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ab s t r ac t
This case study focuses on the color removal efficiency (CR%) and energy consumption (EnC) of 
electrocoagulation (EC) using synthetic wastewater containing disperses like orange 25 dye. Process 
parameters including initial pH (pH0), initial dye concentration (C0), applied voltage (VEC), initial elec-
trolyte concentration (CS) and treatment time (tEC) were found to be the more effective EC operational 
parameters to attain maximum decolorization efficiency. In order to investigate the effect of the inde-
pendent variables on dye removal and determine the optimum condition, gene expression program-
ming (GEP) was used, and the results were compared with the reduced quadratic multiple regression 
model (SMLR) method. The results indicate that the proposed model predicted the CR% with MARE 
of 17.28 and RMSE of 6.24, and EnC with MARE of 54.876 and RMSE of 5.33. This model can make 
more accurate predictions than the SMLR equations. The GEP technique presents two simple equa-
tions for predicting CR% and EnC for practical engineering. Also, two different explicit expressions 
are presented to estimate CR% and EnC as an alternative tool in practical. Moreover, a partial deriv-
ative sensitivity analysis was used to indicate the trend of each parameter in the proposed models.

Keywords:  Artificial intelligence; Color removal; Electrocoagulation; Energy consumption; Sensitivity 
analysis

1. Introduction

Wastewater from the dye industry has serious, negative 
effects on aquatic ecosystems and human health, raising wide 
concerns and also causing problems for conventional biolog-
ical wastewater treatment plants due to the various organic 
and inorganic chemical compounds involved. The colored 
and toxic wastewater released into the ecosystem undergoes 
chemical as well as biological changes. It also consumes dis-
solved oxygen from streams, and it is a dramatic source of 
esthetic pollution and perturbation for aquatic life. An esti-
mated 50,000 tons of dye are discharged from the dyeing and 
coloration industries every year. 

Dyeing wastewater is conventionally treated by var-
ious methods like adsorption, precipitation, chemical 

degradation, advanced oxidation processes, biodegradation 
and chemical coagulation. Despite the widespread applica-
tion of these methods, they have some disadvantages [1,2].

For example, biological methods are time consuming 
and often ineffective in removing dyes, which are highly 
structured polymers with low biodegradability. Biological 
means cannot be applied to most textile wastewater due to 
the majority of commercial dyes toxicity to the organisms 
found in the process [3,4]. Activated carbon adsorption is 
associated with a costly and difficult regeneration process 
as well as high waste disposal cost [5]. Chemical coagula-
tion causes extra pollution due to the undesired reactions in 
treated water, and it produces large amounts of sludge [1]. 
Chemical degradation by oxidative agents such as chlorine 
is the most important and effective method, but it produces 
some very toxic products like organochlorine compounds 
[6]. Advanced oxidation processes including ozonation, UV 
and ozone–UV combined oxidation, photocatalysis, Fenton 
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reaction and ultrasonic oxidation are not economically feasi-
ble [5]. Furthermore, these methods are often expensive, and 
treatment efficiency is inadequate because of the large vari-
ability in textile wastewater compositions [1].

In recent years, strict environmental regulations have 
called for new processes to attain efficient and adequate 
treatment of various industrial wastewaters at relatively low 
operating costs. In this regard, the electrocoagulation (EC) 
process has attracted a great deal of attention for treating 
industrial wastewater owing to its versatility and environ-
mental compatibility. This method is characterized by sim-
ple equipment, easy operation, a reduced reactive retention 
period, less or no equipment for adding chemicals and lower 
amounts of precipitate or sludge, which sediments rapidly. 
EC has been proven to be an efficient method for wastewater 
treatment. It has been tested successfully for treating munic-
ipal wastewater [7], textile wastewater [8], poultry manure 
wastewater [9], landfill leachate [10] and rose processing 
wastewater [11]. 

The artificial neural network (ANN) technique has 
recently been widely utilized in several disciplines includ-
ing ecological and environmental engineering [12]. Classical 
polynomial regression techniques are employed to establish 
explicit parametric relationships between variables, but are 
often limited in applicability by the need to satisfy predefined 
fitness functions. Thus, a need has gradually emerged in con-
temporary metamodeling domains to combine the inherent 
efficiency, robustness and speed of ANNs with the clarity of 
the explicit analytical expressions of polynomial regression.

Gene expression programming (GEP) overcomes such 
limitations and provides closed-form analytical expressions 
for parametric evaluation and analysis [13,14]. Given its 
inherent search structure based on the evolution principle, 
GEP is not constrained by topology selection or the iteration 
algorithms of the ANN technique. Furthermore, in contrast 
to being obscured by complex weight matrices as in ANNs, 
the evolved model responses are explicit analytical functions 
of simpler and more apt mathematical operators conducive 
to the problem under study [15–17]. Despite the prediction 
capability of artificial intelligence-based techniques, very few 
GEP applications have been reported in recent literature with 
focus on the color removal efficiency (CR%) and energy con-
sumption (EnC) of EC.

Therefore, the aim of the present work is develop-
ment of GEP as a strong tool not only for estimating mod-
els but also for presenting certain relationships in practical 
instances accordingly. First, the effective parameters are 
recognized and introduced different models to survey the 
effect of each parameter in CR% and EnC prediction. Also, 
the results of proposed models are compared with existing 
method. Moreover, to study the trend of each parameter in 
proposed models, the partial derivative sensitivity analysis 
is employed.

2. Materials and methods

2.1. Source of data set 

To estimate the CR% and EnC of EC, Maleki et al.’s [18] exper-
imental data were utilized. Maleki et al. [18] conducted exper-
iments in an EC system consisting of a glass (12 × 12 × 21 cm) 

cubic reactor, 400 rpm mixer, DC power supply (high stability 
and reliability, and low-noise DC adjustable power supply RXN-
303D-II, Zhaoxin Communications Industrial Co., Ltd., China) 
and two aluminum electrodes. The cathode and anode were 
made of aluminum sheets (4 × 5 × 0.1 cm), and the immersed 
surface area of each electrode was 40 cm2. The electrodes were 
placed vertically and dipped in 1.5 L aqueous dye solution. 
The distance between electrodes was fixed at 1 cm. Table 1 rep-
resents the range of data used in Maleki et al.’s [18] tests. The 
parameters that affect CR% and EnC are as follows: initial pH 
(pH0), initial dye concentration (C0), applied voltage (VEC), initial 
electrolyte concentration (CS) and treatment time (tEC).

2.2. Gene expression programming (GEP)

Evolutionary algorithms are problem-solving techniques 
proposed based on the Darwinian evolutionary theory. By 
using natural selection and a search among a population of 
solutions, an evolutionary algorithm performs a selection 
process to select the best solution. The selected solution is a 
possible acceptable solution as an individual of the popula-
tion. In each repetition of an evolutionary algorithm, a com-
petitive selection occurs with the lowest accuracy answer 
being eliminated from the assessment process of the fitness 
value, which indicates the quality of an individual solution 
to the problem. GEP is an evolutionary method that was 
introduced by Ferreira [13]. The most important feature of 
this method is facilitating chromosomes to be expression 
trees (ET). GEP is a developed model of genetic program-
ming (GP) that exhibits much greater accuracy than GP [14]. 
In GEP, complex equations with simple linear structures and 
fixed lengths are called chromosomes, which are encoded. 
Chromosomes include linear strings of fixed length that may 
cover one or more different genes. Each gene has a head and 
a tail. The gene tail contains a junk sequence of terminals that 
enable gene modification by each genetic operator with no 
restrictions. Therefore, the gene tail is of considerable impor-
tance in genes. The head (h) length is user-defined according 
to the problem type, but the tail (t) length is associated with 
the head length, and the variable number (n) is calculated as 
t = h(n – 1) + 1. In addition, the function set for each problem 
should be determined prior to modeling. Such functions are 
fundamental to evolution in GEP as they allow modification 
with no limitation among similar genes or multiple genes in 
chromosomes with more than one gene. According to the 
initial problem set, GEP distributes terminals and functions 
randomly among chromosome genes. The initial population, 

Table 1 
Range of data in Maleki et al.’s [18] study

Run No. 1–25

pH0 2–9
C0 8–100
VEC 10–30
CS 0–3
tEC 0.5–50
EnC 0.001–76
CR% 0.2–99.9
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which is generated randomly, is known as the parent. The 
purpose of creating parents is to achieve offspring via high 
genetic operator performance. Each individual uses its own 
genetic information to help create a new offspring that has 
a greater chance of survival. In the evolution process of a 
function, natural selection is based on the offspring equation 
search that produces less estimation error. The fitness func-
tion value employed in this study for program fi is calculated 
with the following equation:
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where RRSE is the root relative square error for the ith off-
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where Pij is the value predicted by program j; Oi is the 
observed value for fitness i; O  is the average of all observed 
values; and n is the number of samples. The GEP param-
eters are presented in Table 2. JEdit, an open source soft-
ware package, was used for the implementation of GEP 
models [19].

2.3. GEP models

The effective EC operational parameters are generally the 
initial pH (pH0), initial dye concentration (C0), applied volt-
age (VEC), initial electrolyte concentration (CS) and treatment 
time (tEC). Therefore, to consider all these parameters in esti-
mating the CR% and EnC, two functional relationships are 
provided as follows:

CR pH(%) ( , , , , )= f C V C tEC S EC0 0  (3)

EnC pH= f C V C tEC S EC( , , , , )0 0  (4)

For both CR% and EnC parameters, the models are as 
follows:

GEP or( ) : (%) ( , , , , )1 0 0CR EnC pH= f C V C tEC S EC

GEP or( ) : (%) ( , , , )2 0 0CR EnC pH= f C V CEC S

GEP or( ) : (%) ( , , , )3 0 0CR EnC pH= f C V tEC EC

GEP or( ) : (%) ( , , , )4 0 0CR EnC pH= f C C tS EC

GEP or( ) : (%) ( , , , )5 0CR EnC pH= f V C tEC S EC

GEP or( ) : (%) ( , , , )6 0CR EnC= f C V C tEC S EC

2.4. Reduced quadratic multiple regression (SMLR) models

Maleki et al. [18] proposed two SMLR models separately 
for CR% and EnC after neglecting the non-significant terms 
[20]. The two models are given in Eqs. (5) and (6) for CR% 
and EnC, respectively:
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To check the generalization ability of proposed models, 
the k-fold cross validation is applied. The number of k is 
considered as 10 (McLachlan et al. [21]). In this technique, 
all data are randomly partitioned in 10 equal sub-samples. 
Among the 10 sub-samples, a single sub-sample is selected 
as validation, and the rest of the sub-samples (k – 1 = 9 
sub-samples) are employed for training model. This cross 
validation is repeated 10 times until all sub-samples are 
considered for validation.

3. Results and discussion

In this section, the CR% and EnC results are estimated 
using the SMLR and GEP methods. For this purpose, the 

Table 2 
GEP parameters

Parameter CR% EnC

Number of generations 300,000 300,000
Number of chromosomes 200 200

Number of genes 3 3

Head size 12 12

Function set +,–,×,/, –, X2, 3Rt, 
4Rt, 5Rt, sin, cos, 
Tan, Logi2

+,–,×,/, –, X2, X3, 
X5, Atan, cos, sin, 
4rt, Gau2, Pow

Linking function Addition Addition

Mutation rate 0.084 0.01

Inversion rate 0.15 0.15

IS transposition rate 0.15 0.15

RIS transposition rate 0.15 0.15

Gene transposition rate 0.15 0.15

One-point recombination 
rate

0.30 0.30

Two-point recombination 
rate

0.35 0.30

Gene recombination rate 0.15 0.15



57A. Akhbari et al. / Desalination and Water Treatment 64 (2017) 54–63

statistical indices applied are root mean square error (RMSE), 
mean absolute relative error (MARE), scatter index (SI) and 
BIAS. The equation of each statistical index is defined as 
follows:
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where Oi and Pi are the observed and predicted EnC, 
repectively; Oi  and Pi  are the average of observed and 
predicted value of EnC; and n is the number of parameters.

Due to the above-mentioned criteria not consider the 
average and variance of a model simultaneously, the Akaike 
information criterion (AIC) are utilized to compare the GEP 
model with existing model. This index characterizes a trade-
off between variance and bias in model construction and 
offers a tool for model selection by considering the complex-
ity and accuracy of model, simultaneously [22]. The AIC is 
calculated as follows:
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where n and k are the number of data and estimated parame-
ter in model, respectively.

Fig. 1 compares the performance of the GEP models in 
predicting CR%. It is evident that this model made underesti-
mations and overestimations. It can be seen that all model esti-
mations have a relative error of less than 15%, which indicates 
good model accuracy. Concerning Table 3, the SMLR method 
demonstrates weaker performance in CR% prediction (MARE 
= 122.09, RMSE = 24.13, SI = 0.35, BIAS = 0.23) compared with 
GEP, especially models 1 and 4 (MARE = 17.28 and 19.43; 
RMSE = 6.27 and 6.24; SI = 0.09 and 0.09; BIAS = 1.28 and 1.10, 
respectively). Therefore, it was found that a method is required 
that can increase model flexibility without significant effect on 
CR% prediction. Consequently, the GEP method was applied 
to resolve this matter. The estimations by the proposed method 
have less than 15% relative error; as a result, GEP is considered 
more accurate than SMLR. As seen from Table 3, the BIAS and 

SI indices of models 5 and 6 have the smallest values among 
the six GEP models. Models 1 and 4 predicted the CR% well. 
The figure also indicates that the GEP model with the highest 
R2 (0.98) for CR% exhibits the highest accuracy. 

The relationship using GEP to calculate CR% is as follows 
(Eq. (13)):
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To evaluate the proposed methods performance and com-
pare it with the existing methods, the statistical indices used 
are calculated in Table 4. The GEP performance evaluation in 
predicting EnC is presented in Fig. 2. This figure shows the 
relative error values for EnC estimation using GEP and six dif-
ferent models. The majority of estimations with this method 
have less than 15% mean relative error. The quantitative GEP 
performance in EnC estimation with model 6 also shows that 
the R2 and MARE are higher than the SMLR method, which 
confirms the adequately predicted values. Similar to models 
5 and 6, model 1 estimated the EnC with good accuracy as 
well. The estimations by both methods proposed in this study 
are thoroughly examined. According to parameters C0, VEC, 
CS and tEC that were used as input combinations to predict 
EnC (Eq. (14)), the proposed SMLR method did not perform 
well in estimating (MARE = 658.54, RMSE = 5.33). Hence, this 
method exhibited lower accuracy than GEP models 1, 5 and 6. 
The GEP relationship to calculate EnC is as follows (Eq. (14)):

EnC = +( )( ) ( )( )

+ −(

sin tan . sin

sin ..

5 63

7 34

2 2

0 25

V S C C t

C t

EC S S EC

S EC ))( ) + − +( )( )( )( )







+ + − + ( ) +

2 3 2

1 1

1 1

/ exp

tan / exp t

x y

t VEC ECCos aan . .
/

C C VEC0 0

1 3
8 03 7 91+( ) + +( )( ) −( )


























 (14)

3.1. Sensitivity analysis

In this study, to analyze the pattern changes in the pro-
posed relationships according to the input parameters consid-
ered for each, partial derivative sensitivity analysis is applied 
[23]. With this method, the partial derivative of the equation 
presented to each input parameter is calculated. Then the 
pattern changes for different input parameter values from 
which the derivative of each relationship has been calculated 
are studied. It is evident that the magnitude of the calculated 
partial derivative is directly related to its effect on the esti-
mated result. The positive and negative values of a partial 
derivative show that increasing the input parameter value 
leads to a decrease or increase in the results, respectively.

Fig. 3 presents the partial derivative results of Eq. (13) 
for the parameters provided in this relationship. The partial 
derivatives for the VEC and tEC parameter values are positive. 
The increase (or decrease) in these two parameters leads to an 
increase (or decrease) in the estimated parameter CR% using 
Eq. (13). It is worth noting that the derivative of Eq. (13) has 
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Fig. 1. GEP performance evaluation in CR% prediction.

Table 3 
Statistical indices for CR% modeling using GEP

CR% R2 MARE RMSE SI BIAS AIC

GEP (1) 0.98 17.28 6.27 0.09 1.28 102.92
GEP (2) 0.57 113.62 28.35 0.42 1.56 171.06

GEP (3) 0.32 271.34 38.37 0.56 15.47 184.74

GEP (4) 0.98 19.43 6.24 0.09 1.10 102.70

GEP (5) 0.96 21.32 8.06 0.12 –0.39 114.26

GEP (6) 0.62 48.97 28.93 0.42 –9.11 171.98

SMLR 0.67 122.09 24.13 0.35 0.23 173.78

Table 4 
Statistical indices for EnC modeling using GEP

EnC R2 MARE RMSE SI BIAS AIC

GEP (1) 0.98 106.13 2.50 0.24 –0.26 73.38
GEP (2) 0.55 264.31 12.87 1.25 –4.13 147.4

GEP (3) 0.59 1,282.62 11.37 1.10 –1.12 141.8

GEP (4) 0.48 150.07 12.10 1.17 –0.10 144.61

GEP (5) 0.98 89.21 2.25 0.22 0.15 68.63

GEP (6) 0.98 54.86 2.79 0.27 –0.44 78.34

SMLR 0.90 658.54 5.33 0.52 0.11 95.58
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a negative value for tEC when tEC = 0.5. Therefore, the pattern 
changes for tEC do not lead to similar trends in CR% estima-
tion. Due to the positive partial derivative value of Eq. (13) 
for variable CS, changing this parameter has a direct rela-
tion with the CR% value obtained from Eq. (13). The partial 
derivative results regarding CR% compared with parameters 
pH0 and C0 are positive and negative. Therefore, by keep-
ing all parameters fixed in this relationship and increasing 
or decreasing one of these two parameters, no clear trend 
in the results is observed. The maximum partial derivative 
value is related to the result obtained for pH0. Therefore, it is 

concluded that Eq. (13) displays the most sensitivity to this 
parameter, and changing this parameter leads to significant 
changes in CR% results.

Fig. 4 shows the partial derivative results of Eq. (14) for 
the respective independent parameters provided to estimate 
the EnC parameter. The results in this figure represent an 
inverse relationship of the CS variable with EnC, where by 
increasing this parameter value leads to a decreasing target 
parameter (EnC) value. The partial derivative value of Eq. 
(14) for CS has the highest value among the other parame-
ters, which indicates the importance of this parameter in EnC 

Fig. 2. GEP performance evaluation in predicting EnC.
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estimation using Eq. (14). Unlike CS, C0 has a direct relation 
with EnC, since by increasing this parameter, EnC increases, 
but clearly, the values presented for C0 and Cs are negligi-
ble regardless of sign. The partial derivative of Eq. (14) for 
parameters VEC and tEC does not have a constant trend, as the 
trend results of EnC obtained from Eq. (14) are not significant 
due to the increase in these two parameters.

The GEP model results were compared with the SMLR 
results for CR% and EnC prediction presented by Maleki 
et al. [18] and are plotted in Fig. 5. As seen in this figure, the 
CR% results are mostly close to the exact line for the GEP 
model, while the SMLR made overestimations and underes-
timations with over 15% relative error and MARE = 122.09. 
Unlike SMLR, the GEP model predicted most of the CR% with 

Fig. 3. Sensitivity analysis of input parameters to GEP (CR%).
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less than 15% relative error and MARE of 48.97. The EnC val-
ues for the GEP and SMLR methods were overestimated and 
underestimated with 15% relative error. As a result, accord-
ing to Fig. 5 and Tables 3 and 4, the GEP model outperformed 
SMLR in CR% and EnC prediction. In line with the explana-
tions given, the equations proposed in this study outperform 
the equations suggested in previous studies. In addition, 
a comparison between the GEP and SMLR models by AIC 
demonstrates the superior performance of GEP in predicting 
the CR% (AIC (GEP) = 102.92; AIC (SMLR) = 173.78) and EnC 
(AIC (GEP) = 68.63; AIC (SMLR) = 95.58).

4. Conclusions

In this study, GEP and SMLR soft computing models 
were compared in terms of predicting the CR% and EnC 

of EC. The effect of different operational parameters on the 
CR% and EnC of EC of synthetic wastewater containing dis-
perses like orange 25 dye was surveyed. The estimations by 
both methods proposed in this study are thoroughly exam-
ined. The SMLR method demonstrates weaker performance 
in CR% prediction (MARE = 122.09, RMSE = 24.13, SI = 0.35, 
BIAS = 0.23) compared with GEP, especially models 1 and 
4 (MARE = 17.28 and 19.43; RMSE = 6.27 and 6.24; SI = 0.09 
and 0.09; BIAS = 1.28 and 1.10, respectively). According to 
parameters C0, VEC, CS and tEC that were used as input combi-
nations to predict EnC, the proposed SMLR method did not 
perform well in estimating models (MARE = 658.54, RMSE 
= 5.33). Hence, this method exhibited lower accuracy than 
GEP Models. Compared with SMLR, the GEP technique can 
provide simpler and more efficient solutions. To analyze the 
pattern changes in the proposed relationships according to 

Fig. 4. Sensitivity analysis of input parameters to GEP (EnC).
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the input parameters considered for each, partial deriva-
tive sensitivity analysis was applied. The maximum partial 
derivative value was related to the result obtained for pH0. 
Therefore, it was concluded that Eq. (13) displays the most 
sensitivity to this parameter, and changing this parameter 
leads to significant changes in CR% results. The comparison 
of the GEP model with the SMLR results for CR% and EnC 
prediction showed that GEP model outperformed SMLR in 
CR% and EnC prediction. The overall results support the 
use of GEP as an alternative to more conventional methods 
of estimating the CR% and EnC of EC. It is evident from the 
result evaluation that the data predicted by GEP matched 
the experimental data with high overall accuracy, with a cor-
relation coefficient (R2) of 0.98 and RMSE within acceptable 
margins. Additionally, the GEP model results were compared 
with SMLR model results, and it was found that GEP per-
formed better than SMLR in making predictions, suggesting 
the inherent sensitivity and robustness of the model. The cur-
rent study results indicate that the proposed method can be 
used as an alternative in practical applications.
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