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a b s t r a c t
The management of groundwater plays a vital role in arid and semiarid regions. An assessment of 
groundwater suitability for irrigation is essential for a sustainable food production. In this study, effi-
ciencies of three interpolation techniques such as inverse distance weighting, kriging and cokriging 
for simulation of groundwater quality indices for irrigation such as: pH, Mg2+, Ca2+, Na+, TH, electrical 
conductivity (EC), sodium absorption ratio (SAR), Cl– and SO4

2– were compared. The spatial structure 
results show that the variograms and cross-validation of the nine variables can be modeled with three 
methods, namely the inverse distance weighting, kriging and cokriging. The relevant data from 56 
wells (with the depth between 30 and 60 m and diameter usually between 10 and 20 cm) in suburb of 
Shiraz were collected. After normalization of data, variograms were computed. Optimum variogram 
was selected based on least square value analysis. Then, by using cross-validation, mean error and 
root mean square error analysis, the interpolation model was selected. Results showed that for Mg2+, 
Ca2+, TH, EC, Cl– and SO4

2– cokriging had the lowest root mean square error, and for SAR and Na+ 
inverse distance weighting technique and for pH, kriging had better results comparing geostatistical 
method to simulate groundwater quality indices. For pH, TH, EC, and Mg2+ data; for SAR, Ca2+, Na+, 
and Cl– data; and for SO4

2– data, spherical, Gaussian model, and exponential were proved to be the best 
semivariogram models, respectively. Moreover, the results illustrated that cokriging method was the 
best due to its highest precision and lowest error. Finally, the geographic information system can fully 
display spatial patterns of quality factors in groundwater resources of the study area.
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1. Introduction

Groundwater is one of the most significant natural
resources [1,2]. Its quality is influenced by the geological 
formation and anthropogenic activities, e.g., changes in 
land use, urbanization, intensive irrigated agriculture, min-
ing activities, disposal of untreated sewage in river, lack of 
rational management, etc. [3]. The groundwater contami-
nation may cause various diseases and other problems too 
[4–6]. In the process of mapping groundwater quality, two 

main stages can be distinguished: (1) the sampling stage and 
(2) the prediction stage, during which the observations are
interpolated to a fine grid. The quality of the resulting map 
is determined by both stages. Geostatisticians have concen-
trated most on the second stage, by applying various types 
of interpolation methods [7,8]. Geostatistics is a spatial statis-
tical procedure that can be used to assess and represent the 
distribution of concentration over space and time [9,10]. The 
method predicts the estimated values based on the relation-
ship between the sample points and estimates the uncertainty 
of the results [11–13]. Geostatistical methods, which are con-
sidered as powerful tool for interpolation, have been applied 



M. Salari et al. / Desalination and Water Treatment 65 (2017) 163–174164

in different branches of science, such as earth science, hydro-
geology, soil science, mining and hydrometeorology [14–16]. 
Recently, geostatistical tools have also been applied in the 
modeling of the spatial distribution in many disciplines, and 
they are increasingly coupled with geographical information 
system (GIS) capabilities for applications that characterize 
the space structure (semivariogram analysis), spatially inter-
polating scattered measurements to create spatially exhaus-
tive layers of measured parameters [17,18].

Commonly used methods applied in spatial statistics 
include: ordinary kriging, cokriging and inverse weighted 
distance (IWD). Kriging is regarded as the best linear unbi-
ased estimation. Many studies have successfully used inter-
polation techniques with and without the use of the ArcGIS 
geostatistical tool [19–21]. Few researchers have applied the 
integration of geostatistical techniques and vulnerability 
assessment as a new approach for redesigning the ground-
water monitoring networks [22]. The density of monitoring 
wells was considered together with vulnerability assessments 
by Dawoud [23]. Yeh et al. [24] applied a genetic algorithm 
and the factorial kriging method for nine variables: electrical 
conductivity (EC), total dissolved solids (TDS), Cl−, Na+, Ca2+, 
Mg2+, SO4

2−, Mn and Fe– for optimal selection of monitoring 
wells in Pingtung plain, Taiwan. Nazari-zade et al. [25] used 
geostatistics method to study spatial variability of ground-
water quality in Balarood plain. Their results showed that 
spherical model is the best model for fitting on experimental 
variogram of EC, Cl– and SO4

2– variables. Ahmed [26] applied 
kriging to assess the spatial dependencies of the water qual-
ity variables such as TDS and concluded that kriging has high 
capability of application. Barca and Passarella [27] used dis-
junctive kriging and simulation methods to make nitrate risk 
map in 10 and 50 mg/L thresholds, in Modena plain of Italy.

The vulnerability of groundwater is characterized by the 
hydrogeological and geological attributes of the aquifer to spe-
cific areas that are more vulnerable to contamination [28]. The 
DRASTIC model is the most commonly applied vulnerability 
model based on the physical environmental aquifer parame-
ters to assess groundwater vulnerability [29–31]. Delgado et al. 
[32] used kriging to map groundwater quality parameters in 
Yucatan, Mexico. Based on the generated maps, they classified 
the study area into different zones in terms of water quality for 
agricultural uses. Adhikary et al. [33] analyzed spatial variabil-
ity of groundwater quality in India. They produced probabil-
ity maps of groundwater contaminants using indicator such 
as kriging. Houshmand et al. [34] used cokriging and kriging 
methods for spatial estimation of sodium absorption ratio 
(SAR) and chloride (Cl) concentration in groundwater [34]. 
For SAR and Cl data, Gaussian model was proved to be the 
best semivariogram model. Kriging methods were also used 
by Rawat et al. [35] to predict spatial distribution of ground-
water quality parameters. Because of various results reported 
by abovementioned researchers, it is obvious that suitable 
method of interpolation to estimate one variable depends on 
variable type and regional factors; thus, any selected method 
for specific region cannot be a generalized scheme. 

Geostatistical analysis provides a series of statistical 
models and tools for spatial data exploration and surface gen-
eration of groundwater quality [4,36]. The present study inves-
tigated the spatial distribution of the water quality parameters 
of Shiraz plain (Fars province, Iran). Geostatistical methods 

were applied in order to determine the most suitable method 
that can be used to develop spatial variability maps and study 
the variability of the groundwater quality parameters. First, 
the hydrogeological setting of the study area was investigated 
using drilling, pumping tests and geophysical data. Secondly, 
the general characteristics of groundwater quality data and the 
accuracy of different interpolation methods (ordinary kriging, 
cokriging and IWD) were examined.

2. Materials and methods

Shiraz plain, covering an area of roughly 300 km2 with 
local coordinates of 52°32′ E longitude and 29°36′ N lati-
tude and having an average altitude of 1,500 m, is located 
in Fars province, in the south of Iran, in a climatologically 
arid and semiarid region. Shiraz plain is stretched from north 
to Babakoohi and Kaftarak mountains, from northwest to 
Derak mountain, from south to Sabzpooshan and Soltanabad 
mountains, and from west and southwest to Polfasa moun-
tain and Maharloo lake. Studies have shown that the Shiraz 
alluvial plain is layered and clay layers are located between 
the aquifers. The alluvial sedimentation does not have a uni-
form thickness, and sandy layers are located between silt 
and clay layers. Also, geophysical explorations indicate that 
Shiraz plain aquifer goes down as far as 150 m deep, and at 
depth below that if there is an aquifer layer at all, it does not 
have a good quality [37,38]. Furthermore, the alluvium struc-
ture in the west plain is mainly coarse grain, and it turns to 
fine grain near Maharloo lake. One of the largest wheat-pro-
ducing regions in Iran is located in the Shiraz plain, Fars 
province [39]. The geochemical characteristics of groundwa-
ter within the study area was carried out based on chemi-
cal analyses of water samples collected in January 2012 at 40 
sampling locations. The location of groundwater study area 
and distribution of wells is shown in Fig. 1. The sampling 
sites are distributed in a systematic manner in the region.

2.1. Methodology 

The objective of this study is to evaluate the accuracy 
of various interpolation methods such as kriging, cokriging 

Fig. 1. Situation of studied area and sampling wells distribution.
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and inverse distance weight (IDW), for prediction of ground-
water assessment parameters in Shiraz region. In this study 
which is for spatial prediction of groundwater quality of 
the Shiraz plain, 56 sets of data from Shiraz regional water 
district (SRWD) were used [37]. After normalization of data, 
kriging, cokriging and IDW methods were used for inter-
polating groundwater quality parameters. Finally, with the 
use of cross-validation, the optimum method of interpola-
tion was selected. Then, we proceeded to prepare the map of 
groundwater quality parameters based on the interpolation 
techniques in GIS environment. The variograms are prepared 
by GS+ software. Fig. 2 shows the flow diagram of this study. 

2.2. Spatial prediction methods 

2.2.1. Kriging

The presence of a spatial structure where observations 
are close to each other and also they are more alike than those 
that are far apart (spatial autocorrelation) is a prerequisite to 
the application of geostatistics [40]. For the purpose of eval-
uating spatial distribution in groundwater parameters from 
each other, the variable mode was used. In general, the pur-
pose of calculating the variable mode is to estimate changes 
in variables with respect to temporal and spatial variations. To 
calculate the variability, the total squared difference between 

pairs as a distance h from each other is determined and plotted 
against h, in a semivariogram, as given in Eq. (1) [41]: 

γ ( ) / [ ( ) ( )]h Var Z x Z X h= − +1 2 � (1)

where Var is the variance; Z(x) is the observed value of one 
parameter at point xi; and Z(x + h) is the value of parameter 
at point xi + h.

The variogram is some quantitative descriptive statistics 
that can be graphically represented in a manner that charac-
terizes the spatial continuity (i.e., roughness) of a data set. 
In order to interpolate with different methods, a theoretical 
model must be fitted to the experimental data of the semivar-
iogram. By correlating a theoretical model to the value of the 
empirical model and by applying linear and nonlinear mod-
els, unknown variables can be estimated [42]. This technique 
was developed to create mathematical models for a spatial 
correlation structure with a variogram that quantifies the 
spatial variability of random variables between two points 
[43]. In this study, three types of models (spherical, exponen-
tial and linear) were used to determine the optimum variable 
mode. Each hydrochemical parameter was analyzed under 
the aforementioned semivariogram models.

When you look at the model of a semivariogram, you 
will notice that at a certain distance the model levels out. 

Fig. 2. Flow diagram of geostatistics study and selection of the best model for estimation of variable [7].
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The  distance where the model first flattens is known as the 
range. Sample locations separated by distances closer than the 
range are spatially autocorrelated, whereas locations farther 
apart than the range are not. The value at which the semivario-
gram model attains the range (the value on the y-axis) is called 
the sill. A partial sill is the sill minus the nugget. Theoretically, 
at zero separation distance (e.g., lag = 0), the semivariogram 
value is zero. However, at an infinitely small separation dis-
tance, the semivariogram often exhibits a nugget effect, which 
is a value greater than zero. If the semivariogram model inter-
cepts the y-axis at 2, then the nugget is 2. The nugget effect 
can be attributed to measurement errors or spatial sources of 
variation at distances smaller than the sampling interval (or 
both). Measurement error occurs because of the error inherent 
in measuring devices. Natural phenomena can vary spatially 
over a range of scales. Variation at microscales smaller than 
the sampling distances will appear as part of the nugget effect. 
Before collecting data, it is important to gain an understanding 
of the scales of spatial variation in which you are interested 
[14]. Fig. 3 illustrates the model of semivariogram.

The ratio of nugget variance to sill expressed in percent-
ages can be regarded as a criterion for classifying the spatial 
dependence of groundwater quality parameters. If this ratio 
is less than 25%, then the variable has strong spatial depen-
dence; if the ratio is between 25% and 75%, the variable has 
moderate spatial dependence; and greater than 75%, the vari-
able shows only weak spatial dependence [39]. 

2.2.2. Inverse weighted distance 

In an interpolation technique such as IDW method, a 
weight is attributed to the point to be measured. The amount 
of this weight is depended to the distance of the point to 
another unknown point. These weights are controlled on 
the bases of power of ten. With increase of power of ten, the 
effect of the points that are farther diminishes. Lesser power 
distributes the weights more uniformly between neighbor-
ing points. We should keep in mind that in this method the 
distance between the points count, so the points of equal dis-
tance have equal weights. In this method the weight factor is 
calculated using the following formula:
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where λi is the weight at point i; Di is the distance of 
point i to an unknown point; and α is the power ten of the 
weighting [44].

2.2.3. Cokriging

The “Co-Regionalization“ (expressed as correlation) 
between two variables, i.e., the variable of interest, ground-
water quality indices, and another easily obtained and 
inexpensive variable, can be extrapolated to the advantage of 
estimating purposes by the cokriging technique. In this sense, 
the advantages of cokriging are realized through reductions 
in costs or sampling effort. The cross-semivariogram is used 
to quantify cross-spatial autocovariance between the original 
variable and the covariate. The cross-semivariance is com-
puted through the following equation:

λµ µ µv E z x z x h z v x zv x h= − + − +1 2/ [{ ( ) ( )}{ ( ( )) ( )}] � (3)

where λµυh is cross-semivariance between μ and υ variables; 
zµ(x) is as primary variable; and zυ(x) is the secondary vari-
able [45]. 

2.3. Comparison between the different methods

In order to evaluate and select the best method of interpo-
lation coefficient, the coefficient of determination of (R2), root 
mean square error (RMSE) and mean absolute error (MAE) 
were used (Eqs. (4)–(6)).
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In the above equations, n is the number of data; Xi(o) is 
the measured value; X(mean) is the average of the measured 
values; and X(p) is the estimated value [46,47]. 

Root sum squares (RSS) approach to tolerance analysis 
has a solid foundation in capturing the effects of variation. 
In the days of the golden abacus, there were no super-fast 
processors willing to calculate the multiple output possibili-
ties in a matter of seconds (as can be done with Monte Carlo 
simulators on our laptops). It has its merits and faults but is 
generally a good approach to predict output variation when 
the responses are fairly linear and input variation approaches 
normality. That is the case for plenty of tolerance analysis 
dimensional responses so we will utilize this method on our 
nonlinear case of the one-way clutch [3]. 

3. Results 

Many variables exhibit a nonnormal distribution of mea-
sured values and therefore do not initially satisfy the basic 

Fig. 3. The model of a semivariogram.
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assumption of geostatistics of statistical normality. This 
restriction is eliminated, by applying a data transform to the 
sample values that make them more agreeable to analysis and 
estimation. The most useful data transform is the log-trans-
form. Since natural log values can be back transformed to real 
values, we can use a semivariogram model derived from the 
transformed sample values to predict the spatial variation of 
logarithmic values of groundwater quality indices (GWQI). 
A statistical summary of the groundwater quality properties 
is presented in Table 1. As shown in Table 1, all parameters 
had high skewness; therefore, they were normalized using 
logarithmic method. 

Our task now is to correlate models to the experimental 
or sample values choosing models and fitting them to data 
remaining, which is among the most controversial topics in 
geostatistics. There are still controversies who could fit mod-
els by eye and who defined their practice with vigor. They 
may justify their attitude on the grounds that when kriging 
is selected, the resulting estimates are much the same for all 
reasonable models of the variogram. We used a procedure 
that embodies both visual inspection and statistical fitting, 
as follows. First, experimental variogram is plotted. Then the 
models that hold one or more approximately the right shape 
and sufficient detail to achieve the principal trends in the 
experimental values are chosen. The best model for correlat-
ing on experimental variogram was selected based on least 
RSS values (Table 2). 

Fig. 4 shows the variograms for groundwater param-
eters. Results showed that for TH and EC, spherical model 
was selected as the optimum model. In this model, it shows 
an almost linear increasing part, followed by a quite abrupt 
leveling of forward to sill. However, for other parameters 
such as SO4

2–, the fitting model was exponential, and for SAR, 

Cl– and Na+, Gaussian model reaches the sill asymptotically, 
so no strict range was observed on the variables. 

All parameters of groundwater quality have high spatial 
structure. Also, effective range of most parameters is close 
together with the range of 95–101 km. The effective distance 
demonstrates the distance that variogram has the highest 
value (Table 3).

First step for cokriging is computing of cross-vario-
grams. The cross-variogram can be modeled in the same 
way as that of variograms, and the same restricted set of 
functions are available too. Having learned how to model 
the cross-variogram, we can use our knowledge of the spa-
tial relations between two variables to predict their values 
by cokriging. Typically, the aim is to estimate just one vari-
able, plus those of one or more other variable, which we 

Table 1
Results of statistical analysis on groundwater quality

GWQIa Min. Max. Mean Standard deviation Skewness Kurtosis

pH 6.94 9.79 7.52 0.501 2.47 7.81
pHb 1.94 2.28 2.016 0.062 2.14 6.10
TH (meq/L) 140 5,000 1,141.7 1,126.4 2.148 6.984
THb (meq/L) 4.94 8.51 6.69 0.818 0.262 2.87
SAR 0.013 26.693 2.044 4.302 4.823 25.924
SARb –4.34 3.28 –0.09 1.373 –0.983 5.681
EC (µS/cm) 522 19,073 2,696.8 3,160 3.253 15.162
ECb (µS/cm) 6.257 9.85 7.52 0.870 0.592 3.38
SO4

2– (meq/L) 0.16 64.66 11.167 15.159 2.102 6.676
SO4

2–,b (meq/L) –1.832 4.169 1.511 1.547 –0.462 2.604
Cl– (meq/L) 0.45 237 13.538 36.918 5 28.33
Cl–,b (meq/L) –0.798 5.468 1.585 1.232 0.520 4.625
Na+ (mg/L) 0.02 174.02 9.240 27.726 5.09 28.25
Na+,b (mg/L) –3.912 5.159 0.946 1.635 –0.730 5.260
Ca2+ 2 37.5 9.22 7.92 2.10 4.41
Ca2+,b 0.69 3.62 1.94 0.727 0.36 –0.46
Mg2+ 0.5 67.5 11.42 15.350 2.84 7.48
Mg2+,b –0.69 4.21 1.901 1.021 0.17 0.4

aGWQI: groundwater quality indices. 
bUsing logarithm to normalize data.

Table 2 
Selection of the most suitable model for evaluation on experi-
mental variogram according to RSS

Model
GWQI Gaussian Exponential Spherical

pH 0.055 0.059 0.042
TH 0.305 0.296 0.295
SAR 0.570 0.577 0.576
EC 0.546 0.526 0.514
SO4

2– 0.649 0.631 0.648
Cl– 0.644 0.676 0.672
Na+ 0.709 0.736 0.733
Ca2+ 0.110 0.12 0.117
Mg2+ 0.219 0.305 0.123
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a) EC b) CL- 

c) Na+ d) SAR 

e) So42- f ) TH 

Fig. 4. Variograms related to groundwater quality: (a) EC, (b) Cl–, (c) Na+, (d) SAR, (e) SO4
2– and (f) TH. 
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regard as auxiliary variable. To develop cross-variogram, 
a few samples are affiliated with the auxiliary samples, so 
cokriging should be reduced. Cross-variograms are pre-
sented in Fig. 5.

To determine the optimum method among kriging, 
cokriging and IDW, criterion of RMSE and MEA were used. 
Results showed that methods had cokriging more consider-
able accuracy than IDW method for parameters such as TH, 
EC, Cl– and SO4

2–. Otherwise, IDW showed higher accuracy 
comparing with geostatistical method for prediction of SAR 
and Na+ parameters (Table 4). Finally, maps of groundwater 
quality for some parameters were prepared by cokriging and 
IDW, which were selected as optimum methods for interpo-
lation in GIS software. 

The analysis showed that to generate quantify data for 
groundwater quality index Mg2+, Ca2+, TH, EC, Cl– and SO4

2– 

cokriging would be performed better than kriging. And for 
characterizing the spatial variability IDW technique and for 
SAR cokriging had better result than other methods, which is 
in agreement with the work done by Ahmed [26], Nazari-zade 
et al. [25] and Rizzo and Mouser [40]. They also revealed 
that geostatistical methods could be the optimum model for 
groundwater data interpolation. This study shows the high 
capability of geostatistical tools for provision of maps of spatial 
structure of groundwater quality variables. Careful analysis of 
the measurement data using common sense can sometimes 
result in the same conclusions as those resulting from lengthy 
and computationally heavy calculations. For spacing beyond 
the range of spatial autocorrelation, kriging estimates reduce 
to the same results as for the classical random sampling. A 
geostatistical analysis is not only computationally intensive 
algorithms but also requires many samples to be taken and 
analyzed as acute as possible. As mentioned before, at least 
30–50 pairs of observations are necessary to calculate one point 
of the experimental variogram. For the rest of groundwater 
quality indices such as Na+ and SAR, IDW techniques have 
better result than geostatistical method to simulate groundwa-
ter quality indices (Figs. 6 and 7). 

4. Discussion and conclusions 

Due to the complexity and a large variation of environ-
mental data sets, the application of geostatistical and mul-
tivariate statistical methods is recommended. In this study, 

56 groundwater samples were used to estimate the spatial 
variation of some chemical parameters of groundwater in 
Shiraz plain. The first objective was to investigate and map 
the groundwater quality using geostatistics. Lack of data in 
northern and southern parts of the study area was a signifi-
cant issue, and it was a reason to apply the geostatistical anal-
ysis in this investigation. Analysis of the spatial coherence of 
the variables was performed using the selected models, and 
the kriging, cokriging and IWD methods were ultimately 
used to describe the spatial distribution of the parameters. 
The results obtained through these methods were compared 
by RMSE and MAE, and it is found that the cokriging model 
is the most optimal technique for studying the spatial varia-
tion in groundwater quality parameters. 

EC values 2,696.8 µS/cm, high values of EC in the west-
ern parts of the plain could be associated with the lithologi-
cal formations composed of marls and evaporates. Based on 
SAR values, it is concluded that the majority of groundwater 
samples are relatively suitable for irrigation use. The final 
map showed that EC in central part of the region, where the 
Sepidrood River meets the Caspian Sea, is dramatically high, 
which will threaten the sustainability of rice cultivation in the 
area. The other factors were in suitable level.

High Cl– values may be attributed to the upcoming or 
lateral movement of old saline groundwater. The salinity 
may be attributed to long residence time of water and the 
dissolution of minerals, followed by evaporation of rain-
fall and irrigation returns [4]. After short rain events and 
irrigation periods, the water is consumed by evapotranspi-
ration, and salts are precipitated. During the large rainfall 
or irrigation, these salts are dissolved and leached into the 
subsurface [48]. The high sulfate (SO4

2–) concentrations in 
groundwater could be associated with the dissolution of the 
mineral pyrite (FeS2) [49].

Special distribution is governing changes of physical 
and chemical characteristics of water resources parameters, 
and even spatial structure of water variables could change 
in various geographic directions too [42]. This study had 
attempted to predict the spatial distribution and uncer-
tainty of important groundwater quality indices in the 
southeast of Iran, Shiraz, using three interpolation tech-
niques (kriging, cokriging and IDW). The analysis showed 
that for more groundwater quality variables (Mg2+, Ca2+, TH, 
EC, SO4

2– and Cl–), cokriging technique performed better 

Table 3 
Best-fitted variogram models of groundwater quality and their parameters

GWQI Model Nugget % Sill % C
C C

°

° +
%

Å (km), range R2 RSS

pH Spherical 0.086 0.235 0.634 7,010 0.086 0.042
TH (meq/L) Spherical 0.628 1.94 0.64 95,660 0.66 0.295
SAR Gaussian 0.839 3.26 0.74 101,100 0.500 0.570
EC (µS/cm) Spherical 0.555 2.36 0.73 98,730 0.893 0.514
SO4

2– (meq/L) Exponential 0.828 1.756 0.52 87,500 0.146 0.631
Cl– (meq/L) Gaussian 0.864 3.15 0.72 79,930 0.386 0.644
Na+ (mg/L) Gaussian 0.865 3.94 0.72 96,290 0.341 0.709
Ca2+ Gaussian 0.416 2.853 0.854 85,810 0.75 0.110
Mg2+ Spherical 0.410 4.829 0.915 44,350 0.88 0.123
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than kriging and IDW techniques in characterizing the spa-
tial variability. IDW technique is only for some groundwa-
ter quality variables like SAR and Na+ that has better result 
than kriging to simulate groundwater quality variables. As 
seen in the variogram results (Table 3), the most appropriate 

model suited to groundwater quality variables is exponen-
tial model. However, the results of the current study show 
medium spatial structure of the variable data, but the most 
appropriate results based on the statistical comparisons 
showed high capability of cokriging technique. Assessment 

 
 
 

a) TH-SAR                                                                              b) So42—TH  

 

 
c) TH-Cl-                                                                                                     d)  TH-Na+ 

 
e) TH-EC 

Fig. 5. Cross-variogram of groundwater quality: (a) TH-SAR, (b) SO4
2––TH, (c) TH-Cl–, (d) TH-Na+ and (e) TH-EC.



171M. Salari et al. / Desalination and Water Treatment 65 (2017) 163–174

of effective range of various parameters shows that some 
variables like Cl– and SO4

2– have narrow effective range.
Therefore, for their evaluation grading to be considered with 
narrow distance. All physical and chemical water quality 
parameters that have been investigated in this research 
have high value of (C0/C + C0) parameter, so it could justify 
the use of geostatistical techniques.

The geostatistical analysis and the produced maps are 
useful tools for hydrogeologists and engineers to estimate 
water quality in areas without sampling sites (e.g., in the 
northern part of the study area). In addition, they are useful 
in order to protect the groundwater quality and apply a sus-
tainable development strategy for local water management. 
The results provide important information, while the spatial 

Table 4 
Selecting the best interpolation method according to RMSE and ME parameters

IDWCokrigingKrigingGWQI
Exp. 4Exp. 3Exp. 2Exp. 1

0.2360.320.320.2040.3020.2RMSEpH
–0.008–0.009–0.0060.0030.02–0.008MEA
973.73950.21935.07928.14835.44907.5RMSETH (meq/L)
–80.35–92.08–105.31–115.302–34.31–20.24ME
2.782.953.313.753.213.84RMSESAR
0.2820.156–0.016–0.2070.005–0.01MEA
2,8312,743.82,6982,7162,6952,724.9RMSEEC (μS/cm)
–15.79–85.69–178.3–269.3–24.151–160.94MEA
14.48913.92913.36812.888.13313.423RMSESO4

2– (meq/L)
–0.714–0.847–1.001–1.1170.013–0.34MEA
25.6726.7329.3232.56021.2228.97RMSECl– (meq/L)
0.97–0.027–1.395–2.869–21.92–0.642MEA
18.6619.6521.83124.4720.6320.75RMSENa+ (mg/L)
1.4410.628–0.482–1.69–21.24–0.067MEA
5.995.865.534.854.584.61RMSECa2+

0.620.560.40.2–0.179–0.11MEA
2.912.8152.552.5462.542.18RMSEMg2+

0.660.540.540.2310.0120.033MEA

Fig. 6. Interpolation groundwater quality map based on IDW a) SAR and b) Na+.
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distribution maps of groundwater quality could potentially 
be used by local authorities and decision makers in order 
to assess vulnerable zones and prevent further pollution of 
already contaminated areas [45]. For example, prior to drill-
ing new boreholes, groundwater quality maps produced 
from the investigation site should be taken into account by 

local authorities [44]. This study shows the high capability of 
geostatistical tools for provision of maps of spatial structure 
of groundwater quality variables. The results also confirm 
the research conducted by Rokbani et al. [46] and Zehtabian 
[47] in which they concluded that geostatistical tools like 
kriging have high capability for simulating groundwater 

c) d)

Fig. 7. Interpolation groundwater quality map based on cokriging: (a) TH-Cl–, (b) TH-Na+, (c) SO4
2–-TH and (d) TH-EC.
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quality variables. The main perception of the study is that 
each method depends on the region, sample distribution and 
other regional characteristics. 

Further hydrochemical studies should be carried out to 
investigate the impacts of land use and anthropogenic activi-
ties on groundwater quality in the study area. Factors influenc-
ing the groundwater quality should be addressed as early as 
possible and kept as minimum as possible [36]. Finally, future 
investigations of the groundwater quality in the study area 
would benefit by the improvement in hydrogeological and 
hydrochemical data monitoring. The results of this study can 
be used to make recommendations for the better management 
and modeling of soil and plant relationships in future studies. 
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