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A B S T R AC T

In this study we developed a fundamental method to directly calculate hydraulic permeabil-
ity and tortuosity relative to the Happel cell model [AIChE J. 4 (1958) 197–201] without any 
macroscopic assumptions. No transparent structural dependence was observed in hydraulic 
permeabilities from simulation results of parallel dissipative hydrodynamics. The Happel cell 
model constantly underestimates, by a minimum of volume fraction 0.524, the permeability of 
sphere-packed porous media using simple cubic, body-centered cubic, face-centered cubic, and 
random cake structures. Accurate uses of the Happel cell model and Carman-Kozeny equation 
are limited to a narrow range of dense volume fractions from 0.524 to 0.64, above which the true 
depiction of the permeability from dissipative particle dynamics (DHD) provides lower perme-
ability than that estimated using conventional theories.

Keywords:  Hydraulic permeability; Hydraulic tortuosity; Random packing structures; Solid 
state structures; Stokesian dynamics; Dissipative hydrodynamics

1. Introduction

Water permeation through porous media is a ubiqui-
tous phenomenon in natural and engineered processes, 
including membrane fi ltration. When particulates are 
rejected on membrane surfaces, a cake layer forms and 
provides signifi cant hydraulic resistance. If the particle 
sintering method is used to prepare microfi ltration or 
ultrafi ltration membranes, water transport through 
sphere-packed porous media (i.e., membranes) is fun-
damentally similar to the transport through cake lay-
ers [1]. In addition, the role of the porous support layer 
in pressure-retarded osmosis and forward osmosis is 
of interest due to its hindrance of solute diffusion as 
well as resistance to water permeation [2]. Research 

on p ermeability of a sphere-swarm is still in a bur-
geoning state because rigorous microscopic simulation 
tools are mathematically complex and computationally 
very intensive. For accurate estimation of permeability, 
hydrodynamic forces exerted on particles should be pre-
cisely calculated using the particle sizes, volume frac-
tion, and internal confi guration of the sphere-packed 
porous media. The pressure gradient across the porous 
media is equivalent to the hydrodynamic force density 
and is inversely proportional to the permeability. There-
fore, structural dependence of the permeability can be 
characterized using hydrodynamic tortuosity if the drag 
forces are accurately calculated [3,4].

In this study, we calculated hydraulic permeabili-
ties of various models of porous media composed of 
mono-dispersed spheres such as simple cubic (SC), 
body-centered-cubic (BCC), face-centered-cubic (FCC), 
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 and random cake (RC) structures [5–7]. Hydrody-
namic forces and torques exerted on particles forming 
these well-characterized structures are calculated using 
the recently developed dissipative particle dynamics 
(DHD) [8]. N equal-sized spherical particles are located 
in a uniform up-fl ow, and the grand mobility matrix was 
built based on the relative particle positions. Then, drag 
forces in the fl uid fl ow direction were calculated using 
the parallel LU decomposition technique. As many as 
10,000 particles were simulated to estimate the hydraulic 
permeability and tortuosity, of which the grand mobil-
ity tensor has matrix elements on the order of billions. 
This huge linear system was solved using ScaLAPACK 
library for parallel computations [9]. We found that the 
random internal structure of the sphere-packed porous 
medium has noticeable infl uence on the permeability; 
and permeability models provide reasonable approxi-
mations only for closely packed structures of volume 
fraction around the random loose packing (RLP) ratio 
of 0.60 [10].

2. Simulation method

2.1. Generation of porous media structures

As stated above, we selected four model structures 
of sphere-packed porous media, i.e., SC, BCC, FCC and 
RC. A unit cell of SC structure consists of eight spheres 
positioned at each corner of a cube. BCC structures have 
one more sphere in the center of the SC cube and FCC 
structures have six additional spheres on each face of the 
SC cube. The net number of spheres in SC, BCC, and FCC 
cells are 1 (= 8 × 1

8 ), 2(= 8 × 1
8  + 1), and 4 (= 8 × 1

8  + 6 × 1
2 ), 

respectively, because spheres at a corner contribute one 
eighth of a sphere volume and spheres on a face con-
tribute a half of a sphere volume. The RC structure is 
obtained by using a simple Monte Carlo technique for 
hard spheres [11]. Each particle moves randomly with 
a displacement much smaller than the distance to the 
nearest neighbor. If the particle at a new proposed posi-
tion overlaps with any other particles, it returns to the 
original position; otherwise, it stays at the new location 
and the next random movement is executed. Since con-
densation from a dilute confi guration to a dense random 
packing structure is not a simple task, we reversed the 
process as this is known to be more effective. We started 
with a FCC structure of volume fraction 0.70 and shook 
the particle system to generate a random structure using 
the Monte Carlo algorithm described above. For RC 
structures of lower volume fractions, we changed the 
particle coordinate from the center of mass position to 
increase the porosity and performed extra Monte Carlo 
movements to enhance the structural randomness and 
remove any correlation from the parent structure.

Once each structure with a number of particles 
N = O(103−104) is generated in a cubic box of each length 
L, we removed particles near the edges if their distances 
from the center of the box were larger than the half 
length. The remaining particles are within a spherical 
shell of radius 0.5 L and form a spherical swarm. The 
number of particles forming a spherical swarm is less 
than that of a large cubic array. We developed a simple 
algorithm that suggests n primary spheres of a spheri-
cal swarm, which eventually consists of N spheres quite 
close to the proposed n. The characteristic radius of 
the spherical swarm is estimated to be the outer radius 
based on the gyration radius. See section 2.3 for details.

2.2. Calculation of generalized hydrodynamic forces

Bossis and Brady [12] developed a computationally 
intensive method called Stokesian dynamics for numer-
ically simulating dynamics of interacting spherical par-
ticles, of which the hydrodynamic force calculation is 
identical to that of DHD. For a small particle Reynolds 
number, the hydrodynamic force/torque F of dimension 
6N exerted on N stationary particles in a uniform fl ow 
is described as

U M F∞ ∞ ∞= ⋅  (1)

where M• is the far-fi eld mobility matrix of dimension 
6N × 6N. Since the ambient up-fl ow to each particle is 
expressed as U• = (0, 0, +1, 0, 0, 0) in a dimensionless 
form, F is calculated using the standard parallel LU 
decomposition method after the grand mobility matrix 
is set up using relative coordinates for N particles. When 
particles move in a concentrated suspension with aver-
aged surface-to-surface distances ranging in length from 
their radii or smaller, lubrication forces play an impor-
tant role in near-fi eld hydrodynamic repulsion. In that 
case, M• needs to be inverted and updated with the dif-
ference between exact near-fi eld lubrication forces and 
approximate many-body far-fi eld hydrodynamic forces 
between two particles [12]. However, when particles are 
fi xed in space without performing relative motions or 
their relative distances are constrained, the lubrication 
forces overestimate the near-fi eld hydrodynamics inter-
actions, leaving the far-fi eld grand mobility as an excel-
lent link between generalized forces and velocities for 
non-touching spherical particles [13].

2.3. Calculation of hydraulic permeability

Hydraulic permeability is, by defi nition, a quan-
tity to measure the ability of a porous material of spe-
cifi c internal geometry to transmit a fl uid of viscosity 
μ, and is independent of the nature of the fl uid fl ow. 
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For cr eeping fl ow through an isotropic porous medium, 
Darcy’s law defi nes the (intrinsic) permeability κ as

u P
κ
μ

= − ∇
 

(2)

where u is the superfi cial fl uid velocity through the 
medium, μ the fl uid viscosity, and P the pressure. For par-
ticle swarms composed of primary particles of radius a, 
the dimensionless permeability, defi ned as 2aκ , strongly 
depends on the solid volume fraction of the media φ. This 
dependence can vary with the internal structure of the 
media in a way that is diffi cult to predict from the fi rst 
principles. Various investigators developed the perme-
ability expressions for porous media. Due to its simplicity 
and elegance, the Happel cell model [14] is regarded as an 
excellent tool for predicting permeability of packed beds 
consisting of identical spheres:

Happel

2 1/3 5/3 2

5/3

2 6 9 9 6
9 6 4
aκ

⎛ ⎞ ⎡ ⎤− φ + φ − φ= ⎢ ⎥⎜ ⎟φ + φ⎝ ⎠ ⎣ ⎦  
(3)

which in the dilute limit reduces to [15]

DL

22
9
aκ =
φ  

(4)

On the other hand, the Carman-Kozeny (CK) equa-
tion [16] is a widely used, semi-empirical expression for 
permeability of a dense sphere-packed swarm:

( )
CK

32 12
9 2
a

c
κ

⎡ ⎤⎛ ⎞ − φ
= ⎢ ⎥⎜ ⎟φ φ⎝ ⎠ ⎢ ⎥⎣ ⎦  

(5)

where c is a parameter, empirically obtained as 5. 
Although these models provide good insight on how the 
permeability changes with volume fraction, infl uence of 
the internal geometry on the macroscopic permeability 
is also an important issue.

Stokes’ law expresses the drag force exerted on an 
impermeable rigid sphere of radius R, experiencing rela-
tive velocity U, as

Stokes 6 Uπμ=F R  (6)

and another system of great interest is a uniformly porous, 
spherical aggregate of the same radius R, held fi xed in a 
unidirectional fl uid fl ow or sinking in a motionless fl uid 
with velocity U. Brinkman [17] developed a solution for 
the drag force acting on the uniformly porous sphere, 
on which the stresses and velocities were considered to 
be continuous. An effective viscosity within the porous 

sphere was assumed to be identical to that of the bulk 
phase. A dimensionless parameter, defi ned as

Rβ
κ

=
 

(7)

represents the ratio of the (characteristic) radius of the 
porous sphere to the penetration depth of the fl uid fl ow 
(from the surface to the center of the porous sphere) 
estimated as κ  [18]. The hydrodynamic force F exerted 
on the porous sphere by the uniform fl ow can be scaled 
using Stokes’ law:

Stokes= ΩF F  (8)

where

( ) ( )
( )

2

2

2 1 tanh /
1

2 3 1 tanh /
β − β β

Ω β = ≤
β + − β β  

(9)

is a correction factor, indicating that the permeableness 
of the porous sphere reduces the drag force from Stokes’ 
drag by allowing the fl uid to partially penetrate the 
porous sphere. Ω can be also regarded as the ratio of the 
settling velocity of a solid sphere to that of a permeable 
sphere of the same size and total solid mass.

If N primary particles of radius a form a spherical 
assemblage of radius R, then the drag force acting on 
each particle can be calculated using Eq. (1) and the cor-
rection factor is

Stokes 1

N

i
i

F a
f

F R =
Ω = = ∑

 
(10)

where ( 1)if ≤  is the dimensionless hydrodynamic force 
in the fl ow direction acting on the ith particle, i.e., the 
drag force on the ith particle in the swarm divided by 
that when isolated. The gyration radius of the N-sphere 
swarm is calculated as

( )22 1= −∑  N

g i CM
i

R r r
N  

(11)

where ir


 and CMr


 are positions of the ith particle and the 
c enter-of-mass of the N particles. The outer radius R of the 
assemblage is defi ned in terms of the gyration radius Rg as

5
3

= gR R
 

(12)

and, fi nally, the volume fraction of the sphere-packed 
porous media is calculated as
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 2⎛ ⎞φ = ⎜ ⎟⎝ ⎠
aN
R  

(13)

The overall procedure of the permeability calcula-
tion using the DHD simulation method and Brinkman 
theory is as follows:

i.  forces and torques exerted on each particle are cal-
culated using Eq. (1),

ii.  the correction factor Ω is determined using Eq. (10),
iii.  β is numerically calculated using Eq. (9) with Ω cal-

culated in step (ii), and the outer radius calculated 
using Eq. (12), and fi nally

iv.  permeability κ is calculated using Eq. (7) and plot-
ted with respect to φ of Eq. (13).

When the porous medium is densely packed with 
a high volume fraction, the permeability decreases to a 
negligible value, providing a large value of β followed 
by Ω converging to 1.0. Therefore, it should be noted that 
inverse estimation of β using Eq. (9) is very sensitive to 
accurate calculation of Ω as well as the outer radius R, 
especially for dense structures.

3. Results and discussions

3.1. Permeability ratio

Hydraulic permeabilities of SC, BCC, FCC and RC 
structures were investigated as a function of the volume 
fraction, and those scaled by the Happel cell model, i.e., 
permeability ratio, are shown in Fig. 1. The inaccuracy 
of the CK equation based on the hydraulic diameter at 
low volume fractions led us to select the Happel model 
as our reference permeability [16]. The accuracy of 
mean-fi eld approximations of permeability theories are 
compared to and analyzed with the rigorous and accu-
rate DHD simulation results.

SC structure. Variation of the permeability ratio of 
the SC porous medium is shown in Fig. 1(a). Volume 
fraction increases from 0.01 to the maximum packing 
ratio (MPR) π/6 (= 0.524) where each particle touches 
six nearest neighbors. The number of particles seems to 
infl uence the permeability ratio, but no specifi c trend is 
clearly observed. In general, the reliability of simulation 
increases with the number of particles. Convergence 
of the permeability ratio to 1.0 at low volume frac-
tions, especially φ smaller than 0.1, validates the DHD 

Fig. 1. Permeability ratio of DHD simulations using 2000 (□), 4000 (ο), 6000 (Δ), and 10,000 (♦) particles (proposed) relative to 
the Happel cell model versus volume fraction. Internal geometrical structures are modeled as (a) SC, (b) BCC, (c) FCC, and 
(d) RC confi gurations.
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simulation method, indicating both DHD simulation 
and H appel’s model converge to the standard perme-
ability form of Eq. (4) at the dilute limit with homo-
geneous particle distribution. The permeability ratio 
linearly increases with respect to the volume fraction 
for the entire v olume fraction range, and is consistently 
greater than 1.0. This implies that the Happel cell model, 
at least for SC structures, constantly underestimates 
the permeability; in other words, it overestimates the 
hydraulic resistance per length. At high volume frac-
tions, close to the SC MPR of 0.524, the permeability 
ratio exceeds 1.5 for all cases of the particle numbers. 
Overall, DHD simulations for the SC structure indicate 
that the applicability of the Happel model is limited to 
low volume fractions specifi cally for the SC structure, 
and its deviation from true depiction of the permeability 
linearly increases with respect to the volume fraction.

BCC structure. Similarly, the hydraulic permeability 
of the BCC structure was investigated using the same 
DHD simulation method for volume fractions as much 
as the BCC MPR, 3 / 8 0.680π = . The permeability 
ratio is shown in Fig. 1(b) with respect to the volume 
fraction with minor infl uences from the number of par-
ticles at low volume fractions. The permeability ratios 
monotonically increase from 1.0 within the same region 
of the SC, i.e., φ = [0.01, 0.524], in which the Happel model 
truly underestimates the permeability. However, espe-
cially for larger number of particles such as 6,000 and 
10,000, the permeability ratios peak near the SC MPR 
(0.524), start decreasing to below 1.0 at volume fraction 
around the RLP ratio (0.60), and reach almost zero per-
meability near the BCC MPR (0.680). The permeability 
coincidences near the RLP ratio (0.60) between the Hap-
pel model and DHD simulations with a larger number 
of particles are also shown in FCC and RC structures 
in Figs. 1(c) and (d), respectively (see next sections). 
A possible reason for the difference in the SC and BCC 
permeability ratios at high volume fractions can be the 
distinct structural features observed for a large number 
of particles. The SC structure intrinsically forms internal 
straight pores in three directions along which spherical 
particles are aligned. BCC (as well as FCC) cannot have 
these straight or less devious pores around the volume 
fraction of 0.524, above which the permeability ratio 
declines due to tortuous paths for fl uid fl ow.

FCC structure. Fig. 1(c) shows the permeability ratio 
of the FCC structure with respect to volume fraction 
from 0.01 to 2 / 6 0.741π =  (i.e., the FCC MPR). The 
infl uence of the number of particles on the DHD simula-
tions is minimal in this FCC structure compared to the 
other three structures. Nevertheless, similar trends of 
the FCC permeability to that of BCC structure is shown 
in Fig. 1(c), i.e., linearly increasing at low volume frac-
tions up to 1.5, reaching a maximum near the SC MPR 

(0.524), and decreasing to below the ratio of 1.0 around 
the RLP ratio (0.60). These results also confi rm the gen-
eral invalidity of the Happel model as indicated in the 
previous SC and BCC cases. As stated above, monotonic 
increases of the permeability ratios for small numbers of 
particles in the BCC case were not observed in this FCC 
case; however, permeability ratio peaks of FCC structure 
are observed for all particle numbers, possibly implying 
that FCC structure is hydraulically more homogeneous.

RC structure. So far we studied the permeability 
of sphere-packed porous media characterized by the 
standard SC, BCC and FCC structures. Although such 
basic solid-state structures provide good insight on how 
the internal structure of a porous medium infl uences 
the hydraulic permeability, in reality, when a colloidal 
cake layer is formed on the membrane surface, the geo-
metrical confi guration can be better characterized by a 
random packing structure. Overall trends of the per-
meability ratio for this RC structure with respect to the 
volume fraction, as shown in Fig. 1(d), are quite similar 
to those of BCC and FCC. A unique feature of this RC 
structure is that the permeability ratios are consistently 
greater than 1.0 even at low volume fractions near 0.1 
or below. In SC, BCC, and FCC structures, this ratio 
commonly converges to 1.0 because the mathematical 
approach of the Happel model intrinsically assumes 
complete homogeneity of spherical primary particles. 
Fig. 1(d) not only indicates that the Happel model 
underestimates the permeability even at the dilute limit, 
but also that the porous medium of structural random-
ness is more permeable than that of geometrical homo-
geneity at the same volume fraction. This is because 
locally clumped structures, due to intrinsic randomness, 
allow fl uid to fl ow through sparser regions, avoiding 
densely clumped regions of higher resistance. The effect 
of structural randomness diminishes when the volume 
fraction reaches the RLP ratio (0.60), near which almost 
all of the DHD simulation results and the Happel model 
provide almost identical results, which was the same for 
all solid-state structures. Similar to other standard struc-
tural cases, the permeability ratio near the random close 
packing (RCP) ratio, 0.64, is around 0.7–0.8. This indi-
cates that the Happel model generally overestimates the 
hydraulic permeability of the RCP ratio with allowable 
engineering tolerance.

3.2. Hydrodynamic tortuosity

Because simulation accuracy increases with the 
number of particles, we used DHD data of 10,000 par-
ticles (Fig. 1), and replotted them in Fig. 2(a) to investi-
gate hydraulic tortuosity in terms of internal structures. 
The local density fl uctuation in dilute suspension  
supersedes effects of homogeneous particle distribution 
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 erroneously overestimates the permeability at volume 
fractions less than 0.3.

In this study, the hydraulic tortuosity τH is defi ned as 
the inverse of the hydraulic permeability that is scaled 
by the Happel model, and its functional form is derived 
by fi tting data in Fig. 2(a) as

{Happel

DHD

1 / 1.5 for 0.524
0.5240.16 / (0.76 ) forH

κ
τ

κ
φ ≤= = φ ≥− φ  

(14)

which implies that the microscopic internal structure of 
sphere-packed porous media has insignifi cant infl uences 
on the macroscopic hydraulic tortuosity. This structural 
indifference is similar to that of the diffusive tortuosity 
D

1
21τ = + φ [7,19]. The hydraulic tortuosity τH (of the 

porous media composed of equal-sized spheres) is plot-
ted in Fig. 2(b) as a function of volume fraction φ. The 
nonlinearity of the hydraulic tortuosity begins when the 
volume fraction is greater than the SC MPR (0.524), below 
which the hydraulic tortuosity seems to be almost inde-
pendent of the volume fraction. This is probably because 
the local clumping induces preferred paths by fl uid fl ow 
in sparse particle confi gurations, and this trend contin-
ues until the volume fraction approaches the RLP ratio 
(0.6), above which the hydrodynamic tortuosity drasti-
cally increases above 0.667. The reason why hydraulic 
and diffusive t ortuosities have different reference values 
in the limit of zero volume fraction, i.e., 0.667 and 1.0, 
is because reference points which permeability and dif-
fusivity are compared to are fl uid permeation though a 
swarm of spheres modelled as a sphere in a tangential-
stress-free cell and molecular diffusion in the bulk phase 
described as 3D random walk, respectively.

4. Conclusions

Random confi guration of particles in the dilute limit 
generates locally heterogeneous structures and there-
fore promotes uneven fl uid fl ow. This heterogeneity 
increases the hydraulic permeability by 1.5 times more 
than the value estimated by conventional theory assum-
ing homogeneous particle distribution. As the volume 
fraction increases from zero to the SC MPR, the Happel 
model constantly underestimates the hydraulic perme-
ability. The permeability ratio of the DHD simulations to 
the Happel model linearly decreases within the volume 
fractions from 0.524 to 0.741, and only near the RLP ratio 
of 0.60 do the Happel model and CK equation agree well 
with the DHD simulation results. Hydraulic tortuosity, 
defi ned in this study as the inverse permeability ratio, 
has a constant value of 2/3 for a wide range of volume 
fractions from 0.0 to 0.524, above which it drastically 
increases with volume fraction. Interestingly, structural 

Fig. 2. Plots of (a) permeability ratio of the DHD simula-
tions using SC (□), BCC (Δ), FCC (o), and RC (⋄) structures 
of 10,000 (proposed) particles (symbols), Carman-Kozeny 
equation (dashed line), and approximate fi tting of Eq. (14) 
(solid line), relative to the Happel cell model, and (b) the 
hydrodynamic tortuosity as the inverse of the permeability 
ratio with respect to the volume fraction.

and restricts the validity of Eq. (4), i.e., the permeabil-
ity expression for the dilute limit pertains only to struc-
tured porous media. The permeability ratio of the CK 
equation to the Happel model indicates that the CK 
equation is as good as the Happel model, primarily for 
dense packed structures of volume fraction near 0.5, but 
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infl uence on the hydraulic permeability appears only 
in the dilute limit, but it seems insignifi cant for dense 
structures of engineering interest.
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