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abstract
The chlorine decay is usually described by the first order model (FOM) due to its easiness, although 
its weaknesses are well known. In this work, two better models, second order model (SOM) and 
parallel second order model (PSOM), are compared for their accuracy to predict chlorine residu-
als for a single dosing scenario. Results showed that SOM model provided a better prediction 
compared to FOM. However, SOM had two important shortcomings. Firstly, it overly predicted 
residuals in the lower end of chlorine decay curve, implying false sense of security in achieving 
secondary disinfection goals. Secondly, when higher initial dose was practiced, chlorine residual 
prediction was poorer. PSOM on the other hand provided the best fit for the experimental data in 
the initial as well as the later part of the decay curve for any doses. Compared to SOM which had 
two parameters, PSOM is more complex as it uses four parameters. Comparing to the advantages, 
complexity of PSOM is not an issue as EPANET-MSX can be used for full scale system simulation.
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1. Introduction

Chlorine is broadly used as an effective disinfectant 
in the final process of the most water treatment schemes, 
due to its low cost and high efficacy. Chlorine, as a non-
selective oxidant, reacts with both organic and inorganic 
chemical species in water; therefore, it functions as a 
highly effective antimicrobial agent to reduce the risk of 
water-born and infectious disease [1].

Disinfection must achieve two important goals: an ad-
equate inactivation of microorganisms before the treated 
water reaches the first customer (primary disinfection); 
and a minimum concentration of disinfectant should 
always be maintained at the periphery of the distribu-
tion system to inhibit microbial regrowth or accidental 
contamination (secondary disinfection) [1].

However, because of reasonably high oxidation 
potential, chlorine also reacts with other organic and 
inorganic matters in the bulk water. This phenomenon 
of reaction with different species other than microorgan-
isms (bacteria and viruses) is known as the main reason 
for chlorine decay over time. Therefore, more chlorine is 
usually required than necessary to satisfy the primary 
and secondary disinfection goals.

On the other hand, the reaction between chlorine and 
natural organic matters (NOMs) results in the produc-
tion of disinfection by-products (DBPs), some of which 
has been recognised as potentially carcinogenic or toxic 
substances. Hence, chlorine concentration should be lim-
ited in order to decrease the disinfection by-products 
formation. In addition, aesthetic consideration requires a 
maximum residual to be maintained at the customer tap. 
Furthermore, chlorine decay behaviour has been proved 
to be significantly affected by water quality character-
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istics such as total organic carbon (TOC) or dissolved 
organic carbon (DOC), pH and temperature. There are 
also several evidences of how different types of treatment 
processes and hydraulic and non-hydraulic conditions 
of the distribution system (such as corrosion, biofilm) 
may influence the chlorine decay profile [2]. Therefore 
the chlorine demand, the retention time and its required 
set point and initial dosing vary from one water source 
to another, over different water networks or different 
seasons within the same network [1].

Consequently, meeting this complex requirement is 
an optimization problem that needs robust models [3]. 
So far, several empirical as well as theoretical models 
for the prediction of chlorine decay in bulk water have 
been presented. While empirical models are based on the 
relationship of chlorine consumption with certain water 
characteristics such as TOC, DOC, pH and temperature, 
theoretical models attempt to relate the chlorine decay to 
the time throughout a set of dynamic process equations. 
These equations are based on physical and chemical 
principles such as conservation of mass for water and 
chemical constituents and mass-action kinetics in chemi-
cal reactions. The latter (theoretical models) have been 
presented to be more suitable for both planning and 
management applications [3]. Therefore, those models, 
which are dependent on the chemical reactions of chlorine 
with different constituents in the water, have been paid 
more attention in the literature. 

The objective of this research is to investigate and to 
compare effectiveness of the most popular modelling ap-
proaches (first order, second order, and parallel second 
order models) for the prediction of chlorine decay in the 
bulk water. For this purpose, initially, existing models 
are reviewed for its accuracy. Then, both our own labo-
ratory experimental data and literature data were used 
to compare effectiveness. The effectiveness is defined in 
terms of accuracy and simplicity. 

2. Modelling background

2.1. First order models

One of the earliest, simplest and initially most popu-
lar mechanistic or theoretical approaches for modelling 
chlorine decay was the first order kinetics. According 
to the first order kinetics, chlorine concentration is as-
sumed to react with infinite source of reactant, which 
never depletes with time. The general first order kinetic 
expressions for chlorine decay in bulk water would be 
expressed as follows:

Cl
Cl

dc k c
dt

= − ⋅  (1)

( ) ( )0Cl Cl expt kt= −  (2)

where cCl is chlorine concentration at time t, Cl0 is initial 

chlorine concentration [mg/L] and k is the decay constant 
[h–1].

Despite the simplicity and easiness of this model, it has 
not presented a good data fitting in different applications. 
In fact, the rate coefficient, k, is highly dependent on water 
source and type of treatment process. Most specifically, 
the model is not capable of handling the higher decay 
rates observed in the initial stages of chlorination nor the 
slow tailing off the decay at very long reaction times [1–4].

Initially, several attempts were made to compensate 
the defects of the simple first order model. These attempts, 
however, were to ignore the role of other important influ-
encing factors on chlorine decay, especially reactant spe-
cies. Hass and Karra [5] evaluated some of these models 
against first order and a new method called parallel first 
order model. The models were labelled as follows:

 • Power-law decay model (nth order)
 • First-order decay with stable components
 • Power-law decay with stable components (nth order)

For the decay models with stable components, it was 
assumed that a portion of the initial chlorine residual does 
not decay and only the remainder decays. They concluded 
that except for the parallel first order model, all other rate 
laws resulted in unsatisfactory fits to the data. 

In the parallel first order model, chlorine is divided 
into two parts and each part decays independently, ac-
cording to a first order reaction with its own individual 
decay rate. From a theoretical viewpoint, however, sepa-
rating chlorine into two constituents, one part is being 
decayed fast while the decay of another part is slow, is 
not fundamentally valid. 

In all first order kinetic models, only two variables, 
chlorine concentration and time, are considered. In fact, 
in these modelling concepts, the effect of reacting agents 
is either neglected or their amount assumed to be much 
larger than chlorine. Therefore, it is assumed that the 
concentration of reacting agents does not significantly 
change during the reaction with chlorine; and the reaction 
rate is only proportional to the chlorine concentration. 
This leads to the so-called pseudo-first-order reaction. 
However, this assumption is not necessarily valid for all 
applications.

2.2. Second order model

In order to involve the effect of reactant constituents, 
Clark [6] proposed a two-component second-order 
chlorine decay model for prediction of chlorine decay in 
bulk water. The model is based on the concept of reac-
tion between chlorine and another notional substance 
assuming that the balanced reaction equation could be 
represented as follows:

aA bB pP+ →  (3)

where A and B are reacting substances; A could be rep-
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resentative for chlorine and B would be a summation of 
all individual organic and inorganic species which po-
tentially react with chlorine. P is an overall representative 
for product of the reaction.

An analytical solution for the second order model was 
proposed by Clark [6]. The proposed solution was the first 
prosperous trial for a second-order model:

1 ReA ut

KC −=
−

 (4)

where CA is the initial chlorine concentration [mg/L] 
and K [mg/L], R [dimensionless] and u [h–1] are constant 
parameters to be estimated.

The Clark’s equation can be written as follows if the 
simple stoichiometry of the chlorine reaction is assumed:

2Cl inert productkRA+ →  (5)

Cl
RA

RA
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dt
= − ⋅ ⋅  (6)
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where CCl0
 and CRA0

 are the initial concentrations of chlo-
rine and notional reactant [mg/L], respectively, and k 
[(mg/L)–1h–1] is the rate coefficient.

One disadvantage for the second order model is that 
it considers only one individual species to react with 
chlorine. This is very important since in most cases at 
least two different reactions with chlorine, the initial fast 
and the later slow one, have been reported.

2.3. Parallel second order model

Probably the earliest second order model for the 
prediction of chlorine decay in natural water has been 
proposed by Qualls and Johnson [7]. They used this 
model for the prediction of chlorine decay in the first five 
minutes after dosing, which was the timescale for cooling 
water to pass through a power plant. They assumed two 
types of reactions — initial fast reaction followed by a 
slow one — occurring between chlorine and fulvic acids 
as NOM representative:

Cl
1 1 2 2[Cl][ ] [Cl][ ]dC k F k F

dt
= +  (8)

where dCCl/dt is the rate of free chlorine disappearance, 
[Cl] is the free chlorine concentration, k1 and k2 are the 
rate constants for the fast and slow reactions, respectively, 
and [F1] and [F2] are the concentrations of sites on the 
fulvic acids for the fast and slow reactions, respectively.

Taking inspiration from Qualls and Johnson’s work, 
Kastl et al. [4] simplified the model they had previously 
used and developed the parallel second order model for 

the entire reaction time of a typical distribution system 
(up to 7 days). They considered two parallel simultaneous 
reactions occurring between chlorine and two notional 
constituents in the water with the overall second order 
kinetics, assuming that one of the reactions is much faster 
than the other: 

FRA
2Cl FRA Cl inert productk −+ → +  (9)

SRA
2Cl SRA Cl inert productk −+ → +  (10)

where FRA and SRA are the fast reacting reducing agents 
and slow reacting reducing agents in the water and kFRA 
and kSRA are their reactions’ rate constants, respectively.

The second order reaction rates for the above-men-
tioned reactions in this model could be given as follows 
[3]:

FRA
FRA Cl FRA

dC k C C
dt

= − ⋅ ⋅  (11)

SRA
SRA Cl SRA

dC k C C
dt

= − ⋅ ⋅  (12)

where CFRA and CSRA are concentration of the two reacting 
agents (fast and slow), respectively.

Cl SRAFRAdC dCdC
dt dt dt

= +  (13)

where CCl is free chlorine concentration.
Realizing the need for having a more accurate mod-

elling approach for chlorine decay prediction, some re-
searchers started to apply the parallel second order model 
for the assessment of the effects of different treatment 
processes on the chlorine decay profile [8,9,11].

3. Material and methods

3.1. Water samples and analytical methods

Two water samples taken from Pilbara Water Treat-
ment Plant, labelled as “Pilbara Raw Water (PRW)” and 
“Pilbara Post-Filtration Water (PPFW)”, were used for 
the tests. Prepared chlorine-demand-free amber bottles 
were used to store the water samples.

All chlorine measurements were conducted with the 
N,N-diethyl-p-phenylenediamine (DPD) colorimetric 
method using Lovibond® pocket colorimeter. To minimise 
the effects of variations in the water quality, repeated tests 
were done and the results were compared for consistency. 
Diluted standard sodium hypochlorite solution was used 
for chlorination of the samples. Several experiments with 
de-ionized water were conducted before the main tests 
to confirm the initial chlorine concentrations. Prepared 
chlorine-demand-free plastic bottles were used to store 
the water samples. The samples were kept in a water bath 
to maintain the temperature condition constant. 
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Before beginning any sampling for the experiments, 
all involving containers and glassware were cleaned 
with de-ionized water to ensure that no chlorine demand 
was present. Duplicate analysis was performed on each 
sample to get an accuracy of ±0.05 mg/L, and the average 
was reported.

3.2. Selection and extraction of literature (independent) data

The literature data was extracted from the research 
work performed by Gang et al. [10]. In this study, dif-
ferent samples from surface water of the rural Missouri 
agricultural watersheds (Garden City, Maysville and 
Lake Vandalia) and Mississippi River were reported to 
be dosed by different concentrations of chlorine. A 120-h 
chlorine demand preliminary study was said to be per-
formed using a series of chlorine dosages based on Cl2 : 
DOC ratios. Among the data sets of this research work, 
three of them were selected for the analysis. The data for 
the residual free chlorine concentrations was accurately 
extracted from provided figures in this publication using 
graphical methods. Table 1 shows water quality charac-
teristics of the samples chosen from the literature as well 
as the ones obtained from the authors’ experiments. 

3.3. Data analysis

In order to compare the accuracy of the parallel second 
order model (PSOM) with the first and the second order 
modelling methods, the data of free chlorine readings 
from laboratory experiments as well as literature data 
were put into three files to be run in AQUASIM® software, 
each one was allocated for each modelling approach. 
In the first AQUASIM file, which was allocated for the 
parallel second order model, four program parameters 
(CFRA0

, CSRA0
, kFRA and kSRA) and two reaction schemes (fast 

and slow) were defined for each data set. Similarly, an-
other two AQUASIM® files were generated for the first 
order model (FOM) and the second order model (SOM). 
Parameter estimation was conducted for each group of 
measured data and for each modelling methods.

AQUASIM® contains a dynamic equation solver, 
which is capable of performing parameter estimation to 
find the best fit of the model output to the experimental 

Table 1
Water quality characteristics of the samples

Sample label Description Water quality characteristics

DOC (mg/L) UV254 pH

PPFW Pilbara post-filtration water 2.43 0.024 7.78
PRW Pilbara raw water 3.87 0.063 8.50
LWR Gang et al. [10] 9.89 0.1574 —
GWT Gang et al. [10] 2.8 0.0284 —
CWT Gang et al. [10] 3.09 0.0518 —

data [12]. The fitting procedure, however, is performed 
based on the numerical solution of all defined reaction 
schemes. The weighted error between experimental and 
model data (χ2) can be used as a measure of goodness of 
fit between experimental and predicted data and can be 
defined as follows:

( ) ( ) 2
meas,2

1 meas,

n
i i

i i

f f p
p

=

 −
χ =   s 

∑  (14)

where fmeas,i is the ith measured value, fi(p) is the calculated 
value from the model using parameter values p and smeas,i 
is the estimated standard deviation of fmeas,i.

During the fitting of the model to the experimental 
data, the initial values of all parameters were adjusted by 
AQUASIM® software until χ2 reached a minimum value.

4. Results and discussion

The results of parameter estimation for both data sets 
from Pilbara Water Treatment Plant (PPFW and PRW) 
and literature data when they were fitted to three most 
popular chlorine decay models (FOM, SOM and PSOM) 
are presented in Tables 2–4 and Figs. 1–6. 

As can be seen from Figs. 2 and 4, the first order model 
does not properly predict the chlorine residuals of any 
dataset. This can also be noticed from the fitting param-
eter (chi-squared) in Table 2, as FOM gave the highest 
chi-squared which is indicative of poorest fitting. The only 
FOM parameter to be estimated is k (the rate constant), 
which is listed for each water in Table 2.

According to Table 3, Fig. 3 and Fig. 5, the SOM rep-
resents a much better description of the chlorine decay 
than FOM for all data sets. For SOM, chi-squared values 
were smaller than half that of FOM. SOM contains two 
parameters to be estimated (the rate constant, k, and the 
initial concentration of the total reacting agents, RA0), 
which gives more degree of freedom in chlorine residual 
prediction compared to FOM. Despite a better fitting than 
FOM, SOM model had the poor ability to fit the lower 
end of the decay curve. 

Table 4 shows the model and fitting parameters esti-
mated by PSOM for the water samples taken from Pilbara 



 A. Jabari Kohpaei et al. / Desalination and Water Treatment 32 (2011) 107–114 111

Table 2
The results of parameter estimation for the experimental data with the first order model 

Sample label Initial dosing 
(mg/L)

Software Estimated and fitting parameters

k (h–1) Chi2* No. of data points

PPFW 3.20 AQUASIM 0.088 4.24 18
PRW 8.40 AQUASIM 0.105 39.659 18
LWR 12.20 AQUASIM 0.036 32.889 11
GWT 4.03 AQUASIM 0.025 5.001 11
CWT 3.62 AQUASIM 0.066 3.99 11

Table 3
The results of parameter estimation for the experimental data with the second order model 

Sample label Initial dosing 
(mg/L)

Software Estimated and fitting parameters 

k (mg/L)–1h–1) CRA0
 (mg/L) Chi2* No. of data points

PPFW 3.20 AQUASIM 0.058 2.92 2.189 18
PRW 8.40 AQUASIM 0.036 7.10 19.469 18
LWR 12.20 AQUASIM 0.012 10.05 10.755 11
GWT 4.03 AQUASIM 0.055 2.90 1.354 11
CWT 3.62 AQUASIM 0.077 2.93 1.136 11

Table 4
The results of parameter estimation for all data using the parallel second order model 

Sample label Initial dosing 
(mg/L)

Software Estimated and fitting parameters 

CFRA0

(mg/L)
CSRA0

(mg/L)
kFRA 
((mg/L)–1h–1)

kSRA 
((mg/L)–1h–1)

Chi2* No. of data 
points

PPFW 3.20 AQUASIM 0.89 2.99 2.82 0.014 0.167 18
PRW 8.40 AQUASIM 2.71 5.86 1.35 0.007 0.561 18
LWR 12.20 AQUASIM 2.68 9.99 0.32 0.004 0.140 11
GWT 4.03 AQUASIM 1.22 2.89 0.535 0.007 0.034 11
CWT 3.62 AQUASIM 1.3 3.16 0.557 0.009 0.021 11

Fig. 1. Goodness of data fitting for Pilbara water samples 
(PPFW and PRW) using the first order model (FOM).

Fig. 2. Goodness of data fitting for Pilbara water samples 
(PPFW and PRW) using the second order model (SOM).
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Water Treatment Plant (PPFW and PRW) and the selected 
literature data. As indicated in Table 4, chi-squared values 
were much smaller than any of the values obtained for 
either FOM or SOM. Such fitting was possible mainly be-
cause PSOM separates the decay curve into two parts, one 
with a much higher decay rate than the other. Moreover, 
Fig. 3 and Fig. 6 present very good fit for all data sets (at 
the beginning as well as the end of the decay period), 
indicating that PSOM provides a much better prediction 
of chlorine residuals of all models. 

Comparing the statistical fitting parameters of the 
three mentioned methods, i.e. χ2 (chi-squared), it is clear 
that PSOM perfectly meets the accuracy criteria compared 
to FOM and SOM methods. As indicated from the results, 
the chi-squared value for the modelling of PPFW sample 

starts from 4.24 using FOM, decreases to 2.189 with SOM 
modelling approach and gets its lowest value of 0.167 
using the parallel second order model. However, the 
improvement of fitting parameters with the change of 
modelling methods for PRW sample with higher initial 
concentration of chlorine is significantly better than that 
of PPFW. Analysing the data from Tables 2–4, it is found 
that chi-squared value using SOM are much lower for 
the lower initial chlorine doses than the higher ones. For 
example, while the χ2 values for PPFW, CWT and GWT 
(with the chlorine dosing of 3.2, 3.62 and 4.03 mg/L) us-
ing SOM are 2.189, 1.136 and 1.354, respectively, the χ2 
values for PRW and LWR (with the chlorine dosing of 8.4 
and 12.2 mg/L) are 19.469 and 10.755, respectively. This 

Fig. 3. Goodness of data fitting for Pilbara water samples 
(PPFW and PRW) using the parallel second order model 
(PSOM).

Fig. 4. Goodness of data fitting for the literature data from 
Gang et al. (2003)’s work using the first order model (FOM).

Fig. 5. Goodness of data fitting for the literature data from 
Gang et al. (2003)’s work using the second order model (SOM).

Fig.6. Goodness of data fitting for the literature data from 
Gang et al. (2003)’s work using the parallel second order 
model (PSOM).
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implies that SOM provides a reasonably good fit only 
when the initial chlorine concentration is low. 

Considering the results of chlorine decay prediction 
by FOM, it is clear that the model is not capable of satisfac-
torily describing the chlorine profile. The results indicate 
that in most of times there is a big difference between 
the measured data and the predicted ones using FOM. 
This huge gap between the measured and predicted data 
would significantly increase when other scenarios such 
as multiple dosing, re-chlorination, temperature effect 
and wall reaction are to be considered. In some arbitrary 
cases (i.e. when neglecting initial fast decay), however, 
FOM would give more accurate results during the end 
period of considered retention time depending on the 
initial chlorine doses and/or water quality characteristics 
(in CWT sample for example). In this case, the starting 
time for modelling has to be chosen arbitrarily, such as 
4 h after the initial dose, implying that model parameters 
have to be re-evaluated every time characteristics affect-
ing the decay vary.   

Looking at the figures, it can be realised that long time 
chlorine residuals predicted by SOM are always higher 
than the measured values. This will impact on many 
important criteria of the model. Firstly, the model will 
give larger chlorine residuals than actual values in farther 
ends of distribution systems, providing a false sense of 
security. This will adversely affect the utility achieving 
secondary disinfection targets. Secondly, if this model is 
used to determine the wall coefficients, any error in the 
model will impact on the estimation of the wall decay 
coefficient providing a false indication of the wall impact, 
and thus leads to wrong operational strategies. Moreover, 
SOM provides less reacted chlorine, which results in less 
DBPs formation prediction, as DBP formation is often 
calculated using reacted chlorine [11]. This is not desirable 
when DBPs formation control is targeted. 

As clearly manifested from the results of the tables 
as well as figures, PSOM shows the best description of 
chlorine decay profile and presents reasonably low pre-
diction errors compared to FOM and SOM. As mentioned 
earlier, it is very important to have a very accurate model 
when only one scenario, i.e. prediction of chlorine decay 
without having multiple dosing, temperature effect or 
re-chlorination, is to be considered. This is because any 
error in a single scenario will accumulate when other 
scenarios are considered. In addition, PSOM could sat-
isfactorily meet the criteria of secondary disinfection as 
well as DBPs formation control. That is if, for example, 
the maximum allowable prediction error is considered 
to be within experimental error of the instrument for the 
prediction of chlorine residual after a normal retention 
time for secondary disinfection, PSOM is the only model 
amongst the above-mentioned models that could reach 
this level of accuracy.

PSOM utilises four parameters which is double 
that of SOM, making it a complex model. Currently, 

parameter estimation is made via the AQUASIM or 
other softwares capable of handling numerical solution. 
To make the model easy to use, it is important that an 
analytical solution for the PSOM is established. Earlier, 
there was no software capable of handling complex set 
of reaction schemes for full scale system simulations [13]. 
However, availability of EPANET-MSX means that any 
complex scheme of reactions can be easily incorporated 
[14]. Therefore, added complexity of PSOM will not be 
an issue if there was an analytical solution. 

5. Conclusion

The aim of this research was to compare performance 
of the three most popular modelling approaches for the 
prediction of chlorine decay in bulk water. First order 
model (FOM), second order model (SOM) and parallel 
second order model (PSOM) were compared for its ac-
curacy to predict a single dosing scenario. As usually 
concluded in the literature, FOM performed the weak-
est. SOM was better than FOM, but in lower end of the 
decay curve SOM predicted higher concentration indicat-
ing that utilities will have trouble satisfying secondary 
disinfection goals or in identifying how wall reaction is 
impacting chlorine decay. PSOM, in contrast, provided 
the best fit to the chlorine decay profiles at any part of 
the curve. It was concluded that the PSOM is the most 
accurate modelling method among the three mentioned 
chlorine decay models, despite its complexity with four 
parameters compared to two in SOM and one in FOM.
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