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ab s t r ac t
An artificial neural network (ANN) was developed to predict the adsorption of phosphate by lime-iron 
sludge. A fitness function derived from the ANN was incorporated within a genetic algorithm (GA) to 
elucidate the most optimal combination of operational parameters. The adsorbent characteristics were 
examined through SEM imagery and analyzed by fractal analysis. Batch experiments were conducted 
and modeled to expound the mechanisms of adsorption. Kinetic data were best simulated using the 
diffusion-chemisorption model while equilibrium data followed the Langmuir isotherm. Film and intra-
particle diffusion were the dominant transport mechanisms while physisorption was the dominant attach-
ment mechanism. Lime-iron sludge exhibited a maximum adsorption capacity of 15.3 mg/g and compared 
well with other reported adsorbents. ANN-GA optimization revealed maximum adsorption at an initial 
phosphate concentration of 59 mg/L, sludge dose of 3 g and temperature of 325 K. The ANN-GA prediction 
was subsequently verified through laboratory experiments which revealed an excellent prediction.
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1. Introduction

Phosphorus is a non-renewable resource, and global 
reserves are estimated to last up to 2035, after which 
demand will exceed supply [1]. Additionally, it is an essen-
tial nutrient for living organisms and a key component of 
many industrial processes [2]. As a consequence, phosphate 
is frequently introduced into water bodies from domestic 
and agro-industrial wastewater [3]. The presence of this lim-
iting nutrient, above permissible discharge levels, can stim-
ulate the extraordinary growth of algae, destroy aquatic life, 
disrupt the natural food chain and lead to deterioration of 
water quality [4]. Consequently, the recovery of phosphate 
from wastewater is worthwhile prior to its discharge into 
water bodies.

Physical-chemical processes such as ion exchange, 
dissolved air flotation, membrane filtration, high-rate 

sedimentation, and adsorption are used for phosphorus 
treatment [5]. Adsorption is one of the most common tech-
niques used for phosphate removal due to its simplicity of 
design and operation, insensitivity to toxic pollutants and 
potential to produce a high quality treated effluent [6]. 

In the past, several studies have investigated the removal 
of phosphate using low-cost adsorbents such as blast furnace 
slags [7], iron oxide tailings [8], fly ash [9], red mud [10], and 
alum sludge [11]. These materials were reported to efficiently 
remove phosphate from wastewater. Major components in 
the materials for phosphate removal were identified to be 
aluminum hydroxide, iron oxide, calcium oxide, and calcium 
carbonate [11]. 

Adsorption processes may be influenced by several variables 
including temperature, agitation speed, initial adsorbate concen-
tration, adsorbent dose, solution pH, conductivity, contact time 
and presence of other competitive species [12–14]. Optimization 
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is therefore necessary to achieve maximum performance. This is 
frequently performed by varying one parameter at a time while 
keeping all others constant. The single variable optimization 
method provides valuable insight regarding the mechanisms of 
adsorption; however, it ignores the interaction effects of multi-
ple parameters and may not provide an accurate representation 
of the process. In order to overcome this limitation, several stud-
ies have investigated the use of artificial neural network (ANN) 
to model adsorption processes [15–17]. This statistical design 
approach studies the input–output relationships of known data 
to predict unknown relationships. ANN has the ability to model 
highly non-linear phenomena. This makes it an efficient pre-
dictive tool to represent even the most complex systems while 
at the same time save cost and time required for experimental 
studies [18]. The drawback of ANN lies in the selection of input 
parameters prior to training. These parameters influence the 
success of training, but there are no definite set of rules for its 
selection [19]. Furthermore, ANN also suffers from difficulty in 
trapping into local minima and overfitting. These weaknesses 
are frequently eliminated by combining ANN with genetic 
algorithm (GA) [20].

GA is a stochastic global search algorithm which simulates 
the theory of evolution by natural selection while searching for a 
fitness function that helps in its natural optimization [21]. Several 
authors have used the GA methodology for the optimization 
of adsorption processes based on weights and biases obtained 
from ANN. It was associated with ANN to optimize the adsorp-
tion of methylene blue and brilliant green from aqueous solu-
tion by graphite oxide nanoparticle [22]. ANN-GA optimization 
was also successfully used to predict the removal of lead ions 
from aqueous solutions using intercalated tartrate-Mg–Al lay-
ered double hydroxides. The predicted and actual percentages 
of lead ions removal were 101.2% and 98.7%, respectively [21]. 
Similarly, high correlation was reported using a GA-ANN for 
methane adsorption onto activated carbon [23].

The objectives of this investigation are (1) to describe 
the process of phosphate adsorption onto lime-iron sludge 
through batch kinetic, equilibrium, and desorption studies; 
(2) to elucidate the mechanisms of adsorption aided by sim-
ulation using mathematical models; (3) to develop an ANN 
model to predict the phosphate adsorption capacity of lime-
iron sludge; and (4) to optimize the amount of phosphate 
adsorbed using an ANN-GA approach. 

2. Materials and methods

2.1. Chemicals and adsorbents

2.1.1. Preparation of adsorbent

The sludge used in this study was generated from iron 
removal processes at a water treatment plant located in cen-
tral Trinidad. The influent groundwater at this plant contains 
an exceptionally high iron content of approximately 15.0 mg/L, 
due to the geology of the source aquifers [24]. In order to meet 
WHO acceptable standard of 0.3 mg/L, hydrated lime is added 
to increase the pH of the water and allow added chlorine to 
react with and precipitate the iron as sludge. This sludge has 
an iron content of approximately 60% which is significantly 
higher than values reported in the literature and is therefore 
defined in this study as lime-iron sludge. Alum and lime sludge 
was obtained from a water treatment plant located in north and 

central Trinidad respectively. After collection, the samples were 
heated in an oven (ELE78-1215/01) at 378 K for 24 h and then 
cooled to room temperature for 72 h. It was then pulverized 
using a mortar and pestle and sieved to pass a 2.36 mm sieve.

2.1.2. Preparation of adsorbate

Phosphate stock solution was prepared by dissolving pre-
weighed amounts of potassium dihydrogen phosphate (Riedel 
De Haen, KH2PO4, AnalaR grade) in double distilled water. 
Similarly, chloride stock and sulphate stock solutions were 
prepared by dissolving sodium chloride (NaCl) and sodium 
sulphate (Na2SO4), respectively in double distilled water. 

2.1.3. Characterization of the water treatment sludge 

Fourier transform infrared (FTIR) spectra of lime-iron 
sludge were examined using an FT-IR spectrometer (Thermo 
Scientific Nicolet iS5). The morphological structure of lime-
iron sludge was examined using a scanning electron micro-
scope (SEM; JEOL Scanning Electron Microscope JSM 6490 
LV). The elemental composition of the sludge was deter-
mined using energy dispersive X-ray spectrometry (EDS).

2.2. Adsorption studies

2.2.1. Kinetic study

The effect of competing ions (Cl– and SO4
2−) was investi-

gated at optimum operational conditions using an adsorbent 
mass of 0.5 g and synthetic phosphate solution (10.5 mg/L). 
The optimum operational conditions have been previously 
reported for phosphate adsorption onto lime-iron sludge [25] 
viz. pH 8.0; agitation 250 rpm; and equilibrium time of 16 h. 
After reaction, the adsorbent was separated by vacuum filtra-
tion using a Buchner’s funnel and Whatman No. 3 qualitative 
filter paper. The concentration of phosphate in the filtrate 
was estimated by the Molybdate/Ascorbic Acid Method with 
Single Reagent (Method 365.2) using an ultraviolet spec-
trophotometer (Shimadzu Recording Spectrophotometer 
UV-1800). The amount of phosphate adsorbed per unit mass 
of adsorbent was obtained by:

q
C C
m

Vo e=
−

×
( )

� (1)

2.2.2. Equilibrium study

Batch equilibrium experiments were conducted by agi-
tating reaction mixtures at 250 rpm for 16 h. The effect of 
initial phosphate concentration was studied by equilibrating 
adsorbent (5 g/L) in synthetic phosphate solution of vary-
ing concentrations (10 mg/L to 145.0 mg/L) at 298°K ± 2°K. 
The effect of adsorbent dose was studied by using varying 
adsorbent doses (3 g/L to 35 g/L) with synthetic phosphate 
solution (10.5 mg/L) at 298°K ± 2°K. The effect of tempera-
ture was studied by contacting the adsorbent with synthetic 
phosphate solution in a shaking water bath (Julabo SW23) at 
temperatures varying from 298°K ± 2°K to 328°K ± 2°K. The 
adsorption yield was calculated by:

% ( )Adsorption =
−

×
C C
m
o e 100 � (2)
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2.2.3. Desorption studies

After adsorption, the phosphate-saturated sludge was 
oven dried at 378 K for 24 h and then air dried (298°K ± 2°K) 
for 24 h. Desorption experiments were conducted using 0.25 g 
of saturated material spiked with an eluant (KCl, NaOH, and 
distilled water). Desorption efficiency was calculated by: 

Desorption_Efficiency = Amount_desorbed
Amount_adsorbed

×100 � (3)

2.3. Kinetic models

2.3.1. Lagergren model

Lagergren’s first-order rate equation describes the kinetic 
adsorption of oxalic acid and malonic acid onto charcoal [26]. 
The equation was later described as pseudo-first-order which 
can be represented as follows [27]: 

q qt e
K tPFO= − −( exp )1 � (4)

2.3.2. Pseudo-second-order model

The pseudo-second-order equation was developed for 
the adsorption of divalent metal ions onto peat moss. The 
equation can be expressed as [28]:

q
K q t
K q tt
PSO e

PSO e

=
+

2

1
� (5)

h K qPSO e= ( ) 2 � (6)

2.3.3. Intraparticle diffusion model

The model assumes that the rate of intraparticle diffusion 
varies proportionally with the half power of time. The model 
has the following form [29]:

q K tt id= ( )/1 2 � (7)

2.3.4. Diffusion-chemisorption model 

The diffusion-chemisorption kinetic model was devel-
oped to simulate biosorption of heavy metals onto heteroge-
neous media. The model can be represented as follows [30]:

q

q
t
K

t

e DC

=
+

−

1
1 0 5 1. � (8)

k K qi DC e= 2 / � (9)

2.4. Equilibrium models

2.4.1. Langmuir isotherm

The Langmuir isotherm assumes that adsorption sites on 
the adsorbent possess an equal affinity for molecules and that 

each site is capable of adsorbing one molecule thus forming a 
monolayer. The model is expressed as [31]:

q
q K C
K Ce

m L e

L e

=
+1

� (10)

The characteristic features of the Langmuir isotherm may 
be described in terms of the separation factor, RL, a dimen-
sionless constant given by Eq. (11) [32].

R
K CL
L o

=
+

1
1( )

� (11)

This separation factor can be used to describe further the 
nature of the adsorption process. The isotherm is unfavorable 
if RL > 1; linear if RL = 1; favorable if 0 < RL < 1 and irreversible 
if RL = 0.

2.4.2. Freundlich isotherm

The Freundlich isotherm is an empirical model to describe 
adsorption onto heterogeneous surfaces as well as multilayer 
adsorption. The model is given by [33]:

q K Ce F e
nF= ( ) /1 � (12)

2.4.3. Redlich–Peterson isotherm

The Redlich–Peterson isotherm is a hybrid isotherm 
which incorporates the features of the Langmuir and the 
Freundlich isotherms. It is represented by [34]:

q K C
Ce

RP e

RP e
gRP

=
+1 α

� (13)

2.4.4. Sips isotherm

The Sips isotherm is a combined form of the Langmuir 
and Freundlich isotherms developed for predicting heteroge-
neous adsorption systems and bypassing the limitation of the 
rising adsorbate concentration associated with Freundlich 
isotherm model [35]:

q q C
Ce

S S e
n

S e
n

S

S
=

+
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( )
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� (14)

2.5. Thermodynamic equations

Thermodynamic parameters such as Gibbs free energy 
change ΔG°, entropy change ΔS° and enthalpy change ΔH°, 
describes the effect of temperature on the adsorption process. 
Where ΔG° is given by the following equation:

∆G RT KL° = − ln � (15)

According to Eq. (16) the slope and intercept obtained 
from linear plots of ΔG° versus temperature, T, represents 
ΔS° and ΔH°, respectively.

∆ ° = ∆ °− ∆ °G H T S � (16)
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Activation energy Ea and sticking probability S* can be 
estimated using a modified Arrhenius-type equation related 
to surface coverage as:

S E RTa* ( )exp( / )= − −1 θ � (17)

which can be linearized as:

ln( ) ln * /1− = +θ S E RTa � (18)

where θ is the surface coverage as:

θ = −( / )1 C Ce o � (19)

According to Eq. (18), S* and Ea can be determined from 
a plot of ln (1 – θ) versus 1/T. S* can be used to gain fur-
ther insight into the nature of the adsorption process. S* > 1 
describes adsorbate unsticking to adsorbent and thus no 
adsorption; S* = 1 indicates a linear sticking relationship 
between adsorbate and adsorbent, possible mixture of phy-
sisorption and chemisorption; S* = 0 suggests indefinite 
sticking of adsorbate to adsorbent, chemisorption mecha-
nisms predominant; 0 < S* < 1 indicates favourable sticking of 
adsorbate to adsorbent, physisorption mechanism predomi-
nant [36]. 

2.6. Error analysis

The goodness of fit of the various kinetic, isotherm and 
ANN models to the experimental data were evaluated using 
the following expressions:
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2

1
=

−( )
=
∑

( ) ( )

( )
expq q

q
e e

ei

N
i i

i

predicted erimental

predicted

� (20)

RMSE experimental predicted= −( )
=
∑1

2

1N
q qe e

i

N

i i
( ) ( ) � (21)

RPE% =
−



∑ /( ) ( ) ( ) *exp expq q qe e epredicted erimental erimental 1100

N
� (22)

MSE = − 










=
∑1 2

1N
t yi i

i

N

� (23)

R
t t y y

t y

i
i

N

i i
i

N

i i
i

N
2

2

1

2

1

2

1

=
−( ) − −( )

−( )
= =

−

∑ ∑

∑

mean

� (24)

2.7. ANN modeling

2.7.1. Development of an ANN model

ANNs are computational networks inspired by the 
functioning of the human nervous system. It utilizes previ-
ously solved examples to identify and learn input–output 

relationships and develop the ability to predict accurately 
new relationships.

In this study, the Neural Network Toolbox of MATLAB 
7.14.0 (R2012a)® was used to develop a three-layer feed for-
ward ANN model for predicting the phosphate adsorption 
capacity of lime-iron sludge. Initial phosphate concentration 
(10–182 mg/L), sludge dose (3–35 g) and temperature (298–
328 K) were used as inputs to the network, and adsorption 
capacity was used as the output from the network. A total of 
41 experimental sets obtained from batch equilibrium experi-
ments were used to feed the network. The inputs and targets 
were first normalized in the range –1 to 1 to reduce the scal-
ing effect of parameter values [37]. This was performed using 
the following equation:

X X X
X X

i
norm =

−
−









 −2 1min

max min
� (25)

where Xi is the input or output variable X, and Xmin and Xmax 
are the minimum and maximum value of variable X. The 
data set was subsequently divided into three sets: 70% of 
the data were applied to training the network, 15% for cross-
validation and 15% for testing the accuracy of the neural 
network model and its prediction. Benchmark comparisons 
of learning algorithms followed by transfer functions (Eqs. 
(26)–(28)) were performed. Finally, optimization was carried 
out between the number of neurons in the hidden layer and 
the mean square error (MSE) for the best learning algorithm 
and transfer functions. 

Logsig: 

f n n( ) ( )( )+ −=  1 1/ exp � (26)

Tansig:

f n n( ) = ( )( )



+ − −2 1 2 1/ *exp � (27)

Purelin:

f n n( ) = � (28)

2.7.2. Relative importance index

The relative importance of the input variables on the 
phosphate adsorption capacity was determined by sensi-
tivity analysis using the neural network weight matrix and 
Garson’s equation which can be expressed as follows:
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where Ij is the relative importance of the jth input variable on 
the output variable, Ni and Nh are the numbers of input and 
hidden neurons, respectively, W is the connection weight, 
the superscripts “i”, “h” and “o” refer to input, hidden and 
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output layers, respectively, and subscripts “k”, “m” and “n” 
refer to input, hidden and output neurons, respectively [38].

2.8. GA optimization

GA is a global optimization technique inspired by the 
evolutionary change of individual features as a result of 
reproduction and adaptation to new environment conditions 
and natural selection [15]. The algorithm starts with the ran-
dom selection of a population of chromosomes known as the 
initial solution estimates, and the quality of this population 
is evaluated using a fitness function. The best-fitted chromo-
somes are selected for reproduction using different methods 
including stochastic uniform, remainder, uniform, shift lin-
ear, roulette and tournament. Random pairs of chromosomes 
are then chosen for mating whereby genes are exchanged 
with crossover to create new pairs of chromosomes [39]. This 
is performed using different methods including single point, 
double point or uniform crossover. The new chromosomes 
are then processed by the mutation operator whereby all or 
some of the genes of the parents are changed to increase the 
exploration of the genome such that the offsprings are not 
limited to the genes of the parents and may have new and 
better traits [40]. The quality of the offsprings is evaluated 
using the fitness function. The process is reiterated until an 
acceptable value of the fitness function is obtained [41]. In this 
study, the optimization toolbox of MATLAB 7.14.0 (R2012a)® 
was used to determine the optimum conditions for achieving 
maximum phosphate removal. The equation obtained from 
the ANN model was used as the fitness function and selec-
tion of GA parameters was done by trial and error.

3. Results and discussion

3.1. Performance comparison of lime-iron, lime and alum sludge

3.1.1. Equilibrium analysis using two and three-parameter models

The adsorption performance of lime-iron sludge was 
assessed through batch experiments and compared with that 

of alum and lime sludge both of which have been reported to 
successfully reduce phosphate concentration from solution. 
Analysis of the experimental data was carried out using the 
two-parameter Langmuir and Freundlich isotherms as well 
as the three-parameter Sips and Redlich–Peterson isotherms. 

The applicability of these models to simulate the data 
was analyzed using non-linear regression. The goodness of 
fit of the models to the experimental data was assessed using 
the error functions presented as Eqs. (20)–(22). The results 
presented in Table 1 showed the Langmuir model was the 
best performing two-parameter models for all three sludges. 
A more robust simulation was observed by the three param-
eter models where the Redlich–Peterson isotherm provided 
the best correlation to the alum sludge. The Sips isotherm 
provided the best correlation to the lime sludge. This model 
produced the constant nS to be 1.1087, indicating some degree 
of heterogeneity. Lime-iron sludge was best simulated using 
the Langmuir Isotherm. This implies that adsorption sites on 
the surface of the adsorbent may have equal affinity for phos-
phate and may be capable of adsorbing one phosphate anion, 
thus forming a monolayer. 

The qe values obtained in this study were compared 
with that of other adsorbents reported in the literature. The 
results presented in Table 1 indicate that lime-iron sludge 
produced the highest adsorption capacity of 15.3 mg/g. This 
was approximately 116% and 130% greater than that for lime 
sludge and alum sludge respectively. Table 2 reveals that 
lime-iron sludge exhibited an adsorption capacity for phos-
phate higher than several adsorbents reported in the litera-
ture; this further suggests its effectiveness as an adsorbent. 

3.1.2. Adsorption affinity

The Langmuir isotherm produced a satisfactorily high 
correlation to all sludges, as such, KL values are used in this 
section to compare and analyze adsorption affinity. Amongst 
the three sludges, lime-iron sludge exhibited the strongest 
affinity for the phosphate anion. Using the Langmuir constant 
KL, the potential of the adsorbents for column application 

Table 1
Comparison of isotherm models using non-linear regression to simulate uptake of phosphate

Adsorbent Isotherm Constants X2 RMSE RPE

Alum sludge Langmuir qm = 6.6519 KL = 0.0349 0.0101 0.1438 3.7947
Freundlich KF = 0.9229 nF = 2.6537 0.0345 0.2919 7.9972

Redlich aRP = 0.0035 KRP = 0.1594 gRP = 1.3936 0.0000 0.0543 1.2537

Sips αS = 0.0465 qS = 5.5931 nS = 1.5299 0.0018 0.0661 1.2514

Lime sludge Langmuir qm = 7.0863 KL = 0.0833 0.0143 0.1019 1.5932

Freundlich KF = 1.9420 nF = 3.7902 0.1843 0.3212 5.9683

Redlich aRP = 0.0499 KRP = 0.4993 gRP = 1.0727 1.4280 1.0282 16.6075

Sips αS = 0.0874 qS = 6.8649 nS = 1.1087 0.0134 0.0945 1.5935

Lime-iron sludge Langmuir qm = 15.2968 KL = 0.1489 0.0626 0.2674 2.7056

Freundlich KF = 4.3808 nF = 3.4820 1.1776 0.9255 10.4658

Redlich aRP = 0.1730 KRP = 2.4113 gRP = 0.9780 0.1424 0.4396 3.8479

Sips αS = 0.1453 qS = 15.4631 nS = 0.9709 0.0669 0.2652 2.8981



B.S. Chittoo, C. Sutherland / Desalination and Water Treatment 63 (2017) 227–240232

was further assessed by calculating the dimensionless con-
stant separation factor RL (Eq. (11)). Within the range of ini-
tial phosphate concentration investigated the values of RL for 
alum varied from 0.5624 to 0.1857, lime sludge from 0.3477 

to 0.0799 and lime-iron sludge from 0.2424 to 0.0448. This 
implied that all sludges produce favorable isotherms and 
are appropriate phosphate adsorbents. However, lime-iron 
sludge produced the lowest RL which suggests that it is the 
most favourable adsorbent for column applications. 

3.1.3. Characteristics of lime-iron sludge

SEM images illustrated in Figs. 1(a) and (b) were used to 
examine the surface morphology of lime-iron sludge. Before 
adsorption, a rough surface was observed, and sludge par-
ticles appeared amorphous, with irregular flocs. The SEM 
image after adsorption seems less amorphous and smooth 
in some areas. The change in surface morphology was more 
accurately assessed by calculating the fractal dimension, Df, 
of the SEM images using the Box Counting method. Fractal 
analysis is a non-traditional mathematical procedure which 
measures complexity as a fractal dimension. A high fractal 
dimension is indicative of a rough surface. In this study, the 
Box-Counting method in Matlab 7.14.0 (R2012a)® was used 
to determine the fractal dimension of lime-iron sludge before 
and after adsorption. The SEM images were first converted to 

Table 2
Comparison of the phosphate adsorption capacity by various 
adsorbents reported in the literature

Adsorbent qe (mg/g) Reference

Goethite 6.420 [42]
Natural zeolite 2.150 [43]
Na-natural zeolite 2.190 [44] 
Iron oxide tailings 8.210 [45] 
SCS (synthetic iron oxide coated sand) 1.500 [46] 
CB (coated crushed brick) 1.750 [46] 
NCS (naturally iron oxide coated sand) 0.880 [46] 
Alum sludge 6.6519 This study
Lime sludge 7.0863 This study
Lime-iron sludge 15.2968 This study

Fig. 1. (a) SEM of powdered lime-iron sludge before adsorption, (b) SEM of powdered lime-iron sludge after adsorption, (c) binary 
image of lime-iron sludge before adsorption and (d) binary image of lime-iron sludge after adsorption.
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binary images and the number of boxes needed to completely 
cover the fractal was determined. The process was repeated 
with different box sizes. A plot of box size (x-axis) against 
the number of boxes needed to cover the fractal (y-axis) was 
carried out to obtain a logarithmic function. The slope of this 
function is referred to as the box dimension which is taken as 
an approximation of the fractal dimension. The binary images 
before and after adsorption are shown in Figs. 1(c) and (d), 
respectively. Prior to adsorption, Df was 1.7133 and reduced 
to 1.6403 after adsorption. This decrease in fractal dimension 
indicates smoothing of the surface which may have resulted 
from the saturation of available binding sites on the surface 
of the material. The energy dispersive spectrum (EDS) shown 
in Figs. 2(a) and (b) was used to determine the elemental 
composition of the sludge. The spectrum reveals that Fe, Ca, 
S and O were the dominant elements present before and after 
adsorption. The high presence of oxygen shown often pre-
sumes their occurrence in the oxide and oxo-hydroxide form. 
Additionally, the EDS exposes the presence of small concen-
trations of phosphate prior to adsorption. The increase in 
intensity of the phosphate peak after adsorption confirms 
that phosphate was successfully adsorbed onto the sludge.

The Fourier transform infrared (FTIR) spectra of lime-iron 
sludge before and after adsorption were taken to identify the 
presence of functional groups involved in the process (Fig. 3). 
The spectra revealed the development of strong bands within 
850 and 1,250 cm–1 after adsorption. This range of frequencies 

corresponds to phosphate stretching [47]. The different band 
positions in this range may be attributed to the species of phos-
phate present as well as the mineral composition of the adsor-
bent. H2PO4

– occurs at a frequency of 1,127 cm–1 [48]. At the 
reaction mixture pH of 7.4, H2PO4

– is the dominant specie and 
hence accounts for the intense band after adsorption. The small 
bands at 1,135 cm–1 prior to adsorption indicates the presence 
of a small concentration of phosphate in lime-iron sludge. 
Another characteristic feature in the spectra is the appearance 
of bands in the region 1,250–1,600 cm–1 specifically at 1,350 and 
1,420 cm–1. These bands may be attributed to C–O stretching.

3.2. Development of a predictive model for lime-iron sludge

3.2.1. Selection of backpropagation algorithm

The effect of sludge dose, initial adsorbate concentration 
and adsorbent dose on adsorption capacity was studied at the 
optimum agitation; pH and contact time reported and used 
to develop a three-layer feed-forward ANN to predict the 
adsorption capacity of lime-iron sludge. The performance of 
11 backpropagation algorithms was first evaluated to deter-
mine the best algorithm for training the network (Table 3). 
Using the tansig and purelin transfer functions at the hidden 
and output layer respectively and 10 neurons at the hidden 
layer, the Levenberg–Marquardt algorithm produced the 
lowest MSE of 0.1404 and highest R2 of 0.9995. 

3.2.2. Selection of transfer function

The impact of three commonly used transfer functions 
[Eqs. (26)–(28)] was then assessed. Using the Levenberg–
Marquardt algorithm and 10 neurons in the hidden layer, 
the best performance was obtained using the tansig transfer 
function at the hidden layer and the purelin transfer function 
at the output layer (Table 4). 

3.2.3. Optimization of the number of neurons in the hidden layer

Finally, the number of hidden neurons was varied from 
2 to 17 and its influence on performance assessed using the 
MSE. The network was trained using Levenberg-Marquardt 
algorithm with the tansig and purelin transfer functions at 

Fig. 2. EDS spectrum of powdered lime-iron sludge (a) before adsorption and (b) after adsorption.

Fig. 3. FTIR spectra of lime-iron sludge (a) before adsorption and 
(b) after adsorption.
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the hidden and output layer respectively. The results pre-
sented in Fig. 4 reveals the expected decrease in MSE with 
increasing number of neurons. The fluctuations in MSE 
between 5 and 9 neurons and an increase beyond 16 neurons 
may have resulted from the network being trapped into the 
local minima [49]. The minimum MSE value of 0.001 was 
obtained using 11 hidden neurons and was selected as the 
optimum number for the network.

Fig. 5 shows the optimized ANN architecture of the 
network. Using this optimized ANN, the predicted qe was 
compared with the experimental qe using the coefficient 
of determination which produced an R2 value of 0.9994. 
The optimized ANN model was also compared with the 
Langmuir isotherm. As shown in Figs. 6(a)–(d) for all tem-
peratures studied the ANN model provided a more accurate 
simulation of the experimental data.

3.2.4. Empirical equation

An empirical equation correlating the input parame-
ters was developed to predict adsorption capacity without 

having to run the ANN model in Matlab. The equation 
derived using the weights (Wi) and biases (bi) to the input 
layer of the optimized network (Table 5) is presented here 
as follows: 

q F F F F
F

t pred = − + + −

+

0 45503 0 074313 0 13809 0 02419
0 056989

1 2 3 4. . . .
. 55 6 7 8

9 10

0 10945 1 1947 0 18769
0 32535 0 051549 0 18

+ − −
+ + −

. . .
. . .

F F F
F F 5586 1 023111F − .

� (30)

where coefficients are the weights and bias to the output 
layer and Fi is the tansig activation function used in the hid-
den layer and is given as:

F
E

ii
i

=
+ − 

− =
2

1 2
1 1 11

exp( * )
; : � (31)

and Ei is the weighted sum of the input defined as:

E W C W M W T bi i o i i i= × + × + × +1 2 3 � (32)

Table 3 
Comparison of various backpropagation algorithms

Backpropagation (BP) algorithms Function MSE R2

BFGS quasi-Newton backpropagation Trainbfg 0.3448 0.9919
Powell–Beale conjugate gradient backpropagation Traincgb 0.6306 0.9895

Fletcher–Reeves conjugate gradient backpropagation Traincgf 0.5995 0.9900

Polak–Ribiere conjugate gradient BP Traincgp 0.8085 0.9897

Gradient descent Traingd 155.6050 0.6099

Gradient descent with momentum Traingdm 155.6050 0.6099

Gradient descent with momentum and adaptive learning Traingdx 6.0465 0.8572

Levenberg–Marquardt backpropagation Trainlm 0.1404 0.9995

One step secant backpropagation Trainoss 0.6835 0.9886

Resilient backpropagation Trainrp 3.6839 0.9557

Scaled conjugate gradient backpropagation Trainsgc 0.5199 0.9883

Table 4 
Relationship between transfer function and training of the net-
work with respect to MSE

Hidden layer  
transfer function

Output layer  
transfer function

MSE

Logsig Logsig 28.3853
Logsig Purelin 1.5025

Logsig Tansig 0.1514

Purelin Logsig 24.4395

Purelin Purelin 3.2763

Purelin Tansig 0.7269

Tansig Logsig 4.5006

Tansig Purelin 0.1404

Tansig Tansig 0.1637 Fig. 4. Effect of the number of neurons in the hidden layer on the 
performance of the ANN.
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3.2.5. Relative importance index

The relative importance of the input variables on the out-
put was determined using the Garson’s equation. The results 
indicated that initial phosphate concentration had a relative 
importance of 44.79% and thus was the most influential param-
eter in the adsorption process. Sludge dose and temperature 
exhibited a relative importance of 30.14% and 25.07%, respec-
tively. This underscores the significance of concentration gra-
dient which impacts the driving force for adsorption. 

3.2.6. Process optimization using GA

GA methodology was used to determine the optimum 
initial phosphate concentration, sludge dose, and tempera-
ture necessary to achieve maximum phosphate removal. The 
ANN model (Eq. (30)) was used as the fitness function which 
determines how close a given combination of operational 
parameters are towards achieving maximum adsorption. It 
can be defined as follows:

Fitness function purelin
LW tansig (IW * [x(1); x(2);x(3] b1) + b

=
+( * 22)

� (33)

where IW and b1 are the weight and bias of the hidden layer 
and LW and b2 are the weight and bias of output layers pre-
sented in Table 5.

Optimization was performed using a double vector pop-
ulation type with a generation and population size of 100. 
Crossover fraction and mutation rate were set as default, 
i.e., 0.8 and 0.2, respectively. The selection, crossover and 

mutation operators selected by a trial and error process 
were stochastic uniform, scattered and constraint depen-
dent, respectively. Fig. 7 presents the fitness values versus 
generation. After approximately 15 generations, the value 
of fitness reached to a minimum value and then remained 
constant.The developed ANN-GA predicted a maximum 
removal of 18.36 mg/g using an initial phosphate concen-
tration of 59 mg/L, sludge dose of 3 g and temperature of 
325 K. Subsequent laboratory experimentation to validate 
the model prediction was performed at these optimal opera-
tional conditions. The resulting experimental adsorption was 
18.12 mg/g, generating a residual error of 1.3%. This reveals 
a good agreement with the ANN-GA optimized results and 
thus confirms the validity of the ANN-GA model.

3.3. Equilibrium experiments and analysis

3.3.1. Effect of initial phosphate concentration on adsorption

The effect of initial phosphate concentration as a func-
tion of both the percentage adsorbed at equilibrium and the 
amount adsorbed per unit mass of adsorbent is presented in 
Fig. 8. The figure reveals a decrease in removal from 91% to 
48% as adsorbate concentration was increased from 10.5 mg/L 
to 144.0 mg/L. The significant reduction in percentage adsorp-
tion may be attributed to the insufficient number of adsorption 
sites to accommodate the large number of phosphate anions 
present at higher concentrations. The results, therefore, sug-
gest that this adsorbent is well suited to treat water bodies 
with low phosphate concentration including domestic waste-
water which usually contains 4–15 mg/ L total phosphate [50]. 

Fig. 5. Optimized ANN and GA architecture.
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The increase in phosphate concentration from 10.5 mg/L 
to 111 mg/L resulted in a sharp increase in the uptake of phos-
phate per mass of lime-iron sludge. Higher initial adsorbate 
concentration creates a steeper concentration gradient which 

provides a greater driving force to overcome mass transfer 
resistance of adsorbate ions from the liquid to the solid phase 
[51]. This consequently increases the diffusion of adsorbate 
ions to adsorption sites and thus results in an increase in the 
unit mass saturation of the adsorbent. Minimum increase in 
adsorption capacity beyond 111 mg/L may be attributed to 
saturation of most of the adsorptions sites.

Fig. 6. Plots showing goodness of fit of ANN and Langmuir model to experimental data at (a) 298 K, (b) 305 K, (c) 313 K and (d) 328 K.

Table 5 
Weight and bias values obtained by the Levenberg–Marquardt 
algorithm with 11 neurons

I Wi1 Wi2 Wi3 Bi

1 1.5390 2.1524 1.6770 –3.1341
2 1.3384 2.0120 1.7255 –2.6038

3 –2.4873 0.0653 –0.3065 1.6439

4 1.0185 2.2961 1.5822 –1.7123

5 –1.5540 –4.0907 4.1926 –2.5456

6 –3.2382 –0.9772 –0.1084 0.4056

7 –1.0099 0.5838 0.3450 –0.3383

8 –1.5800 0.1622 –3.7184 2.7665

9 1.2445 1.5052 0.9441 1.6636

10 1.1214 0.8291 –2.0355 2.5319

11 –3.0935 –2.1396 –1.2453 –5.1948

Fig. 7. Fitness values versus generation.
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3.3.2. Effect of adsorbent dose on adsorption

The effect of adsorbent dose as a function of both the 
percentage of phosphate adsorbed at equilibrium and the 
mass of phosphate adsorbed per gram of lime-iron sludge 
is presented in Fig. 9. An increase in sludge dose from 3 g/L 
to 10 g/L resulted in 12% increase in adsorption capacity. 
This increase may be attributed to the availability of a greater 
number of adsorption sites with increasing sludge dose. The 
increase in sludge dose beyond 10 g/L resulted in marginal 
increases in adsorption. This behavior may be due to the 
binding of almost all phosphate anions to the sludge and the 
establishment of equilibrium. 

As the sludge dose increases, the amount of phosphate 
adsorbed per gram of sludge decreases. At low sludge dose, 
the adsorption capacity is high due to the saturation of the 
finite number of adsorption sites available. Increasing in 
sludge dose, increases the number of available adsorption 
sites. Thus, the probability of saturation of all adsorption sites 
per gram of adsorbent decreases. This decrease was most sig-
nificant as sludge dose increased from 3 g/L to 15 g/L. 

3.3.3. Effect of temperature on adsorption

The effect of temperature was investigated at an initial 
phosphate concentration (10.5 mg/L) and sludge dose (5 g/L). 
Increase in temperature from 298 K to 328 K resulted in 20% 
increase in adsorption capacity (Table 6) which suggests 
that the adsorption process was endothermic. This favor-
able effect of temperature can increase the kinetic energy of 
the adsorbate ions which in turn increases its collision onto 
adsorption sites.

To further expound the effect of temperature, the Gibbs 
free energy change ΔG°, enthalpy change ΔH° and entropy 
change ΔS° were calculated using Eqs. (15) and (16). The 
results are presented in Table 6. Within the range of tempera-
ture studied ΔG° varied between –20 kJ/mol and 0 kJ/mol 
and ΔH° was less than 4.2 kJ/mol. This implies that adsorp-
tion was spontaneous and occurred via physical forces [52]. 
Additionally, the positive value of ΔH° suggests that the pro-
cess is endothermic with the presence of an energy barrier. 
The positive ΔS° reflects the high affinity of lime-iron sludge 
for phosphate anions. 

The predominance of physical adsorption was further 
assessed by calculating the activation energy Ea and the 
sticking probability S* using the modified Arrhenius-type 
equation. Low Ea values (5–40 kJ/mol) denotes physisorp-
tion and is indicative of a diffusion controlled process [36]. 
Further, it suggests that the energy barrier existing between 

the reactants is relatively low. The Ea value was found to 
be 9.6634 kJ/mol while the sticking probability was found 
to be 0.0104. This implies that the likelihood of phosphate 
anions attaching to the lime-iron sludge is high and further 
confirms that physisorption is the predominant attachment 
mechanism.

Fig. 8. Effect of initial phosphate concentration on the uptake by 
lime-iron sludge.

Fig. 9. Effect of adsorbent dose on the uptake of phosphate by 
lime-iron sludge.

Table 6 
Thermodynamic parameters for phosphate adsorbed on water treatment sludge

Temperature 
(K)

qm 
(mg/g)

Ka 
(L/mol)

ΔG°
 (kJ/mol)

ΔS 
(kJ/mol)

ΔH 
(kJ/mol)

Ea

(kJ mol–1)
S*

298 15.3490 13.7517 –6.4941 5.3428 0.0393 9.6634 0.0104
305 16.7024 13.1913 –6.5412

313 18.3675 14.0176 –6.8708

328 20.9507 16.3348 –7.6173   
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3.4. Kinetics experiments and analysis

3.4.1. Effect of competing ions on adsorption

The kinetic effect of competing ions was investigated 
using a constant initial phosphate concentration of 10.5 mg/L 
and equal concentrations of chloride and sulphate ions. 
Experimental data were fitted to the pseudo-first-order model, 
pseudo-second-order model, intraparticle diffusion model 
and the diffusion-chemisorption model. Non-linear regres-
sion analysis revealed that the pseudo-second-order model 
provided the best correlation for samples without competing 
anions (R2 = 0.9994) while the diffusion-chemisorption model 
produced the best correlation in the presence of competing 
ions (R2 = 0.9972–0.9980).

The diffusion-chemisorption model also produced a high 
correlation in the absence of competing ions and was therefore 
used to assess the overall impact of competing ions. As shown 
in Table 7, the presence of varying concentrations of equal 
parts chloride and sulphate resulted in only marginal fluctua-
tions in the relative sorption capacity. There was no consistent 
trend in initial rate, ki, and overall rate, KDC, observed over the 
range of competing ions. At a stock solution pH 7.3–8.4, a frac-
tion of the phosphate occurs as the monovalent specie H2PO4

– 
and the remaining fraction as the divalent HPO4

2–. Therefore, 
chloride being monovalent may have a lower affinity for iron 
oxide present in the sludge than divalent sulphate and phos-
phate. Even though a fraction of the phosphate exists as the 
monovalent specie, it interacts more strongly with iron than 
sulphate. Thus, the presence of such competing ions had a 
negligible effect on the process [53]. 

3.4.2. Desorption experiments and analysis

Desorption studies were conducted using three com-
mon eluants namely, NaOH, KCl, and distilled water. 
Approximately 99% of phosphate was desorbed by 0.2 M 
NaOH within the first 10 min of reaction. Distilled water 
removed 40% of phosphate after 1 h while 0.3 M KCl released 
approximately 40% phosphate after 50 min. The partial phos-
phate desorption by KCl and distilled water may be due to 
the presence of less tightly bound phosphate ions on the 
adsorbent (non-specific adsorption). At low surface loading, 
phosphate preferentially occupies the high-affinity adsorp-
tion sites with a high binding energy. This is mainly in the 
form of specific adsorption or inner-sphere complexation, 

resulting in a minimal percentage desorption. With increased 
phosphate loading, the nonspecific adsorption (outer-sphere 
complexation) of phosphate increases [54].

The effectiveness of NaOH in desorbing phosphate may 
be attributed to the high pH, where OH– ions, the dominant 
anion species, compete with H2PO4

– for active sites on the 
sludge surface. Therefore, the results suggest that phosphate 
adsorption onto lime-iron sludge may be reversible and may 
involve both inner-sphere and outer-sphere complexation.

3.5. Mechanism of adsorption

Transfer of ions from a liquid phase to a solid phase usu-
ally involves a transportation stage followed by an attachment 
stage. Thermodynamics analysis revealed that physisorption 
(due to relatively weak van der Waals forces) was the dom-
inant attachment mechanism. Desorption studies indicated 
that this process may be reversible and may involve both 
inner-sphere and outer-sphere complexation. Kinetic data 
were analyzed according to the intraparticle diffusion model 
by Weber and Morris to determine the dominant transporta-
tion mechanism. The plot of qt vs. t1/2 (Fig. 10) reveals distinct 
linear stages suggesting that three steps occurred during 
the adsorption process. The first linear phase which occurs 
within the first hour of reaction may be attributed to film dif-
fusion or surface adsorption while the second linear phase 
may be attributed to intraparticle diffusion. The third slope 
may be ascribed to the slowing of adsorption rate possibly 
due to a reduction in the concentration gradient.

4. Conclusion

The adsorption behavior of lime-iron sludge was inves-
tigated as a reuse option for sludge generated at a plant in 
central Trinidad. The sludge exhibited a phosphate adsorp-
tion capacity of 15.3 mg/g which compares well with other 
reported adsorbents in the literature. Additionally, the sludge 
revealed a high affinity for the phosphate anion whereby 
competing ions had an insignificant effect on adsorption. The 
adsorbed phosphate was effectively desorbed (99%) using 
0.2 M NaOH. The attachment mechanism of phosphate onto 
lime-iron sludge was attributed to physical forces while the 
transport of phosphate to the adsorption site was influenced 
by both film and intraparticle diffusion.

Table 7 
Kinetic parameters of adsorption obtained by non-linear 
regression

Cl– and SO4
2–  

ions (mg/L)
Initial rate,  
ki, (mg/g-t)

Overall rate,  
KDC, (mg/g-t)

Relative adsorption  
capacity, qe, (mg/g) 

0 9.9939 4.7424 2.2504
300 14.2414 5.4417 2.0793

400 13.6069 5.3232 2.0825

500 13.4695 5.296 2.0823

750 7.9717 4.1332 2.1430

1,000 9.2823 4.4200 2.1047 Fig. 10. Plot of intraparticle diffusion model.
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The Langmuir isotherm model provided the highest correla-
tion to the equilibrium data while the diffusion-chemisorption 
model provided the highest correlation to the kinetic data. A 
predictive model for phosphate adsorption capacity was suc-
cessfully developed using ANN and optimized using GA. The 
accuracy of the ANN-GA prediction was verified by experi-
mental studies which revealed a residual error of 1.3%.

Symbols

Co	 —	 initial concentration, mg/L
Ce	 —	 final concentration, mg/L
V	 —	 volume, L
M	 —	 mass, g
KPFO	 —	 pseudo-first-order rate constant, min–1

qt	 —	 adsorption capacity at time t, mg/g
qe	 —	 equilibrium adsorption capacity, mg/g
t	 —	 reaction time, hours
KPSO	 —	 pseudo-second-order rate constant, g/mg-min
H	 —	� pseudo-second-order initial adsorption rate, 

mg/g-t
Kid	 —	 intraparticle transport rate constant, mg/g-t1/2

KDC	 —	 diffusion-chemisorption constant, mg/g-t0.5

ki	 —	� diffusion-chemisorption initial adsorption rate, 
mg/g-t

B	 —	� rate coefficient related to the effective diffusion 
coefficient

F	 —	 fractional attainment of equilibrium
KL	 —	� Langmuir adsorption equilibrium constant, 

L/mg
KF	 —	� Freundlich constant related to adsorption 

affinity, mg/g
nF	 —	 Freundlich constant related to heterogeneity
KRP	 —	 Redlich–Peterson equilibrium constant
gRP	 —	 Redlich–Peterson exponent
αRP	 —	 Redlich–Peterson constant
as	 —	 Sips affinity constant
ns	 —	 Sips index of heterogeneity
R	 —	 universal gas constant, 8.314 J/Kmol
T	 —	 absolute temperature, K
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