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ab st r ac t
Constructed wetlands are now commonly used as tertiary treatment for urban stormwater. The 
wetlands have primary advantage over other forms of treatment as they remove dissolved organics 
and heavy metals in conjunction with other pollutants. The effectiveness of a wetland is a primary 
concern for validating its compliance with design objectives and regulatory requirements. The treat-
ment in a wetland is however complex and is dependent on input pollutants, hydraulics, physico-
chemical balance and biota within the wetland. Several models are available for wetlands but have 
limitations in simulating the physico-chemical and biological processes within the wetland. The aim 
of this paper is to introduce a hybrid modelling approach that involves both a deterministic model 
and artificial neural network (ANN) for testing the effectiveness of a constructed wetland at Olympic 
Park, Homebush, Sydney, Australia. This novel approach allows a combination of calibrated water 
quality and neural based models to predict the water quality from the wetland. The models were 
calibrated and validated using water quality monitoring data measured for eight months in both 
influent and effluent streams of the wetland. The calibrated hybrid models were then tested for 
treatment effectiveness for range of wet, dry and median flows conditions within the catchments. 
A water quality index was developed and used to quantify the effectiveness of the wetland.
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1. Introduction

Measuring stormwater treatment effectiveness is a 
major challenge for regulators. The effectiveness of a 
wetland is a primary concern for validating its compliance 
with design objectives and regulatory requirements. The 
complex physico-chemical and biological processes in a 
wetland renders it difficult to use mathematical models 
as these processes cannot be readily captured. Artificial 

neural network (ANN) models are becoming popular in 
water quality modelling as they are able to capture the 
dynamic response without the need to understand and 
model the process. Although there are some published 
papers on using ANN for modelling wetlands [1–3], 
there is not much work done on using hybrid models 
for measuring treatment effectiveness. A case study was 
undertaken to explore using hybrid models EPA SWMM 
and ANN to measure treatment effectiveness of urban 
wetland in Sydney Olympic Park.
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2. Study area

Sydney Olympic Park is a 640 ha urban park in the 
geographic centre of Sydney, Australia. The park is main-
tained as a lasting legacy to the Sydney 2000 Olympics. 
Out of the 640 ha the park has a built environment in a 
‘town centre’ occupying about 215 ha and the remaining 
425 ha are ‘parklands’. The parklands comprise 175-ha of 
wetlands, 40 ha of woodlands and 210 ha of picnic areas 
and pathways. All of these are situated on the Parramatta 
River and in the vicinity of Homebush Bay.  

Sydney Olympic Park is located within the greater 
Sydney Harbour Catchment on the Parramatta River and 
is affected by both upstream and downstream (intertidal) 
activities. Within the Park, however, there are four sub-
catchments; the Brickpit system; Haslam’s Creek system; 
Powell’s Creek system; and Nature Reserve Wetland 
(Wanngal Wetland) system. The wetland investigated in 
this study is Northern Water Feature (NWF) (Stormwater 
Pond-MP12), which lies on Haslam’s Creek (Fig. 1).

The NWF wetland is about 2.60 ha and incorporates 
a series of wetland fingers with vegetation lining along 
the ponds edges to visually represent the Olympic Flame 
(Fig. 1). 

3. Water quality monitoring

To test the effectiveness of treatment system, on site 
monitoring was conducted between October 2009 to May 
2010 at the inlet and outlet from the wetland (Fig. 1). A 
total of 32 composite samples were used during the 8 
months monitoring period covering both wet and dry 
weather flows regime. A number of common pollutants, 
heavy metals and organic matter in the treated water 
were then analysed (Table 1). The pollutants included 
those used for evaluating the water quality index (WQI) 
using the NSF (National Sanitation Foundation, USA) [4]. 
The NSF WQI was developed to provide a standardized 
method for comparing the water quality of various bodies 

Fig. 1. Northern Water Feature (Stormwater Pond-MP12) and Haslam Creek.

of water. NSF Water Quality Index is a 100 point scale that 
summarizes results from nine different measurements as 
follows, temperature change, pH, dissolved oxygen (DO), 
turbidity, faecal coliforms, biochemical oxygen demand 
(BOD), total phosphorus, nitrates and suspended solids. 
A total of 32 composite samples during the monitoring 
period were then used for this study.

The monitoring results show significant biological 
activity within the wetland for removal of common pol-
lutants and bacteriological parameters. Most of the pol-
lutants are contributed from particulate loading whilst 
there is also significant dissolved matter washed off from 
catchments contributing to the wetland. Total dissolved 
solids are higher than typical urban catchments, Austra-
lian Rainfall Quality [5].

4. Methodology for evaluating effectiveness of wetland

The major challenge to the success of stormwater 
treatment is to quantify the effectiveness over its life 
cycle given that it demands high maintenance. This re-
quires comprehensive water quality measurements both 
upstream and downstream of the treatment device for a 
range of inflow conditions.

The methodology presented in this paper is based on 
using water quality sampling data (8 months) based on 
representative storm events and calibrating water quality 
models EPA SWMM [6] over the range of inflow condi-
tions observed during the sampling period. 

An artificial neural network (ANN) model was then 
developed, trained and validated for the range of influ-
ent and recorded effluent data of the wetland. ANN is 
a powerful tool for multivariate and nonlinear analysis, 
and offers an alternative to traditional statistical methods 
[7]. The calibrated ANN model was used to test the ef-
fectiveness of the wetland over a range of wet, dry and 
median inflow conditions. A NSF Water Quality Index 
was developed and tested to gauge effectiveness of the 
wetland. The methodology involves the following steps:
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Stage 1. This stage involved calibrating the water qual-
ity variables to the observed field data. This was achieved 
by calibrating the EPA SWMM model by adjusting the 
hydrological parameters and pollutant generation rates. 
Flow calibration was undertaken by matching the range 
of recorded water levels within the wetland. 

Stage 2. This stage involved training the neural 
network models using time series of input and output 
parameters from the water quality monitoring data for 
both influent and effluent streams in the wetland. The 
trained model was then tested and validated using the 
modelled input and output parameters and the best 
model was then adopted.

Stage 3. This involved running the calibrated EPA 
SWMM water quality model to generate pollutants for 
range of inflow conditions, wet, dry and median year.

Stage 4. This involved running the trained and tested 
neural model for the modelled inflow pollutants generat-
ed by EPA SWMM over the dry, median and wet weather 
conditions. This was called the production dataset and the 

Table 1
Sampling results (October 2009–May 2010)

Minimum Maximum Mean Std. deviation

Wetland level, m AHD 102.10 102.40 102.25 0.115
Influent parameters

Temperature, °C 25.00 36.00 32.30 3.86
pH 6.90 9.76 8.52 0.97
DO, mg/L 5.00 9.40 7.05 1.62
BOD, mg/L 11.00 45.00 22.00 9.40
TDS, mg/L 276.8 754.1 534 166.1
Turbidity, NTU 1.89 6.00 3.65 1.82
Orthophosphate, mg/L 0.06 1.38 0.38 0.50
Nitrate, mg/L 0.01 2.08 0.47 0.81
Nitrite, mg/L 0.00 0.52 0.10 0.21
Temperature, °C 0.06 0.40 0.23 0.14
Total coliforms 9.00 6000 1123 2400
Faecal coliforms 9.00 4800. 858. 1933

Effluent parameters
Temperature, °C 25.70 36.00 31.00 3.90
pH 6.81 9.52 8.69 1.08
DO, mg/L 3.96 8.50 4.60 1.70
BOD, mg/L 6.00 25.0 9.50 11.50
TDS, mg/L 225.8 661.0 429.7 157.7
Turbidity, NTU 1.41 10.00 5.26 2.95
Orthophosphate, mg/L 0.01 0.19 0.10 0.08
Nitrate, mg/L 0.00 1.82 0.31 0.74
Nitrite, mg/L 0.00 0.56 0.10 0.23
Ammonia 0.03 0.53 0.15 0.19
Total coliforms 9.00 350.0 86.2 136.4
Faecal coliforms 9.00 50.0 16.0 16.7

results were then used to test the treatment effectiveness 
of the stormwater treatment train. The NSF Water Qual-
ity Index was also developed and reported for monthly 
variability in the index for range of dry, median and wet 
weather conditions in the catchment.

4.1. EPA SWMM model

The United Sates Environmental Protection Agen-
cies (EPA) storm water management model (SWMM) 
[6] is a comprehensive computer model for the analysis 
of stormwater quantity and quality. SWMM can model 
continuous events and simulate all important aspects of 
the hydrological cycle. Rainfall and monthly evaporation 
values were obtained from the Bureau of Meteorology 
records for stations in the vicinity. Stormwater pollution is 
modelled through a buildup and washoff method, which 
includes dry-weather pollutant buildup over different 
land uses and pollutant washoff from specific land uses 
during storm events [6].
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SWMM provides the user with a series of water quality 
inputs to model the accumulation of pollutants over the 
catchment and the removal of these pollutants. The event 
mean concentration (EMC) method was used to model the 
pollutant washoff. Table 2 gives typical ranges of common 
stormwater pollutants that were used in this study [5].

The following assumptions were made in the genera-
tion of pollutants that did not mask the overall objective 
of this study, which was to outline a viable modelling 
methodology to test the effectiveness of the wetland 
system. Temperature of the influent stream for mod-
elled catchment conditions were estimated based on air 
temperature data recorded in the area and a correlation 
between observed air temperature and recorded water 
temperature (correlation coefficient 0.98). Dissolved 
oxygen was correlated to water temperature as a simpli-
fied approach. A high correlation coefficient of 0.92 was 

Table 2
Range of pollutant concentration in urban stormwater [5]

Pollutants Range

pH 4.7–8.5
Total suspended solids, mg/L 50–110
Total phosphorus, mg/L 0.15–0.25
Total nitrogen, mg/L 0.5–3
Turbidity, NTU 1.5–5
NO2/NO3-N, mg/L 0.86–2.2
BOD, mg/L 6–38
Total coliforms, cfu/100mL 5,000–80,000
Faecal coliforms, cfu/100mL 4–50

Table 3
EPA SWMM model results 

Minimum Mean Maximum Minimum Mean Maximum

Water level, m AHD pH
Recorded 102.1 102.25 102.4 Recorded 6.9 8.52 9.76
Modelled 101.9 102.42 102.8 Modelled 7.2 8.15 9.2

Dissolved oxygen, mg/L Turbidity, NTU
Recorded 6.3 7.0 9.5 Recorded 1.89 3.65 6
Modelled 5.9 7.2 9.2 Modelled 2.3 3.82 8

Faecal coliform, Cfu/100mL Total phosphorus, mg/L
Recorded 9 858 4800 Recorded 0.06 0.38 1.38
Modelled 4 800 4200 Modelled 0.05 0.4 1.39

Nitrates, mg/L Total dissolved solids, mg/L
Recorded 0.01 0.47 2.08 Recorded 277 534 754
Modelled 0.01 0.48 2.2 Modelled 260 540 765

BOD, mg/L Temperature, °C
Recorded 11 22 45 Recorded 25 32 36
Modelled 10 24 42 Modelled 21 30 34

observed using the recorded data and the approach was 
deemed reasonable. 

The EPA SWMM model was initially calibrated for 
hydrology by obtaining a good fit with the observed wa-
ter levels within the wetland. The selected pollutants as 
specified in Table 3 were then calibrated in EPA SWMM 
using common export rates as specified in Australian 
Runoff Quality [5]. The model was adjusted iteratively for 
pollutant export rates until a good match was achieved 
with the recorded pollutants. The results of the EPA 
SWMM model are presented in Table 3. The objective 
of this method of calibration was not to attempt event 
calibration but to statistically match the distribution of 
event concentration over the sampled events. This method 
was deemed suitable for hybrid water quality modelling 
attempted in this study. Flow calibration was achieved 
by modelling wetland and the overflow weir structure to 
match the recorded water levels.

It was observed from Table 3 that the EPA SWMM 
model fits reasonably well to both the water level and 
selected pollutants observed in the influent stream to the 
wetland. The calibrated model was then used to develop 
the hybrid model in conjunction with an artificial neural 
network model.

4.2. Artificial neural network model

An ANN is an adaptable system that can learn re-
lationships through repeated presentation of data and 
is capable of generalizing to new, previously unseen 
data. Some networks are supervised, in that a human 
determines what the network should learn from the 
data. In this case, a network is provided a set of inputs 
and corresponding desired outputs, and the network 
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learns the input–output relationship by adapting its free 
parameters. Other networks are unsupervised, in that the 
way they organize information is hard-coded into their 
architecture. ANN is a powerful data modelling tool that 
is able to capture and represent complex input/output 
relationships. The use of ANN is growing rapidly with 
successful applications in many areas and has been also 
applied in prediction of water quality of wetlands [1–3]. 

ANN model was developed using neural network 
toolbox in MATLAB [7]. A single hidden-layer, multi 
layered perceptron (MLP) feed forward neural network 
using error back propagation network, EBP was devel-
oped. All features of a feed forward neural model were 
investigated including training set creation, learning 
rate, number and layers of neurons, neural activation 
model predictions with test data sets. Most of the model 
configurations offered excellent predictive capabilities. 
Using either the logistic or the hyperbolic tangent neural 
activation function did not significantly affect predicted 
results. This was also true for the two learning algorithms 
tested the Levenberg-Marquardt and Polak-Ribiere 
conjugate-gradient descent methods. Hyperbolic tangent 
neural activation function was adopted for this study as 
this produced reasonable results. Cross validation was 

applied to the dataset with criteria set to terminate at 
either 100 epochs without improvement in the network 
or adopted mean square error (MSE). 

The most important step during model development 
and training was the representative selection of data 
records for training of the model. A total of 16 samples 
were selected for training, 8 samples for validation and 
the remaining 8 samples for testing. A total of nine influ-
ent and effluent water quality variables (based on NSF 
Water Quality Index) along with recorded water levels in 
the wetland were used for developing the ANN model.

Network performance was estimated by linear re-
gression between the actual and target (predicted) water 
quality parameters after post-processing the output to the 
original scalar variables. The results of training, testing 
and validation are presented in Table 4. The table shows 
that for trained network a mean square error of 0.05 was 
achieved in just 40 epochs with convergence around 200 
epochs. The results show a good convergence in 1000 
epochs for all the datasets and this trained model was 
then used for the production runs. 

The tested ANN model was then run on input time-
series (daily time step) from calibrated EPA SWMM 
models (nine water quality variables and water levels) for 

Table 4
Results from ANN model runs

Best network Training

Epoch # 1000
Minimum MSE 0.00984
Final MSE 0.00984

Performance BOD Dissolved oxygen Temperature pH TDS Turbidity

MSE 31.2259 0.0869 1.7819 0.1279 0.0201 4.7848
Min abs error 3.2925 0.0403 0.0989 0.0283 0.0176 0.2682
Max abs error 8.4287 0.5919 2.6732 0.6398 0.3011 5.0672
r2 0.9174 0.9937 0.9317 0.9323 0.8455 0.9349

Performance Ortho-phosphate Nitrate Faecal coliforms

MSE 0.0008 0.0041 2.1940
Min abs error 0.0103 0.0192 0.0620
Max abs error 0.0430 0.0948 3.0386
r2 0.9272 0.9962 0.9975

MSE — mean square error
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entire dry, median and wet year. The modelled effluent 
parameters from ANN were checked for wet, dry and 
median years to ensure that they were not statistically 
different from the recorded values distribution. The aver-
age monthly output from ANN model was then used for 
setting up NSF Water Quality index.

5. Results and discussions

The results of hybrid model for predicting long term 
pollutant removal for wet, dry and median flow condi-
tions is presented in Table 5. Also, the overall performance 
of the wetland is presented in Table 6.

Results indicate the following:
1. In a typical wet year the performance of wetland is sig-

nificantly lower than the average and dry conditions. 
The wetland is relatively small in size and therefore 
the detention time is significantly lower in a wet event 
which results in lower performance rates.

2. In a dry year, removal of total phosphorus and ni-
trogen is significantly higher. This is due to a higher 
intake of nutrients from aquatic growth. BOD and 
faecal coliform removal is significantly higher due to 
longer detention time in this flow regime.

3. In median year, the removal rates of pollutants are 
slightly better than the wet year, but the performance 
is still poor, and it appears that the wetland has a 
design issue most likely related to its size. It is also 
noted that the wetland does not have a dedicated 
sedimentation zone.

Table 5
Hybrid model results of selected pollutants for range of catchment conditions

pH DO Turbidity TSS TP Nitrate BOD FC Temp

Dry year, rainfall 630 mm/y
Influent, EPASWMM 8 6 6 18 1.2 1.1 53 1500 34
Effluent, ANN 9.4 5.1 2 3 0.04 0.1 8 480 30

Wet year, rainfall 1600 mm/y
Influent, EPASWMM 6.5 9 8 32 0.23 0.68 15 220 28
Effluent, ANN 9.4 6.5 10.5 31 0.2 0.52 12 210 27

Median year, rainfall 1100 mm/y
Influent, EPASWMM 7.5 7.1 6.8 23 0.89 0.9 24 410 30
Effluent, ANN 8 5.4 3.1 12 0.31 0.52 13 210 25

Table 6 
Performance of wetland (in terms of percentage removal of pollutants)

Turbidity TDS TP Nitrate BOD FC

Dry year 67% 23% 97% 91% 85% 68%
Wet year 25% 17% 13% 24% 20% 5%
Median year 54% 22% 65% 42% 46% 49%

To gauge the relative performance of the wetland, a 
water quality index was developed based on the NSF. This 
index is a 100 point scale that summarises results from 
nine measurements, ie temperature change, pH, dissolved 
oxygen, turbidity, faecal coliform, bio-chemical oxygen 
demand, total phosphorus, nitrates and suspended solids.

Estimated NSF has been presented for dry, wet and 
median year flow conditions (Fig. 2). Based on the NSF 
Water Quality index, the range of score for this wetland 
is 30–70, which ranges from bad (25–50) and medium 
(50–70). There is high variability in the water quality index 
with seasonal variation. In a dry year, the performance 
is typically good for summer period (December–Feb-
ruary period in Southern Hemisphere) that is due to 
macrophyte growth while deterioration in water quality 
is expected during pond overturning events (autumn 
and spring).

The hybrid modelling approach using both water 
quality (EPA-SWMM) and artificial neural network 
(ANN) models has demonstrated this approach as a 
powerful tool for evaluating the effectiveness of wetland. 
The methodology adopted compliments the limitations of 
both the models and provides a decision support tool that 
can be used with confidence. Based on the results of the 
hybrid modelling it can be concluded that the effective-
ness of the wetland using the NSF Water Quality Index 
ranges from medium to bad and could be related to the 
size of the wetland. The results are preliminary in nature 
and further evaluation using more extensive monitoring 
data is required to properly assess the effectiveness of the 
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wetland using the hybrid modelling approach presented 
in this study.
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Fig. 2. NSF water quality index for wetland performance.
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