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a b s t r a c t

The implementation of seawater reverse osmosis (SWRO) desalination plants was key to ensure the 
fresh water supply in arid and coastal regions. The high operating and maintenance (O&M) cost in 
these plants are an impediment. In this paper,the O&M cost of twelve SWRO desalination plants 
located in Fuerteventura (Canary Islands) were analyzed. A mathematical model was elaborated to 
estimate the O&M cost. The inputs were the production capacity of the line, recovery, energy con-
sumption and the price per kWh. The specific cost related to the energy consumption is complex to 
be evaluated because of its dependence on other factors such as energy recovery system, chemical 
cleaning frequency and electrical energy tariffs. It was observed that the specific cost of the chemi-
cals, cartridge filters, membrane replacement, staff and maintenance decreased with the production 
and recovery increase in the studied ranges. The model was verified with the data proving to be a 
good estimator.
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1. Introduction

The main impediment for desalination is high costs 
of constructing and operating desalination facilities [1–3], 
which directly translates to the cost of desalinated water, 
paid by consumers. Costs of desalination vary consider-
ably from country to country and from region to region. 
They are determined by geographical, socio-economic and 
environmental conditions as well as regulations regarding 
establishing and operating desalination plants. Usually, in 
the O&M cost, the relative percentage of power, chemical 
and membrane replacement costs increase, and percentage 
of maintenance and staff costs decrease with the increase 
in source water salinity. Chemical costs are quite variable 
from one location to another and are mainly dependent on 
the source water quality, pretreatment processes [4], and the 
product water quality required.

Some authors have focused their efforts on the study of 
membranes technology (increasing the membrane active 
surface, water permeability coefficient or reducing the pres-
sure drop on the membrane surface) to reduce the O&M 
cost [5–7]. The staff costs of a SWRO desalination plant 
are closely related to plant size, complexity and number of 
treatment processes and equipment, and to the overall level 
of plant automation [8]. The maintenance costs are quite 
complex to be evaluated, it includes all expenditures asso-
ciated with routine plant operations and preventive and 
emergency maintenance of plant equipment, structures, 
buildings, and piping. Typically, the useful life of most of 
the key desalination plant equipment is between 25 and 
50 years [9]. The energy consumption is the main factor in 
terms of costs in SWRO [10–14], it is directly related to the 
source water salinity and temperature, and the associated 
osmotic pressure that has to be overcome in order to pro-
duce fresh water.
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This work aims to evaluate the O&M cost of twelve 
SWRO desalination plants operating in Fuerteventura 
(Canary Islands, Spain). An artificial neural network model 
(ANNM) was designed to estimate the O&M specific cost of 
SWRO desalination plants knowing the production capac-
ity, recovery and the specific energy consumption (SEC).

2. Material and methods

2.1. Plants data

The data of twelve SWRO desalination plants between 
2005 and 2012 were collected; the plants were named with 
the numbers 1–12 due to the privacy of the information and 
the inability to make public the status of each desalination 
plant. The main characteristics are summarized in Table 1.

The chemicals, cartridge filters and membrane replace-
ment, staff and maintenance costs were considered to make 
the estimating model. The energy consumption of a RO sys-
tem depends on the pretreatment, arrangement, operating 
condition, ERS etc. and the electrical market is quite vari-
able depending on the region, so the energy consumption 
of the RO system was considered as an input as well as the 
price of the electricity in terms of power and consumption. 
These average data per cubic meter of produced water are 
shown in Table 2 and the price of the electricity (averages) 
in terms of power and consumption in shown in Table 3. 
Fig. 1 shows the distribution of the O&M specific cost in 
averages for SWRO desalination plants.

2.2. Artificial neural network based model

Artificial neural networks (ANNs) are based on the 
architecture of biological nervous system, which consists 
basically of a large combination of simple nerve cells or 
neurons that work in parallel to facilitate fast decisions. 
ANNs are made up of a large number of primitive com-
putational elements that are arranged in a massive par-
allel set [15]. The ANN is developed in artificial synapses 
which connect these elements that are characterized by a 
set of weights, which can typically be adjusted by a learn-
ing process. The most important advantage in using this 
mathematical method is that ANNs do not have to be 
programmed; instead they use examples to learn how 
to deal with more complex relationships [15]. ANNs are 
intensively used in applications such as process control 
[16], modelling [17], simulation and system identifica-
tion [18]. Their popularity could be attributed to the fact 
that ANNs can solve many different types of engineering 
problems with a relatively simple and flexible structure, 
in fact,many authors have recently used ANNs to resolve 
water treatment problems [19–30]. 

Basically, an ANN sis formed by nets of primitive ele-
ments (neurons) that receive signals (inputs) from other 
neurons or from the outside. These signals are subsequently 
weighted and summed [15]. The results (also called poten-
tials of the neurons) are then computed by transfer func-
tions, which pass the output to other nodes to the outside 
environment of the network. The network has a structure 
consisting of at least an input and an output layer, and pos-
sibly one or more hidden layers. Neurons in these layers are 

connected by means of artificial synapses, each of which is 
associated with a numerical value or weight. Once the ANN 
is built, trained, validated and tested, with respect to a dif-
ferent set of inputs, it is able to produce a corresponding 
set of outputs. Fig. 2 shows how an ANN leads to specifics 
targets output.

2.3. Artificial neural network architecture and training 
 algorithm

Architecture (or topology) of an ANN refers to the 
arrangement of neurons in the network. Neurons are orga-
nized in layers, so that the neural network can consist of 
one or more layers of neurons. Each neuron receives a set 
of inputs multiplied by interconnection (weight), which are 
added and operated by a transfer function (or activation 
function) before being transmitted to the next layer or net-
work output.

Each neuron, j, in the i-th layer is fed by a dedicated bias 
(bj

i) and is connected with the neurons of the (i−1)-th layer 
(except the input layer) through the weights (wjk

i). k denotes 
the neuron of (i−1)-th layer. The total number of neurons in 
layer i is nj and the transfer function for layer i and neuron 
j is fj

i. In each layer, the value of the neuron aj
i is calculated 

with Eq. (1):
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As a large amount of data was not managed, the Lev-
enberg-Marquardt back propagation training algorithm  
[31] was used because it got closer to an optimal solution 
and the memory space required by this algorithm was not 
a problem in this case. Fig. 3 shows a typical ANN archi-
tecture, the number of layers is similar to the ANN used in 
this study.

In this work, five inputs and one hidden layer with four 
neurons using a hyperbolic tangent and linear as trans-
fer functions (Fig. 3). The correlations of the ANN were 
expressed as follows:
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where CO&M is the specific O&M cost (€/m3), p1, p2, p3, p4 and 
p5 are the scaled-up inputs, production capacity (m3/d), 
water flux recovery (%), SEC of the RO system (kWh/m3), 
power and consumption tariffs (€/kWh). The ANN was 
trained, validated, tested and simulated using the MAT-
LAB® Neural Network toolbox.
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2.4. Data processing 

The input data for the ANN were the production capac-
ity (m3/d), water flux recovery (%), energy consumption 
of the RO system (kWh/m3) and the price of the electrical 
tariff of each year (2005–2012) in terms of power and con-
sumption (Table 3). The total input data were divided into 
three data sets: training (70%), validation (15%) and testing 
(15%). The testing values were used to fit the ANN using 
mean square error (MSE). The validation data were used to 
measure the ANN generalization and to halt training when 
generalization stop improving. The test data did not have 
any effect on training process, it provided other measure 
of the ANN performance during and after the training pro-
cess. The target was the O&M cost, being the sum of the 
items included in Table 2 and cost due to the SEC.

3. Results and discussion

In this case 99 iterations were needed to fit the param-
eters of the ANN. Fig. 4 shows the graphical performance 
assessment having the best validation in iteration 93. The 
calculated weights and bias are shown in Table 4. 

Table 2
Costs (c€/m3)and energy consumption (kWh/m3) of the SWRO desalination plants

 Plants Chemicals Cartridge filters Membranes Staff Maintenance Energy 
consumption

Plant 1 3.19 0.25 6.72 137.83 5.20 6.41
Plant 2 3.18 0.26 6.77 137.83 5.20 6.02
Plant 3 3.15 0.24 6.60 68.92 4.50 4.59
Plant 4 2.90 0.22 6.44 16.54 3.70 5.06
Plant 5 3.10 0.23 6.27 13.78 3.50 4.57
Plant 6 3.09 0.23 5.83 10.34 3.10 4.87
Plant 7 2.90 0.23 5.72 10.34 3.10 5.02
Plant 8 3.03 0.23 6.22 10.34 3.30 6.00
Plant 9 3.12 0.23 5.66 8.61 2.90 3.32
Plant 10 3.01 0.23 5.83 8.27 2.90 5.86
Plant 11 2.80 0.22 4.94 5.91 2.80 5.65
Plant 12 2.70 0.21 4.88 3.18 2.70 4.99

Table 3
Electrical energy tariff (€/kWh) 

Year Electrical energy tariff

Consumption Power

2005 0.0693 0.013
2006 0.073 0.024
2007 0.082 0.033
2008 0.086 0.044
2009 0.089 0.054
2010 0.096 0.064
2011 0.103 0.074
2012 0.11 0.084

3%< 1%
5%

3%

3%

86%

Chemicals

Cartridge filters
Membranes
Staff
Maintenance

Energy consumption

Fig. 1. Distribution of the O&M specific cost.

 

Inputs Neural 
Network Comparation

Targets

Outputs

Fit weights
 

Fig. 2. Building process of ANNs.
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The results were reasonable, because the final mean 
square error is relatively small (~ 5·10–7), the test set and val-
idation set errors have similar characteristics, and it appears 
that significant over-fitting has not occurred. The statistical 
regression between the real O&M cost and the estimated by 
the ANN is shown in Fig. 5. The regression figures are used 
to study the influence of the number of layers, neurons and 
transfer function on the ANN performance. A perfect archi-

tecture would result in a regression value (R) of 1.0, which 
is this case.

The ROSA (Dow®) software was used to simulate the 
plant 7 operating in a range of water flux recoveries (42–
45%), the SEC, which is the most relevant in O&M costs, 
was between 3.98–3.92 kWh/m3. Fig. 6 shows the O&M cost 
trend with the increase of the recovery and increasing the 
production.

99 Iterations
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M
ea

n 
Sq

ua
re

d 
Er

ro
r 

 (M
SE

)

10 -6

10 -4

10 -2

10 0

Train
Validation
Test
Best

Fig. 4. Graphical performance of the ANN in the fitting process.

Fig. 3. ANNs architecture [15].

Table 4
Calculated parameters of the ANN

Weights Bias Transfer 
function

w1
11 =–1.0887 w1

12=–1.8121 w1
13=–0.1187 w1

14=0.2889 w1
15=–0.5673 b1

1 =1.4945 tanh
w1

21 =1.7734 w1
22=1.5891 w1

23=–0.4437 w1
24=–0.2963 w1

25=0.7665 b1
2 =–0.0052 tanh

w1
31 =–4.6819 w1

32=0.2910 w1
33=0.0014 w1

34=–0.1576 w1
35=0.2657 b1

3 =–5.0726 tanh
w1

41 =–2.2939 w1
42=0.1356 w1

43=–0.0105 w1
44=0.1975 w1

45=–0.1945 b1
4 =–0.9128 tanh

w2
11 =–0.0357 b2

1 =1.1508 1
w2

21 =–0.0371
w2

31 =2.0179
w2

41 =0.0865
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4. Conclusions 

An ANN based model was made from the experimen-
tal data of twelve SWRO desalination plants located in 
Fuerteventura Island (Spain) corresponding to a period 
of five years of operation. The ANN based model was 
verified and tested obtaining decent results comparing 
with the experimental data. A simulation was carried out 
to study the trends of the O&M cost varying some input 
parameters. 

The estimation of the O&M cost is complex, the energy 
consumption is the most relevant item in these costs and 
quite variable in time. The rest of the O&M costs depended 
strongly on the production capacity due to the economy of 
scale. Due to the characteristics of the studied SWRO desali-
nation plants it could be said that the model is accurate 
within the ranges of the plants studied. It would require 
more experimental data in wider operating ranges in order 
to improve accuracy and applicability. 
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