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a b s t r a c t 
Since membrane fouling is one of major challenges in hollow fiber microfiltration (MF) membrane pro-
cesses, many studies have been done to analyze and control it in laboratory-scale systems. However, 
relatively few works have been accomplished for fundamental understanding of the fouling in pilot- 
or full-scale systems. Accordingly, this study intended to predict membrane fouling in a pilot-scale MF 
plant using a mathematical model and a statistical model based on artificial neural network (ANN). 
The effects of temperature, turbidity, total organic carbon, total operating time, and filtration time 
after chemical cleaning on the membrane fouling were considered. The major fouling mechanism was 
determined to be cake formation regardless of feed water quality changes. The cake formation model 
was found to be useful in explaining the membrane fouling in the short-term prediction of pilot-scale 
hollow fiber submerged membrane system. The results of application of the ANN model indicated 
high correlation coefficient between the measured and predicted output variables. Therefore, it 
appears that the ANN model is applicable in the long-term prediction of the membrane performance 
at different water qualities of the pilot-scale system.
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1. Introduction

As the regulations for the drinking water quality have 
been increasingly stringent, the use of microfiltration (MF) 
membrane processes has rapidly grown in water treat-
ment industry [1]. MF offers an effective method to remove 
particles and pathogenic microorganisms for drinking 
water production [2–4]. MF has advantages over other treat-
ment techniques including high membrane surface area to 
footprint ratio, high mechanical strength, and backwashing 
capability at low module and energy cost compared with 
alternatives such as plate and frame, spiral wound, or tubu-
lar membranes [5–7]. However, a major obstacle to further 
incorporation of MF membrane processes in water treat-
ment plants is flux reduction by contaminants or foulants in 

surface water [8]. Membrane fouling may result from bacte-
ria, algae, inorganic colloids, and organic material depending 
on the quality of feed water [9]. Moreover, the prediction of 
membrane fouling is even challenging especially when the 
foulants in feed water vary with time [10,11]. 

Understanding the filtration behavior of hollow fibers is 
important to improve operation and design of the hollow fiber 
system. Although many studies have been done, they were 
mostly carried out using laboratory-scale equipments, which 
may not match with fouling behaviors in pilot- or full-scale 
systems. Accordingly, this study focused on the investiga-
tion of the fouling characteristics of a pilot-scale submerged 
hollow fiber MF membrane system. Using both mathemat-
ical and statistical models, long-term operation data from 
the pilot plant were analyzed. The effects of temperature, 
turbidity, total organic carbon (TOC), total operating time, 
and filtration time after chemical cleaning on the membrane 
fouling were considered.
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2. Theory

2.1. Mathematical model

MF membranes are designed to remove particulates 
from water via the sieving mechanism. Therefore, particle 
fouling resulting from the deposition of colloids and sus-
pended solids on membranes remains a common phenom-
enon in MF systems. It is thus necessary to develop a model 
to predict and/or monitor membrane fouling for efficient 
operation of MF. In this study three membrane fouling 
models for constant flux system shown as Table 1 were 
applied to explain the transmembrane pressure (TMP) 
increase associated with particle deposition during mem-
brane filtration: the pore blockage, pore constriction, and 
cake formation models [12–14]. Pore blocking and constric-
tion are internal membrane fouling mechanisms, while 
cake formation occurs on the surface of membrane and 
is defined as external fouling [14]. The prediction of the 
fouling models was done based on the most widely used 
criteria, R2. Once the minimum for R2 was obtained, the R2 
values for three models were compared to determine the 
major fouling mechanism for the given pilot plant operat-
ing data.

2.2. Artificial neural network model 

Although the mathematical models can be used to ana-
lyze fouling characteristics in hollow fiber membrane pro-
cess, their application is limited to short-term operating data 
(order of hours and days). During long-term operation of MF 
systems, the feed water qualities such as turbidity, TOC and 
temperature, and membrane conditions change along oper-
ating time, which make it impossible to apply the mathemat-
ical model. Accordingly, it was necessary to use the artificial 
neural network (ANN) model to deal with the long-term 
pilot-scale operating data. 

ANN model is an information processing system that 
is inspired by the way such as biological nervous systems, 
e.g., brain. The objective of a neural network is to com-
pute output values from input values by some internal 
calculations [14]. In this study, ANN model was used to 

predict the membrane filtration performance with a multi-
layer perceptron (MLP) network that had a backpropaga-
tion training algorithm. The MLP consists of three or more 
layers of neurons called node: one input layer, one output 
layer, and one or more hidden layers. Each layer is fully 
connected to the next one. Fig. 1 shows a single node of 
a neural network. Inputs are represented by x1, x2, and xi, 
and the output by yj. There may be many input signals to 
a node. The node manipulates the inputs to give a single 
output signal. The strength of each connection, referred to 
its connection weight, may be adaptive coefficients within 
the network that determine the intensity of the input sig-
nal. Input data are presented to the network through the 
input layer, the values of which are denoted by xi. Every 
input is multiplied by its corresponding weight, and the 
node uses summation of these weighted inputs (Wij × x1) to 
estimate an output signal using a transfer function. These 
weighted inputs are then summed and added to a thresh-
old value (θj) to produce the node input (Ij) as shown in the 
equation below:
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The node input (Ij) is then passed through an activation 
function, f(Ij), to produce the node output, yj. This node out-
put is then used to compute the inputs for nodes in the fol-
lowing layer, until the final output is calculated [15]. Neural 
network predictions were quantitatively evaluated using the 
mean squared error (MSE): 

MSE =
−∑( )P O
n
i j
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where Pi is the ith predicted value of the normalized resis-
tance; Oi is the corresponding observed value; and n is the 
number of observation.

3. Materials and methods

3.1. Feed water and membranes 

The raw water collected from Han-river was used as 
the feed water after the coagulation pretreatment using 

Table 1 
Fouling models for MF 

Fouling type Equation Constant 
parameter

Pore blocking 
model 1

1

−








 =
−

P
Po

tα
α

Pore constriction 
model 1

1
2

−








 =
−

P
Po

tβ
β

Cake formation 
model

P Po t− = γ γ

Note: P – transmembrane pressure; P0 – initial transmembrane 
pressure; t – operating time; α – pore blocking model parameter; 
β – pore constriction model parameter; and γ – cake formation model 
parameter.

Fig. 1. Schematic diagram of a multilayer feed forward neural 
network.



71Y. Park et al. / Desalination and Water Treatment 77 (2017) 69–74

polyaluminum chloride. A hollow fiber membrane (Lotte 
Chemical, Korea) made of polyvinylidene difluoride was 
used for all filtration experiments. 

3.2. Pilot-scale membrane system

A pilot-scale submerged filtration system (1,000 m3/d) 
shown as Fig. 2 was operated to examine the MF efficiency 
under various operating conditions. The system was auto-
matically operated, and the data was collected using a 
computer. The results were analyzed in terms of the TMP. 
Operating conditions are as follows: 40-min filtration, and 
1-min backwash with permeate and pressurized air.

4. Results and discussion

4.1. Raw water quality

Fig. 3 shows the variation in the quality of the feed 
water that was used for membrane filtration. The turbid-
ity, TOC, and temperature in the raw water significantly 
changed with time. The turbidity, TOC, and temperature 
of the feed water were 1.5–81.5 NTU, 1.14–8.80 mg/L, 
and 2.0°C–29.0°C, respectively. In summer (from June to 
August), the feed water turbidity remained high due to 
frequent rains. The TOC was high in summer (from June 
to mid-August) and spring (from min-February to March). 
In addition to the feed water quality, the temperature also 
significantly affected the filtration efficiency. The average 
temperature of the water in winter was only 3.0°C, and in 
summer, 23.0°C. The low temperature in winter increased 
the viscosity by about 42% and thus reduced the pure water 
flux by 42%.

4.2. Model fit to the experimental data using the mathematical 
models

To investigate the fouling characteristics of the hollow 
fiber membrane in pilot-scale systems, the simple mathe-
matical models (pore blockage, pore constriction, and cake 
formation model) were applied to the experimental data. 
The pilot-scale submerged filtration system was operated 
for a year. Fig. 4 shows the variations in the TMP in whole 
operating period. The TMP significantly depended on the 
raw water quality. The TMP remained low under 20 kPa 

Fig. 2. Schematic diagram of the pilot plant.
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Fig. 3. Seasonal variations in the feed water quality: (a) turbidity, 
(b) TOC, and (c) temperature.
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from April to August although the TMP continuously 
increased due to membrane fouling because the turbidity 
and TOC of feed water remained low during this operat-
ing period. The TMP rapidly increased to a level about the 
August because of high turbidity and TOC. From October 
to February, the TMP dramatically increased because of 
the decreased water temperature. From mid-February to 
April, the TMP decreased in spite of high TOC because the 
feed water temperature greatly increased. Accordingly, 
the TMP was found to be sensitive to the seasonal varia-
tion in feed water quality. Therefore, it can be concluded 
that the TMP properly reflects the seasonal differences in 
the feed water quality. 

The TMP corrected at 20°C was applied for model fits 
to exclude effect of the changes in feed water tempera-
ture. The operating period was separated into six parts 
in accordance with clean in place. To find the dominant 
membrane-fouling mechanism, the R2 was analyzed, and 
the model evaluation criteria were selected. The results of 
model fits using different mathematical models are sum-
marized in Table 2. As shown in Table 2 and Fig. 5, the cake 
formation model showed the highest level of agreement 
among the three models in all cases. The model parame-
ter of cake formation model, γ, was calculated from 0.03 
to 0.33 kPa/d, and R2 was determined from 0.74 to 0.94. In 
the winter season (parts 4 and 5) the value of γ was the 
highest even though the effect of the changes in feed water 

temperature was excluded because the efficiency of physi-
cal and chemical cleaning decreased. In the summer season 
(part 2), the value of γ was also high because of high tur-
bidity and TOC due to the frequent rains. In the autumn 
season (part 3) the value of γ was the lowest because of 
low turbidity and TOC. In the spring season (part 1) the 
value of γ was similar to that of part 5 because of high TOC. 
Accordingly, the fouling rate was found to be sensitive to 
the seasonal variation in feed water quality. 

Table 2
Comparison of a model parameter for each filtration model

Part Pore blocking model Pore constriction model Cake formation model
Α (1/d) R2 β (1/d) R2 γ (kPa/d) R2

1 (April to July) 0.68 0.22 0.56 0.64 0.17 0.93
2 (August to min-September) 1.75 0.82 0.99 0.89 0.28 0.96
3 (min-September to mid-November 0.22 0.81 0.11 0.82 0.03 0.85
4 (mid-November to mid-January) 1.57 0.52 0.88 0.63 0.33 0.86
5 (mid-January to February) 0.94 0.73 0.51 0.75 0.18 0.81
6 (March to April) 0.29 0.72 0.15 0.71 0.05 0.74
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Fig. 4. Changes in the TMP in the pilot-scale MF system.
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Fig. 5. Comparison of the model fit of cake formation model 
with the experimental data.

Table 3 
The properties of the ANN model

Network inputs Total operating time, filtration 
time after CIP, turbidity, TOC, 
temperature

Network outputs TMP
Network type Feed forward back propagation
Training function Levenberg–Marquardt
Performance function Mean squared error
Number of hidden layers 1
Number of neurons in 
hidden layer

10
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Fig. 6. Comparison of the model fit of ANN model with the 
experimental data. Fig. 7. MSE as a function of the number of iterations. 

Fig. 8. ANN model regression of training, test, validation, and all data.
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4.3. Model fit to the experimental data using the ANN model

ANN model was developed to simulate the performance 
of the pilot-scale submerged membrane system. In this study, 
the ANN model was created in MATLAB software that offers 
a platform for the simulation application. MATLAB toolbox 
opens the network/data manager window, which allows the 
user to import, create, use, and export neural networks and 
data. The properties of the ANN model are presented in 
Table 3. 

The operating data and feed water qualities were col-
lected over 1-year period. This period was satisfactory as 
it covers all probable seasonal variations in the studied 
variables. The application randomly divides input vectors 
and target vectors into three sets as follows: 70% are used 
for training; 15% are used to validate that the network is 
generalizing and to stop training before over-fitting; and 
the last 15% are used as a completely independent test of 
network generalization. Fig. 6 shows the experimental and 
predicted values of the TMP as a function of the operating 
time. The predicted values from the model matched the 
experimental values very well. The performances of the 
ANN model were evaluated using the correlation coeffi-
cient (R) and MSE. 

Fig. 7 shows the MSE and the number of iterations. 
A sharp drop in the MSE in the first a few iterations 
(fast training) is shown. The training cycles stopped 
after 33 iterations, with a smallest MSE value of 0.226 at 
27 iterations.

The ANN models showed high strength and a lin-
ear relationship direction between the predicted data and 
experimental data. It is observed that the output tracks the 
targets very well for training (R value = 0.99973), validation 
(R value = 0.9982), and testing (R value = 0.9947) as shown 
in Fig. 7. These values can be equivalent to a total response 
of R value = 0.9972. This suggests that the ANN model has 
the potential for long-term (order of month) prediction of the 
membrane performance in pilot-scale systems in the presence 
of seasonal variations of raw water quality. 

5. Conclusion

In this study, the fouling characteristics of pilot-scale hol-
low fiber submerged MF system were investigated using the 
simple mathematical fouling models and the ANN model. 
The following conclusions were drawn:

•	 The seasonal variations in the feed water quality signifi-
cantly affected the fouling characteristics of Korean river 
water.

•	 Among three fouling models, the cake formation model 
was found to be the most suitable to explain the mem-
brane fouling in the short-term (order of hours and days) 
prediction of pilot-scale MF system.

•	 The ANN model was successfully applied to interpret 
the long-term operation data of the MF system. The high 

correlation coefficient (R value) between the measured 
and predicted output variables was up to 0.99. This result 
suggests that the ANN model is capable of predicting 
long-term behaviors of pilot MF systems even under 
seasonal variations of raw water qualities.
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