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a b s t r a c t
An artificial neural network (ANN) approach was developed to predict the adsorption efficiency (W%) 
of phenol and nitrophenols onto activated carbon. We have studied the backpropagation of a three-
layer feedforward network with Levenberg Marquardt, which describes the relationship between the 
adsorption efficiency as output and the operation conditions as contaminants (Phenol, Nitrophenols), 
initial contaminant concentration (Ci), pH and contact time. This model has been validated comparing 
it with both experimental measurement and simulated analysis and showed high agreement with very 
low percentage of error (0.5%) and high Pearson correlation (R2 = 0.9868). The sensitivity analysis has 
also shown that the contact time was the most important influential parameter in this process. Based 
on the sensitivity analysis and neural networks model, we have developed an optimization algorithm 
(ANNi) for the calculation of the contact time into adsorption process when the initial conditions are 
well known and adsorption efficiency is required. ANNi could perform assessment with a minimal 
error. This technique is a very promising tool for modeling and optimization of the adsorption onto 
activated carbon process minimizing time and operation cost.

Keywords:  Activated carbon; Phenols adsorption; Neural networks modeling; Sensitivity analysis; 
Water treatment

1. Introduction

Phenol and phenolic compounds are considered to have 
toxic effects on human health even in small concentrations. 

These compounds are common contaminants in the effluents 
of plastic, leather, paint, textile and petrochemical industries. 
These compounds are classified as high-priority pollutants 
due to their carcinogenic effects on humans, and it has been 
discovered that they are harmful to wildlife [1]. The US 
Environmental Protection Agency (EPA) has established a 
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regulation to lower phenol content in wastewater to less than 
1.0 mg/dm3 [2]. Numerous researchers have reported the 
removal of organic compounds from wastewater by destruc-
tive processes including oxidation with ozone, manganese 
oxides [3] and recuperative processes such as biological treat-
ment, membrane separation and solvent extraction. Among 
the proposed methods, the removal of phenols by adsorption 
technologies is regarded as one of the best methods because 
adsorption does not require high operation temperature 
which simplifies the operation procedure. Numerous adsor-
bent solids have been used to remove phenolic compounds 
from wastewater such as activated carbon (AC) [4], silica [5], 
polymeric resins [6], fly ash [7] and kaolinite [8].

This work studies the use of AC for the adsorption of phenols 
and nitrophenols. Specifically, our goal is to model and predict 
the behavior of the contaminant’s (phenols and nitrophenols) 
adsorption efficiency onto AC, finding relations between the 
adsorption efficiency, operation conditions and contaminants. 
Such model could be used to take appropriate actions in order 
to remove these harmful poisons from the water.

However, modeling phenol and nitrophenols adsorption 
onto AC is a difficult process due to the complexity of the 
equations that involve the radiant energy balance, the spa-
tial distribution of the adsorbed radiation, mass transfer and 
the mechanisms of adsorption transport involving attractive 
and repulsive superficial forces of molecules, diverse mobil-
ity forces between the molecules and shape molecular effects 
including dissymmetry on properties of matter as evapo-
ration, condensation and reflection. The process depends 
on diverse factors and phenomena, exhibiting a nonlinear 
behavior which is difficult to describe by linear mathematical 
models, such as those derived from different variants of mul-
tivariate linear regression. Based on this reason, researchers 
have turned to nonlinear data-driven approaches for similar 
problems [9,10]. This paper proposes the use of direct and 
inverse artificial neural networks (ANNs). The developments 
in ANNs in the latest years make them able to describe the 
complex behavior of the system. ANNs have been broadly 
used as powerful tools to solve nonlinear multivariate math-
ematical problems about the adsorption process for water 
treatment [9–17].

The aim of this research is to develop a mathematical 
model using ANNs to learn and find a relation (transfer 
function and correlation) between experimental variables 
such as contaminants, initial concentration, pH, contact time 
and adsorption efficiency to predict the amount of phenol 
and nitrophenols adsorbed onto AC from aqueous solution. 
An empirical equation for adsorption efficiency of these con-
taminants was developed using the parameters of ANNs as 
the weights of networks. Furthermore, within the equilib-
rium field, the predicted results obtained from the optimized 
ANNs model were compared with the experimental data 
through the details of the computational approach, as well 
as the numerical validation with the statistical analysis was 
fully discussed.

Once ANNs have been established, we proceeded with 
inverting neural network into ANNi (artificial neural net-
work inverse) using an optimization method to find the opti-
mum parameter value (inputs); in this case, the contact time 
was the input parameter, for the required output (adsorption 
efficiency). In this research, we have found that the ANNi 

coupled with Nelder–Mead simplex method of optimization 
play an essential role to calculate the optimal operation con-
ditions. Hernandez et al. [18,19] used this method to calculate 
the optimal input parameters for the required coefficient of 
performance (COP) for absorption heat transformers. In par-
ticular, this work is the first to use ANNi for estimating the 
optimal contact time of phenol and nitrophenols adsorption 
onto AC, when the adsorption efficiency is required. We have 
presented a comprehensive numerical and statistical com-
parison of the results, showing that ANNs and ANNi can be 
used to construct useful predictive models with optimization 
approach of the phenol and nitrophenols adsorption process 
onto AC.

2. Adsorption process

Adsorption process is the adhesion of the molecules from 
a mixture in a gaseous or liquid state to a solid surface. This 
process creates a film of the adsorbate on the surface of the 
adsorbent. In this work, the adsorbent used was a natural 
AC; it has had industrial interest for many years due to its 
uniform pore structure and appropriate selective adsorption 
[20,21]. The surface properties were calculated according to 
the t-plot analysis [22–24] showed in Table 1. An average 
diameter distribution of 0.3 nm was obtained according to 
the method described by Horváth and Kawazoe [25]. The 
morphology of the AC was examined using SEM technique 
(Fig. 1). This figure shows that the surface of AC presents 

Table 1 
Surface properties of activated carbon (AC) calculated by the 
t-plot analysis [25,27]

BET surface area 232.40 m2/g
Average diameter 0.3000 nm
Adsorbent density 2.2460 g/cc
Surface atom density 38.4500 (molec/cm²) × 1e14
Langmuir surface area 1.034E + 03 m²/g
Surface tension 8.8500 erg/cm²
Critical pressure 33.5000 atm

Fig. 1. SEM image of activated carbon (AC) at 1.50 K magnification.
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different grain sizes and a particle diameter between 5 to 
30 µm. It also shows that the external surface of AC is fairly 
heterogeneous with different size cavities.

We have used the breakthrough curves (W% vs. time) [26] 
in order to understand the different sides of the behavior pre-
sented by AC during adsorption process and determine the 
effects of experimental variables as pH and initial concentra-
tion of the contaminant upon the adsorption efficiency (W%).

The equation that describes the adsorption efficiency 
W (%) is given by:

W
C C
C
i f

i

(%) =
−

×100  (1)

where Ci is the initial concentration of contaminant at the 
adsorbent, and Cf the final concentration of contaminant in 
the adsorbent at a determinate time.

2.1. Experimental setup

Batch mode experiments were conducted as follows: 
0.1 g of AC was added to 10 mL of phenol (or 2-nitrophenol, 
3-nitrophenol, 4-nitrophenol) at pH range 2.0–10.0. The mix-
tures were placed in centrifuge tubes and shaken in a rotary 
shaker for 5, 15, 30, 60, 120, 180, 240 and 360. After each spe-
cific contact time, the tubes were centrifuged at 3,500 rpm for 
2 min to provide the separation between solid and liquid. 
The concentration of phenol, 2-nitrophenol, 3-ntrophenol 
and 4-nitrophenol was determined using ultraviolet-visible 
(UV-Vis) spectrophotometer (Evolution 220) at the maxi-
mum absorbance wavelengths 269 nm, 278 nm, 273 nm and 
316 nm, respectively. In order to ensure the truthfulness of 
experiment results, all experiments were duplicated.

2.2. pH effect

The removal of pollutants from wastewater was affected 
significantly by the pH of the phase from which the removal 
occurs. Fig. 2 shows the effect of pH on the adsorption of 
phenol, 2-nitrophenol, 3-nitrophenol and 4-nitrophenol. 
The adsorption of phenolic compounds by AC diminishes 
with increasing pH values. The last correlation is explained 
knowing that at low pH ranges, chemisorption dominates 
in this range and chemisorption along with physisorption 
occurs at higher pH ranges. The pH of the solution affects 
the surface charge of the adsorbent degree of ionization 
and speciation of the adsorbate species, which might lead 
to change in kinetics and equilibrium characteristics of the 
adsorption process.

2.3. Contact time effect

The uptake values of phenol, 2-nitrophenol, 3-nitrophenol 
and 4-nitrophenol at pH = 6 from the solution as a function 
of contact time are presented in Fig. 3. The AC adsorption 
kinetics indicates that the time required to reach the adsorp-
tion equilibrium was approximately between 1 h and 3 h. 
This behavior could be explained by the properties of the 
phenolic compounds; the larger p-nitrophenol compound 
needed more time to be adsorbed onto the surface of the AC. 

The difference between phenol and p-nitrophenol adsorption 
was most likely due to the lower solubility of 2-nitrophenol, 
3-nitrophenol and 4-nitrophenol than phenol in aqueous solu-
tions. A decrease in solubility was associated with an increase 
in adsorption capacity. Low solubility implies that there are 
weak forces between solvent and adsorbent molecules. As a 
result, a high amount of uptake occurred. Kumar and his col-
leagues have attributed the higher adsorption of p-nitrophe-
nol than phenol onto AC to the difference in their chemical 
structures and to the positions of the functional groups [27].

3. ANN approach

An ANN is a structure confirmed by a number of inter-
connected unities, called neurons, which operate in parallel 
and present a natural tendency for learning from experimen-
tal data; for this reason, ANN can be used in several engi-
neering applications [28,29]. The main objective of neural 
network architecture is to mimic the synapsis generated at 
biological nervous systems. 

Fig. 2. Effect pH on Phenols uptake by AC.

Fig. 3. Effect of contact time on the removal of phenol, 2-nitro-
phenol, 3-nitrophenol and p-nitrophenol on AC at pH = 6.
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The ANN automates the process of model building and 
interpretation and enables us to obtain answers from a data-
base. However, ANN shall be seen like a black box in which 
we introduce database as input variables. Each input is 
assigned with an appropriate weighting factor (w). The sum 
of the weighted inputs and the bias (b) produces the input 
for a transfer function which will generate an output value 
(Fig. 4). The main characteristic of this artificial intelligent 
model is that it does not require specific information about 
the physical behavior of the system or the way in which the 
data were obtained [30].

ANN can be trained to solve multivariable problems with 
nonlinear equations. The training process is accomplished by 
specific algorithms; the most broadly used of the algorithms 
is known as backpropagation. The architecture of an ANN 
is usually divided into three parts: an input layer, a hidden 
layer(s) and an output layer, where each one uses a trans-
fer function [30]. At the training, the network learns from its 
errors until it obtains a model that describes the phenomenon 
the most accurately possible. During the training, weight and 
bias matrixes are generated; these are modified after each iter-
ation until the ANN obtains the optimal values. In this work, 
the transfer functions used are the Tangent-Sigmoid function 
(Tansig, Eq. (2)) and the Linear function (Pureline, Eq. (3)):

Tansig(n) =
n

2
1 2

1
+ −

−
exp( )  (2)

Pureline (n) = n (3)

where n represents the weighted sum of the input values.

3.1. Numerical methodology

A numerical computational methodology was used to 
develop the sets of calculations about the adsorption effi-
ciency process (Fig. 5). The methodology consists of three 
stages: (i) creation of a working database with experimental 
data collected during the adsorption process; (ii) development 
and evaluation of ANN models for the reliable  estimation of 
adsorption efficiency W (%) on AC; and (iii) determination 
of W (%) using the optimized ANN architecture developed 
in this research and comparative statistical analysis between 
experimental data and estimated W (%) (inferred from the 
application of the ANNs tools). 

(i) Experimental data set obtained during the phenols 
adsorption process: It is an experimental database, con-
firmed by 975 samples provided by Abatal et al. [31]; it 
consists of diverse contaminant adsorption values, cal-
culated from the Eq. (1). The experimental data set is 
obtained considering diverse process parameters, includ-
ing the type of contaminant present in the suspension 
(phenol, 2-nitrophenol, 3-nitrophenol and 4-nitrophenol), 
the initial contaminant concentration at the adsorption 
process (20, 40, 60, 80 and 100 ppm), the pH range (2, 4, 6, 
8 and 10) and the contact time (0–360 min). Table 2 syn-
thesizes the present data set, which is enough for train-
ing, testing and validation of the ANN model.

  The data set created was randomly divided into two 
parts: 75% was destined to the ANN training process, and 
the remaining 25% was used for testing and validation 
phases, in order to obtain an accurate representation of the 
data distribution. The transfer function used in the hid-
den layer is sigmoid (Eq. 2); therefore, all samples should 
be normalized in the range of 0–1 [32,33]. Therefore, all 
the input data set Xi (from the training, validation and 
test sets) were scaled to a new normalized value xi,N as 
follows:

x
X
Xi N
i

max
, .
=

×1 1  (4)

(ii) Development and evaluation of ANN models: Various 
ANN architectures were evaluated to obtain the model 
that provides a reliable estimate of W (%) of natural 
AC (Fig. 6). The ANN’s model used was a network 
characterized by an input layer with four variables 
(contaminant, initial concentration [Ci], pH and 
adsorption time [t]), one hidden layer, and an output 
layer with a single variable W [%]). The assessment of 
multiple architectures of neurons with transfer functions 
is proposed as a suitable computational strategy to find 
out the relations between input and output variables [34].

(iii) Statistical analysis: The numerical data obtained by 
the several ANN models were statistically compared 
with experimental data to demonstrate the estimation 
accuracy. The analysis was performed by applying the 

Fig. 4. A typical elementary network with R inputs.

Table 2 
Characteristics of input and output variables about the ANN’s 
model

Parameters Min. Max. Units
Inputs parameters:

Contaminant 1 4 –
Initial concentration (Ci) 20 100 ppm
pH (pH) 2 10 –
Time (t) 0 360 min

Outputs parameters:
Adsorption efficiency (W) 0 100 %
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Fig. 6. Artificial neural network architecture for adsorption process.

Fig. 5. Computational methodology.
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statistical methods as root mean square error (RMSE, 
used to compute the differences between estimated 
and observed values [35]), mean absolute percentage 
error (MAPE, which is the computed average of errors 
(%) by estimating the predictions of a variable [26] 
and the correlation coefficient (R2, which illustrates 
the strength of correlation of variability in a data set, 
generally between 0 and 1), given by the following 
equations: 

RMSE
Exp Sim

=
−

=
∑( )( ) ( )W W

n

i i
i

n
2

1  (5)
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where W n
Wi

i

n

= 1
=
∑

1
;  WSim(i) is the ANN estimated value, and 

WExp(i) is the experimental value of the variable W (%).

3.2. ANN model

The ANN is commonly trained in order to predict a specific 
output as a set of input values. This process, denominated 
learning, has as purpose adjusting the bias and connection 
weights among neurons to minimize the error expressed by 
the difference between the simulated output (generated by 
the weight adjusting process) and the output target (given 
by experimental data). The algorithm used at this work to 
achieve the optimization process of weights and bias is the 
algorithm known as Levenberg-Marquardt backpropagation, 
which is one of the most successful algorithms in increasing 
the convergence speed of the ANN architecture [36]. At the 
same way, the RMSE was the statistical criterion used to 
determine the estimation accuracy of the network according 
to the experimental data. Fig. 7 shows the algorithm used for 
the network training process, which was implemented in the 
ANN toolbox of the mathematical software MATLAB®.

To determine the optimal ANN architecture, we test a set 
of several network configurations with different number of 
neurons in the hidden layer (from 1 to 30 neurons). The trans-
fer functions used in each set of the network training were 
the Tansig function (hidden layer) and Pureline function (out-
put layer). The simulated data obtained after the training was 
compared statistically with experimental data through the 
Eqs. (5–7) to calculate the estimated accuracy of the model; the 
results of these comparisons are shown in Table 3. According 
to Table 3, we conclude that the best ANN model was accom-
plished with 20 neurons in the hidden layer. Therefore, the 
optimal configuration of the network was about 4-20-1, and 
we have found it convenient. This model presents smaller 
RMSE (5.4464%) and MAPE (0.5438%) values. Furthermore, 

 

Fig. 7. Numerical procedure used in the ANN learning process, and the iterative architecture used by the ANN model to estimate adsorption 
percentage (S: number of the neurons in the hidden layer, and d: convergence criteria).
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experimental (WEXP) and simulated data (WANN) were 
compared satisfactorily through a linear regression model, 
given by the following equation:

WANN = 0.98 × WEXP + 1.8 (8)

with a regression coefficient R2 = 98.68%. It can be proved that 
the linear regression model given by ANN was subject to the 
hypothetical testing of confidence intervals using t-student 
within α = 5% (level of the test). We thus see that finding the 
confidence intervals, respect to the slope is [–1.7523, 4.0354]. 
The same procedure was also held on the intercept we have 
[1.1470, 2.382].

Fig. 8 illustrates the comparative results between the 
experimental and simulated adsorption efficiency (W [%]) 
values used at the training (Fig. 8(a)) and testing (Fig. 8(b)) 
stages. In both figures, it can be seen that the calculated con-
tamination adsorption efficiency showed the same behav-
ior (R2 = 0.9868) respect to the experimental contamination 
adsorption efficiency independently if it belongs to testing or 
training phase, indicating that samples selected for this pro-
cess were representative of the phenomenon.

As pointed out before, the optimal weights and bias 
computed for the best ANN model are listed in Table 4, 
where IW represents the weights from input to hidden layer, 
LW the weights from hidden to output layer, S the total num-
ber of neurons in the hidden layer (S = 20), K the total num-
ber of neurons in the input layer (K = 4), and b1 and b2 the 
bias factors. On the basis of what has been just discussed, we 
shall be able to express the model with the help of the ANN’s 
backpropagation algorithm (Fig. 6) considering the Tangent-
Sigmoid transfer function (Eq. (2)), the linear transfer func-
tion (Eq. (4)) and the values in Table 4. The proposed model 
must take the form:

W LW
IW In b

j

j k k
k

K

j
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where LW, IW, b1, b2, K and S are described in Table 4, and In 
is the parameter value corresponding operation.

                         (b) (a)                                     

Fig. 8. Statistical comparison between simulated (ANN) and experimental W (%) data: (a) comparison at the learning process. 
(b) comparison at testing and evaluation process.

Table 3 
Tests with different architectures of ANN

ANN architecture Number of neurons Epoch RMSE (%) MAPE (%) R2 (%) Best linear equation

4-01-1 1 1,000 16.3303 4.6035 0.8739 y = 0.75x + 17.0
4-05-1 5 1,000 10.2760 1.9643 0.9521 y = 0.90x + 7.0

4-10-1 10 1,000 7.8692 0.9071 0.9722 y = 0.94x + 4.7

4-15-1 15 1,000 6.8930 0.8320 0.9787 y = 0.96x + 2.9

4-20-1 20 1,000 5.4464 0.5438 0.9868 y = 0.98x + 1.8

4-25-1 25 1,000 6.5692 0.7766 0.9807 y = 0.95x + 3.2

4-30-1 30 1,000 6.5307 0.8196 0.9809 y = 0.96x + 2.8
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A validation of neural network was done to understand 
the behavior of the new ANN model development (Eq. (9)) 
in respect to experimental values. The validation of the ANN 
was accomplished through a comparison using data that 
weren’t included in the training process [37]. Fig. 9 shows a 
comparison between the simulated and experimental break-
through curves for the four contaminants (phenol, 2-nitro-
phinol, 3-nitrophenol and 4-nitrophenol) at different pH and 
concentration values. As can be seen, the eight graphics pres-
ent a suitable reproduction of the curves demonstrating that 
the ANN model was able to adapt successfully to the differ-
ent pH and to initial concentration values.

3.3. Sensitivity analysis

In order to determine the impact of each input variable 
on the W (%) simulated by the ANN model, a sensitivity 
analysis was developed using the Partial Derivatives (PD) 
method which has been described by Dimopoulos et al. [38]. 
The PD method depends on the IW and LW values (previ-
ously described in Table 4), the input value and the activation 
functions (Eqs. (2) and (3)). The relative contribution of the 
ANN inputs to the output data (SSDi) is given by:

SSDi k j j i j
j

S

i

N

f net LW f net IW= ′ ′






















==

∑∑ ( ) ( ), ,1
1

2

1  (10)

where N is the total number of samples, and f’(netk) and f’(netj) 
are the derivatives of the activation function in the hidden 
layer and output layer, respectively. The SSD value allows us 
to classify the variables according to their increasing contri-
bution to the output variable in the model.

The results of the sensitivity analysis done to the ANN 
model using the Eq. (10) are shown in Table 5. Whence, we 
found that the parameter that has the greatest impact in the 
adsorption process is the contact time (t), the second initial 
parameter is the pH following by the initial concentration 
(Ci) and finally the presence of contaminant.

4. ANNi

According to the sensitivity analysis, the contact time (t) 
is the most influential parameter in this process. On the other 
hand, in the experimental process, we need to know the con-
tact time under different specified experimental conditions in 

Table 4 
Weights and bias parameters obtained for the ANN model developed

Number of 
neurons (s)*

Weights

Hidden layer (S = 20, K = 4) 
IW (s, k) 

Output layer 
LW (s, l)

Bias

Contaminant 
(k = 1)

Ci 
(k = 2)

pH 
(k = 3)

t 
(k = 4)

W (%) b1 (s) b2

1 –6.99 6.17 –1.71 30.60 –12.55 19.00 –26.80
2 174.00 287.00 1.65 437 3.66 –654.0

3 –8.35 19.90 0.74 –3.40 –15.62 7.21

4 5.86 0.86 –2.58 –1.41 112.75 –1.31

5 32.30 –78.50 0.85 –8.31 –14.05 –7.43

6 –5.05 80.80 19.10 –3.50 56.76 –36.90

7 –4.35 –3.98 –5.09 1.10 31.30 –5.94

8 –7.83 –5.94 –3.18 1.26 40.18 –3.38

9 –0.73 –0.25 0.66 –12.10 20.44 4.25

10 0.29 –9.58 –0.28 22.40 –10.57 2.92

11 32.80 –0.31 –1.33 256 17.32 –125.00

12 –5.48 12.00 0.42 –41.90 –13.26 4.21

13 7.07 –0.76 4.58 –1.32 –36.25 5.09

14 –4.91 83.00 18.30 –3.25 –56.26 –38.10

15 –77.10 –137.0 –137.0 87.40 –3.37 408.00

16 30.90 –64.50 313.00 –17.10 –6.15 –321.00

17 –5.00 –1.79 –2.15 6.17 24.33 19.40

18 –0.13 –7.69 0.21 –28.00 9.62 7.06

19 0.21 0.19 0.85 80.50 40.65 –8.80

20 –0.29 0.03 –0.48 10.60 69.57 –0.20

*s is the number of neurons in the hidden layer; k is the number of neurons in the input layer; l is the number of neurons in output layer (l = 1).
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order to optimize the required experimental time and there-
fore minimize the operation cost. In this context, ANNi were 
applied to solve this optimization problem.

The problem of ANNi consists in estimating a value 
of the input variable from the required output parameter 
(Hernandez et al. [39]). ANNi works as follows:

W LW IW In bs s k k s
s

ANN PURELIN TANSIG(%) .( , ) ( , ) ( ) ( )= ⋅ +( )
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
{ }∑ 1 1 ++
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




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Table 5 
Relative importance of input variables

Input variable SSD

Contaminant (HC) 4.4445
Initial Concentration (Ci) 25.3926
Potential hydrogen (pH) 27.4573
Contact time (t) 675.0917

Fig. 9. Comparison between simulated and experimental curves of the adsorption process.
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where IWi, LWo, b1 and b2 are the parameters of the neural net-
works as illustrated in Table 5. Eq. (12) can be expressed into 
Eq. (13). Then, we have:
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At this step, we have obtained the function which has to 
be optimized to get the optimal input parameter (s) ln(k = x):
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It should be noticed that ln(x) = t is the contact time for the 
adsorption efficiency (W%).

The Eq. (14) represents the objective function required 
to calculate the input value when the required output is well 
known. In this investigation, we are interested in the calcula-
tion of the process contact time for the required output value 
(W%). The general objective function highlighted in Eq. (14) was 
developed into the Eqs. (15–17) describing the relations between 
the contact time (t) that should be calculated and (W%). These 
relations could be illustrated into the following form:
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where ln(1): contaminant; ln(2): initial concentration (ppm); 
and  ln(3) = pH.

In order to solve these ANNi equations, we have sug-
gested to combine the neural network model with the 
Nelder–Mead optimization method. We would like to stress, 
according to our knowledge that this approach is considered 
as a novelty for the adsorption process. The Nelder–Mead 
method is a nonlinear optimization algorithm which min-
imizes to zero an objective function in a multidimensional 
space. This algorithm is a direct search method that doesn’t 
need using numerical or analytic gradient. This method has 
been described in detail by Nelder and Mead [40].

However, to validate the ANNi approach, we have 
randomly taken samples from the experimental database. 
This random sampling was accomplished matching 98% of 
adsorption efficiency; within this case, we shall consider the 
calculation under the experimental conditions (contaminant, 
initial concentration and pH); the contact time has been cal-
culated and compared with experimental time reported in 
the laboratory.

The resulting validations and comparisons of this pro-
cess are shown in Table 6, where there is an assessment of 
errors between experimental and estimated contact time, for 
phenol, 2-nitrophenol and 3-nitrophenol. The errors found 
were smaller (~1%) while those errors were relatively bigger 
according to the case of 4-nitrophenol, due to the failure of 
ANN model achieving enough accuracy about this case.

5. Conclusion

The adsorption efficiency of phenol and nitrophenols onto 
AC during the adsorption process has been modeled using 
ANNs at different operating conditions. A comparison of the 
effects of the contact time and pH for adsorption efficiency 
of phenol and nitrophenols was performed. ANNs were 
applied to express this process into the formula obtained, 
whence the operator could use such results without develop-
ing a real system. Using this method, it is possible to calculate 
the adsorption efficiency which is mathematically expressed 
as a function of pH, contact time and initial concentration 
of each contaminant. The developed ANNs model has also 
shown proper performance, and it converged with an accu-
rate prediction of experimental data with RMSE, mean abso-
lute error and a correlation coefficient of 5.4464, 0.015 and 
0.9868, respectively; these results offer vital evidence for the 
advantages of this method. On the other hand, ANNi also 
succeeded to estimate the required contact time for adsorp-
tion efficiency using Nelder–Mead method with high accu-
racy (~5%). Thanks to this method (ANNi), it is possible to 
find and compute any unknown, whatever input variable in 
the adsorption process onto AC. It is important to point out 
that the elapsed time to calculate the optimum contact time 
is short. Therefore, it is feasible to accurately estimate more 
optimal parameters. This technique could be applied appro-
priately in control and automatization of industrial adsorp-
tion units in real time.

Therefore, it is believed that ANNs and ANNi could 
be used to handle many other kinds of problems related to 
adsorption process during the aqueous treatment. However, 
careful attention must be paid when using this technique 
because there are parameters that do not have physical 
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meaning and they could be attached and operated with ad 
hoc mathematical tricks that are not directly dictated by phys-
ical principles.
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