scen. Important 
variable

Less important 
variable

Unstable variables

1 Previous 
failures

Diameter D, BR, AG 14 Previous 
failures

Length D, BR, AG, DIM1

2 Previous 
failures

Diameter D, BR, AG 15 Previous 
failures

Soil D, BR, AG, DIM1

3 Previous 
failures

Diameter D, BR, AG, DIM1 16 Previous 
failures

Soil D, BR, AG, DIM1

4 Previous 
failures

Diameter BR, AG, DIM1, DIM2 17 Previous 
failures

DIM1 D, BR, AG, DIM1

5 Previous 
failures

Soil D, BR, AG, S 18 Previous 
failures

Soil D, BR, AG, DIM1

6 Previous 
failures

Material D, BR, AG 19 Previous 
failures

Soil BR, AG, DIM1, DIM2

7 Previous 
failures

Material D, BR, AG 20 Previous 
failures

Age D, BR, AG, DIM1, DIM2

8 Previous 
failures

Soil D, BR, AG 21 Previous 
failures

Length D, BR, AG, DIM1, DIM2

9 Previous 
failures

Soil D, BR, AG, S, PRES 22 Previous 
failures

Soil D, BR, AG, DIM1, DIM2

10 Previous 
failures

Material D, BR, AG 23 Previous 
failures

Soil D, BR, AG, DIM1, DIM2

11 Previous 
failures

Soil D, BR, AG 24 Previous 
failures

Age D, BR, AG, DIM1, DIM2

12 Previous 
failures

Soil D, BR, AG, DIM1 25 Previous 
failures

Soil D, BR, AG, DIM1, DIM2

13 Previous 
failures

DIM1 D, BR, AG, DIM1 26 Previous 
failures

Age D, BR, AG

ranging from 0.46 to 0.53 (Table 6, Fig. 1b). Scenarios no. 
24 and 25 (the latter includes all variables) result in the 
best Wilk’s Λ, CCC and EFs values, while scenarios no. 21 
and 23 result in the best EFf and EFt values (quite close to 
no. 24 and 25 respective ones).

Non-standardized coefficients (Ui) are those used 
for the calculation of Z-score for both groups of pipes 
(Table 7, Fig. 2). In a negative non-standardized coefficient 
(Ui), an increase of the related variable value results in 
decreasing its Z-score value and its probability to belong 
in the group of “successes-breaks”. Such variables are 
the DIM1 and the pipe’s material; age; and pressure. As 
the “age” and “pressure” values increase the pipes will 
tend to fail. The variable “pipe material” gets its greatest 
values for PVC pipes that are most commonly met in the 
network (39% of the total pipe length compared to 29% 
of asbestos-cement pipes; 12% of cast iron pipes; 10% of 
steel pipes; and 10% of PE pipes). Exactly the opposite 
takes place regarding the variables related to positive non-
standardized coefficients, like the number of previous 
failure incidents; the external loads; and the DIM2. It is 
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quite expected that as the number of previous failure 
incidents will increase, the pipes will break (breaks = 
successes). The same happens for the “external loads”. 
As the road will suffer from heavier traffic, the pipes will 
break (breaks = successes).

Table 5
Parameters affecting the pipes failures rate [27]

Pipe section factors Operational / maintenance factors Environmental / climate factors

Pipe material Operating pressure Soil type
Pipe diameter Nature/date of last failure (e.g. type, cause, severity) Soil temperature or frost depth 
Joint type Nature of maintenance operations (e.g. TV inspections, pipe 

cleaning, cathodic protection) 
Rainfall

Pipe age Nature and date of last repair (e.g. type, length) Soil moisture content
Pipe depth below surface Water quality Temperature
Pipe condition (e.g. wall 
thickness, defects) 

Construction method Traffic and loading 

Fig. 1. (a) Eff, EFs, EFt; (b) Wilk’s Λ and CCC for the scenarios analyzed.

Table 6
Results for the Larisa water distribution network (classification achieved)

Scenario EFf EFs EFt Wilk’s Λ R Scenario EFf EFs EFt Wilk’s Λ R

1 75.5% 68.1% 73.3% 0.787 0.461 14 80.9% 70.2% 77.6% 0.757 0.493
2 74.6% 68.8% 72.8% 0.787 0.462 15 77.4% 70.9% 75.4% 0.749 0.501
3 73.7% 69.5% 72.4% 0.785 0.463 16 80.3% 70.2% 77.2% 0.757 0.493
4 82.4% 63.8% 76.7% 0.759 0.491 17 79.6% 70.2% 76.7% 0.746 0.504
5 74.6% 68.8% 72.8% 0.787 0.462 18 78.4% 71.6% 76.3% 0.746 0.504
6 77.4% 72.3% 75.9% 0.749 0.501 19 82.4% 63.8% 76.7% 0.759 0.491
7 80.6% 70.2% 77.4% 0.757 0.493 20 79.9% 70.9% 77.2% 0.722 0.527
8 77.4% 70.9% 75.4% 0.749 0.501 21 86.5% 71.6% 82.0% 0.725 0.525
9 80.3% 70.9% 77.4% 0.757 0.493 22 79.9% 70.9% 77.2% 0.722 0.527

10 79.3% 70.2% 76.5% 0.746 0.504 23 86.5% 70.9% 81.7% 0.725 0.525
11 78.4% 71.6% 76.3% 0.746 0.504 24 83.7% 74.5% 80.9% 0.717 0.532
12 73.7% 68.8% 72.2% 0.785 0.463 25 83.7% 72.3% 80.2% 0.716 0.533
13 77.4% 72.3% 75.9% 0.749 0.501 26 79.6% 70.2% 76.7% 0.758 0492

4.3. Time step analysis

In order to validate the DAC method, a time step 
analysis is used. The available data for the water supply 
network of Larisa city refer to a total time period of 18 
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years, divided in two time sub-periods of 9 years each. 
The time-step analysis is applied only for the scenarios 
no. 21, 23 and 25 that previously gave the best discrimi-
nation and failure prediction results. While the failure 
prediction model was calibrated using the actual failure 
data records of both sub-periods, its validation was based 
on what actually happened during the second sub-period. 
The results of the analysis for the first 9-year time step 
(Table 8) revealed that:

 • The variable “previous failures” is the most important 
variable contributing the most in the discrimination 
for all scenarios. This was expected since this vari-
able will mainly determine if the pipe with the same 
characteristics will fail again. That was the case when 
the total period was examined.

 • The variable “soil” proved not that important (in 2 out 
of 3 scenarios). When the total period was examined, 
the less important variable for the scenario no. 21 was 
“length”. For the scenarios no. 23 and 25 the variable 
“soil” was added as an unstable variable.

 • The time step analysis resulted in slightly decreased 
correct classification percentages. Wilk’s Λ and CCC’s 
values are also worse (Fig. 2d). This was expected as 
the DAC method gives better discrimination when the 
number of variables is bigger as proven in the case of 
oil and gas pipes [1].

Scenario no. 25 remained to be the best regarding 
the Wilk’s Λ, CCC and EFs levels, while scenarios no. 21 
and 23 are the best regarding EFf and EFt levels (scenario 
no. 25 followed). The non-standardized coefficients (Ui) 

Fig. 2. (a) Non-standardized coefficients (Ui) of D, BR, DIM2; (b) Ui of MAT, AGE, L, DIM1; (c) Ui of S, PRES, LO and (d) EFf, 
EFs, EFt, Λ and CCC for the time step analysis.

are those used for the calculation of the Z-score for both 
groups of pipes (Table 9, Fig. 3). Negative non-standard-
ized coefficients (Ui) were related to the variables DIM1, 
soil and to the pipe characteristics (diameter; material; 
age; length; and pressure). On the other hand, positive 
non-standardized coefficients were related to the follow-
ing variables: previous failures; external loads; and DIM2. 
The pipe failure probability assessment process using 
the time step analysis faced a number of difficulties due 
to the format of the available data records regarding the 
pipe characteristics. The pipes that actually failed were 
predicted with satisfying accuracy. If the format of the 
available data records was similar to the respective one 
met in oil/gas pipe networks then the correct prediction 
percentages would have been even better.

5. Conclusions

As mentioned in previous studies [1,2] the DAC 
method proved once more to be a useful tool for pipe 
reliability prediction, since it considers different and 
complex pipe characteristics. It examines how each 
characteristic is affecting whether the pipe will fail or 
not and provides a reliable risk assessment model. The 
method gave excellent results when used to predict the 
future behavior of oil/gas pipes, specifically the correct 
prediction probabilities reached 96.6%. Its application in 
water pipe networks had to overcome several problems 
caused mainly due to the poor pipe failure data records 
available from the water utilities. The definition of the 
failure criterion was another obstacle. The Larissa water 
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distribution pipe network was used as a case study. The 
Utility’s data failure records were poor and not fully 
compatible to the form the DAC method demands. In 
order to overcome this problem and implement the DAC 
method some assumptions were made and dummy vari-
ables were used. In order to classify pipes into ‘failures’ 
and ‘successes’, the total water loss volume criterion was 
used. The pipes facing leaks were considered as ‘failed 
ones’, while those facing breaks were considered as ‘suc-
cesses’. From the analysis and the results obtained it is 
found that the DAC method can be successfully used for 
risk assessment in water distribution networks when the 
data available meets the requested standards. Results are 
expected to be even better if additional data is available 
regarding the type of soil, the traffic loads, neighboring 
constructions and other pipe failure generating causes 
[28]. Water Utilities should develop systems in order to 
monitor their networks regarding pipes parameters and 

Table 8
Results for the time step analysis

Scen. Important 
variable

Less important 
variable

Unstable variable EFf EFs EFt Wilk’s Λ R

21 Previous failures Age D, BR, MAT, AG, DIM1, DIM2 85.4% 63.0% 77.6% 0.744 0.506
23 Previous failures Soil D, BR, MAT, AG, DIM1, DIM2, S 85.4% 63.0% 77.6% 0.744 0.506
25 Previous failures Soil D, BR, MAT, AG, DIM1, DIM2, S 82.5% 67.1% 77.1% 0.721 0.528

Table 9
Non-standardized coefficients for the time step analysis

Scen. 21 Scen. 23 Scen. 25 Scen. 21 Scen. 23 Scen. 25

Ui (diameter) –0.02385 –0.02371 –0.02405 Ui (DIM1) –0.007314 –0.007337 –0.005829
Ui (failures) 0.06605 0.06582 0.06732 Ui (DIM2) 0.052930 0.054740 0.051950
Ui (material) –0.04761 –0.04587 –0.04796 Ui (soil) –0.161700 –0.128600
Ui (age) –0.01180 –0.01363 –0.01309 Ui (pressure) –3.453000 –3.453000 –2.344000
Ui (length) –0.05966 –0.05996 –0.05734 Ui (loads) 1.441000

Fig. 3. Non-standardized coefficients for the time step analysis (first 9-year period).

also parameters connected to the network in general. 
Many studies [1,7,8,13,29,30] show that pipe reliability 
estimation models are getting better and better when full 
and complete data records exist.

Glossary

AG — Pipe age, y
BR — Previous breaks, m
D — Pipe diameter, mm
DIM1-2 — Pipe joint variables
EFf, EFs — Classification indicator regarding the dis-

crimination ability related to each group 
(failures, successes)

EFt — Classification indicator regarding the dis-
crimination ability over all populations

L — Pipe length, m
LO — External load
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MAT — Pipe material
PRES — Pipe operating pressure, atm
Ri — Canonical correlation coefficient
Ui — Best discriminant coefficient for the “i” vari-

able
Uo — Adjustment for the mean values so that the 

mean discriminant score equals to zero over 
all cases

S — Soil type
Xi — Value of the sample’s characteristic
Xim — Value of the “i” variable
Zm — Value (score) of the discriminant function for 

case m
Λ — Wilk’s Λ
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