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a b s t r a c t
Successful data analysis is an essential component of any environmental monitoring programs. This 
study introduces an effective data analysis method to identify water pollution hotspots as well as to 
drop redundant monitoring parameters and samples using a self-organizing map (SOM), which has a 
strong specialty in pattern extraction from complex monitoring data. A full data set consisted of nine 
parameters that were obtained on a monthly basis from 83 sites in various tributary streams along the 
Yeongsan River, Korea, from May 2011 to December 2015. The given data set was further partitioned 
into a number of subsets to examine their effect on variable importance and temporal pattern analysis. 
We found that water pollution hotspots were more clearly addressed in load-based SOM analysis 
than in concentration-based SOM analysis due to strong correlation between variables resulted from 
variability reduction by combining two variables into a single one for load analysis. In addition, the 
variables chemical oxygen demand and electrical conductivity and the parameters discharge and total 
nitrogen were found to participate most and least actively in describing spatial and temporal variation 
of the observed variables, respectively. About 35% of the sampling locations showed high similarity 
among the monthly data extending from November in the previous year to February in the follow-
ing year. We believe that the proposed methodology can be useful in revising the upcoming water 
monitoring study by clarifying several issues related to monitoring parameters and frequency in the 
existing program.
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1. Introduction

Surface water quality and quantity contribute to enrich-
ing public health and ecosystem integrity [1]. The current 
total maximum daily loads (TMDL) program, which has 
been adopted to address and restore impaired water bodies 
worldwide, required the authorizing agency and its part-
ners to monitor water quality and quantity conditions on 
predetermined spatial and temporal scales [1,2]. Watershed 

management plan should be revisited and amended if the 
existing source loads estimated directly from the monitoring 
data (or indirectly from modeling with alternative future 
scenarios) were expected to exceed water quality standards 
allowed for individual pollutants [1]. Using those data, 
statistical analysis assisted in redesigning the present water 
monitoring program by assessing its efficiency in terms of 
monitoring parameters and frequency as well as by detecting 
water pollution hotspots, although its role was not often 
specified explicitly (like predictive models) under TMDL or 
watershed management plan [3–5].
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A self-organizing map (SOM), one of the non-linear 
data analysis tools, is superior to other conventional statisti-
cal methods in terms of tolerance to outliers and noisy data 
as well as data abstraction from large data sets [5–12]. For 
example, the previous study of Park et al. [13] showed that a 
large number of species abundance data collected from 836 
sites were effectively reduced to medium to small amounts 
of data (for instance, from 941 through 353 to potentially 200) 
without losing much information of the original data using 
a particular index computed from unique properties of the 
SOM output map. Another study of Ki et al. [5] also revealed 
that SOM successfully captured heterogeneous water qual-
ity (with respect to trace metals) and quantity signals, which 
varied considerably during storm events, in addition to 
determining the appropriate sample size required for pollut-
ant load estimation in each event. Other study of Tudesque 
et al. [14] demonstrated that SOM was sufficiently robust to 
address monitoring locations that experienced significant 
changes in water physicochemistry (e.g., cations and anions) 
during a long-term monitoring period reaching 3 decades. 
All these representative examples confirmed that SOM anal-
ysis could be applied to various types of environmental mon-
itoring data; even in cases the relationship between them was 
highly non-linear. A readily understandable visualization for 
correlation between variables is also a plus. Various applica-
tion examples of SOM, including its fundamental theory, can 
be found elsewhere [6–8,15].

By applying the versatile tool SOM to spatially and tem-
porally sparse data sets, the main objective of this study was 
to provide an in-depth diagnosis of water quality and quan-
tity conditions in a tributary monitoring network. More spe-
cifically, we used SOM in this study: (1) to compare water 
pollution hotspots between concentration- and load-based 
analyses, (2) to identify informative and redundant param-
eters in describing spatial and temporal behaviors of water 
quality and quantity, and (3) to assess temporal data repeat-
ability for individual monitoring locations. It is our hope that 
the proposed methodology can be used to refine the existing 
water monitoring programs in terms of monitoring param-
eters and frequency, along with various simulation models, 
which apply for regulatory purposes.

2. Materials and methods

2.1. Tributary monitoring network and observed parameters

Fig. 1 shows 83 sampling locations that are selected to 
assess water quality and quantity conditions at the tributary 
monitoring network in the Yeongsan River, Korea. In fact, the 
parent river receives water from a total of 170 small streams 
classified into four types, from primary through secondary to 
later order (i.e., tertiary and quaternary) tributaries. Among 
them, only 74 candidate streams were included in our tribu-
tary monitoring network based on the initial screening pro-
cess. Specifically, the screening criteria excluded tributaries 
that not only had minimal influence on the main channel 
(with respect to water quality) but also provided intermit-
tent (or discontinuous) or slower-moving (or stagnant) water 
discharges. Along those candidate streams, we finalized the 
design of the tributary monitoring network for 83 sites. Note 
that Jiseokcheon (53.00 km in terms of main channel length), 

Hwangnyonggang (58.60 km), Gomakwoncheon (34.30 km), 
Hampyeongcheon (28.80 km), and Gwangjucheon (22.80 km) 
are the top five large tributaries that flow directly into the 
mainstream of the Yeongsan River (129.50 km). Diffuse pol-
lution was found to be largely responsible for water quality 
degradation in the Yeongsan River, because the basin was 
mainly dominated by a combination of forestland (46.4%), 
agricultural land (24.6%), and rangeland (14.8%). 

In those locations, monthly field studies to measure 
water quality and quantity were conducted from May 2011 
to December 2015. The water quality measurements were 
made by two different methods: using a real-time instrument 
YSI-650 MDS (Xylem Inc., Rye Brook, New York, USA) for 
water temperature, pH, dissolved oxygen (DO), and electri-
cal conductivity (EC) as well as using standard test methods 
for water pollution (released by the Ministry of Environment 
in Korea) for biochemical oxygen demand (BOD), chemical 
oxygen demand (COD), total organic carbon (TOC), total 
nitrogen (TN), total phosphorus (TP), chlorophyll-a, and 
suspended solids (SS), once sent to the laboratory under 
4°C. In general, discharge was estimated from cross-sec-
tional area (i.e., a product of channel depth and width) and 
velocity (recorded manually at individual subsections). 
However, when (continued) access to field sites was tech-
nically impossible, an indirect estimation method such as 
water balance approach was adopted for discharge estima-
tion. Table 1 displays summary statistics for nine parame-
ters collected from the tributary monitoring network. Note 
that we only provide nine variables (out of them) as inputs 
to SOM analysis for illustrative purposes. Another reason 
is that the variables excluded either involve many missing 
data (for chlorophyll-a) or do not contain significant infor-
mation to characterize water quality and quantify variation 
along the tributaries (for water temperature and pH). In the 
table, discharge, ranked first in terms of missing data, was 
found to exhibit the highest variability across the tributaries 
among the input variables (compare coefficient of variation 

Fig. 1. 83 sampling locations at various tributaries in the Yeongsan 
River, Korea.
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values). More detailed information on the (drainage) basin 
characteristics such as soils, topography, and climate as well 
as assessment of water quality and quantity is documented 
well in our recent works [2,5,10,16,17].

2.2. Non-linear pattern analysis

SOM is a data analysis tool that efficiently retrieves con-
cise (spatial and temporal) profiles from the complex data 
set (of high dimensionality) in a non-linear manner. SOM 
has two distinct features, vector quantification property that 
makes the codebook vectors (i.e., representative samples) 
approach to the input probability density as well as topology 
preserving mapping that still retains the relative distances 
between the raw data points in a new output space (of low 
dimensionality). Unlike other conventional statistical analy-
ses, the tool is found to be free from outliers and noisy data 
and also capable of restoring, in part, the lost data. Two main 
algorithms involved in SOM are initialization and training, 
which assign initial values to the codebook vectors and adjust 
the codebook vectors with their neighbors toward the input 
vectors, respectively. After this step, the codebook vectors 
updated during iterative training are eventually arranged 
and visualized in two-dimensional neurons (in our case), 
where similar data are located closely and dissimilar data are 
far apart from each other.

When the full data set containing nine variables was 
provided as inputs to SOM, we did not specify the size 
(i.e., the number of neurons) of the output map (namely 
concentration-based analysis). However, we adjusted the map 
size for the reduced data set consisting of only six variables 
(by multiplying each pollutant concentration, except for two 
unnecessary variables, by discharge for load-based analy-
sis) to that of the full data set to provide a consistent view 

between two output maps. Nine separate data sets, which 
excluded a particular variable sequentially one by one from 
the full data set, were additionally prepared to assess the 
importance of individual variables in the tributary monitor-
ing study. Finally, SOM received a total of eighty-three data 
sets to review temporal data patterns per sampling loca-
tion. These data sets were made of nine variables, but only 
included the monitoring data for each sampling location. 
While the map size of nine additional data sets was equal to 
the original size of the full data set, that of eighty-three data 
sets was set to twelve based on the assumption that the data 
were significantly modulated by month rather than by year 
in the absence of any anthropogenic activities. Note that in 
each SOM run, we use the default options of initialization 
(through linear initialization mode), and training (through 
batch training mode) to avoid any influence of (learning) 
algorithms on the codebook vectors produced. SOM toolbox, 
which can be embedded in MATLAB 5 or higher, is available 
for download at http://www.cis.hut.fi/somtoolbox/. 

3. Results

3.1. Concentration- and load-based water pollution hotspots

Fig. 2 presents the difference of water pollution hotspots 
between concentration- and load-based SOM analyses using 

Table 1 
Summary statistics for monthly water quality and quantity data 
obtained from 83 sampling locations at various tributaries in 
the Yeongsan River, Korea, from May 2011 to December 2015 
(n = 4,648)

Parameters Mean CVa Missing 
data (%)

Dissolved oxygen (DO), 
mg/L

10.10 0.29 0.95

Electrical conductivity (EC) 287.39 0.78 0.95
Biochemical oxygen demand 
(BOD), mg/L

3.07 0.99 0.71

Chemical oxygen demand 
(COD), mg/L

6.57 0.72 0.75

Total organic carbon (TOC), 
mg/L

4.46 0.68 0.77

Total nitrogen (TN), mg/L 3.41 0.92 0.77

Total phosphorus (TP), mg/L 0.15 1.33 0.75

Suspended solids (SS), mg/L 19.58 1.79 0.77

Discharge, cm3/s 0.81 2.50 4.58

aCV = the coefficient of variation (a ratio of the standard deviation 
to the mean).

Fig. 2. (a) Concentration- and load-based SOM analyses and 
(b) major areas of concern (i.e., a collection of neurons) in the SOM 
output map. Note that in Fig. 2(b), individual numbers indicate 
the sequence of neurons arranged in the SOM output map.
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the monthly data sets obtained from 83 sampling locations at 
various tributaries in the Yeongsan River of Korea for almost 
5 years, along with the correlation among measured vari-
ables. In Fig. 2(a), color bars indicate the range of individual 
variables, and component planes enclosed by the solid lines 
represent the results of concentration-based analysis only. 
Note that both concentration- and load-based analyses do 
not include (spatial and temporal) variation of all variables, 
provided as inputs to SOM, for brevity.

It was found from the figure that while concentration-based 
analysis showed three distinct data distributions, two clear 
patterns were mainly observed in load-based analysis. For 
example, in concentration-based analysis, TOC concentra-
tions were only high at a series of neurons around Region A 
(see the bottom-middle of the SOM output map in Fig. 2(b)). 
In contrast, high discharge was observed mostly in six 
neurons around Region B. TN component plane showed 
moderate to high levels of the target variable in two differ-
ent areas, Regions A and C, respectively. In fact, with respect 
to concentration-based analysis, TOC showed a strong pos-
itive correlation with EC, COD, TP, and SS, whereas no 
relationship was observed between either DO or BOD and 
the remaining parameters such as TN and discharge (data 
not shown). For load-based analysis, BOD and TOC loads 
were high in Regions D and E, respectively. Also, data dis-
tribution (i.e., contaminant loads) in TOC component plane 
was almost or exactly identical to those of other compo-
nent planes, except for BOD (data not shown). These results 
revealed that (1) little or no relationship existed among either 
concentration- or load-based variables presented and (2) key 
areas for concern were different among variables of interest 
as well as between concentration- and load-based analyses. 
These implied that concentration- and load-based analyses 
might address different water pollution hotspots depending 
on whether discharge was included as a separate variable or 
not in the data sets. Note that two variables DO and EC are 
removed from load-based analysis due to the absence of con-
taminant mass load units.

Table 2 shows a detailed list of sampling locations 
assigned to individual areas of concern (in the SOM 
output map), which were obtained from concentration- 
and load-based analyses (see Fig. 2(b)). From the table, it 
was shown that the total number of data assigned from 

concentration-based analysis was considerably larger than 
those of load-based analysis. Also, water pollution hotspots 
(i.e., sampling locations) identified were significantly differ-
ent between concentration- and load-based analyses, as dis-
cussed above. However, load-based analysis still addressed 
and shared six sampling locations S-1, S-39, S-59, S-74, S-76, 
and S-83 in Regions D and E as potential hotspot locations, 
which were also included and spread in concentration-based 
analysis. Therefore, load-based SOM analysis appeared to be 
superior to concentration-based SOM analysis in addressing 
apparent water pollution hotspots from complex spatial and 
temporal data sets of water quality and quantity.

3.2. Important variables for tributary water monitoring program

The effects of individual variables on SOM analysis was 
assessed by eliminating each variable at a time from the full 
data set, which included nine variables for the entire sampling 
period (see Table 3). In the table, the percentage change of the 
remaining variables due to the absence of one particular vari-
able was estimated by dividing the difference of the median 
values between modified and original codebook vectors by 
the median value of the original ones and then multiplying 
this quantity by 100. Note that in this calculation, we use the 
median rather than the mean, which is more influenced by 
skewed data. The codebook vectors assigned to individual 
neurons in SOM denote denormalized values transformed 
back into the original range of variables (for visualization of 
component planes, see Fig. 2(a)). The table should be read 
as the following example. When the variable DO was elimi-
nated from the full data set, discharge and TOC, ranked first 
and second in terms of absolute values in descending order, 
recorded a decrease of 10.35% and an increase of 9.06% from 
the original codebook vectors, respectively (see the first row). 
This implied that if we did not measure DO parameter fully 
in the tributary water monitoring program, this led to signif-
icant bias in (produced) data for discharge and TOC (com-
ponent planes in SOM). The same applies to the remaining 
variables, i.e., consecutive rows of the table. Note that in the 
table, the values on the diagonal line are left empty because 
the modified codebook vectors cannot be generated and 
compared with the original ones when a particular variable 
is excluded. 

Table 2 
A detailed list of sampling locations identified by major areas of concern using concentration-based SOM analysis (regions A, B, and C) 
and load-based SOM analysis (regions D and E; see Fig. 2(b))

Regions Sampling locationsa Total number 
of data

A S-8b, S-14, S-15, S-27, S-36, S-37, S-38, S-45, S-47, and S-67 89
B S-1, S-3, S-5, S-7, S-16, S-17, S-19, S-20, S-26, S-30, S-35, S-39, S-59, S-69, S-71, S-74, S-75, S-76, S-77, 

S-79, and S-83
79

C S-18, S-20, S-23, S-24, S-25, S-26, S-27, S-28, S-34, S-36, S-38, S-39, S-40, S-41, S-45, S-49, S-50, S-58, 
S-62, S-63, S-64, S-76, and S-82

71

D S-1, S-5, S-30, S-39, S-59, S-69, S-70, S-74, S-76, S-78, and S-83 16
E S-1, S-7, S-16, S-20, S-39, S-59, S-74, S-76, and S-83 19

aRefer to Fig. 1 for individual sampling locations.
bNote that for simplicity, sampling locations are presented only after excluding temporal information.
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Table 4 shows a list of variables arranged in order of 
importance by taking the median of their absolute values of 
the percentage change (for the remaining variables) in the 
absence of a particular variable (see each row in Table 3). 
The table confirmed that the variables COD and EC were 
most useful to elucidate spatial and temporal data patterns 
observed, whereas discharge and TN were identified as 
the least influential variables. These results indicated that 
(1) those important variables, at least, should be monitored 
ahead of the others in the tributary water monitoring cam-
paign and (2) redundant (or unimportant) parameters could 
be dropped for the following program in this way, if needed.

3.3. Sampling frequency for different tributary 
monitoring stations

We also observed temporal data patterns of individual 
sampling locations by allowing the monthly data in each site 
to one of twelve neurons in the SOM output map (see Fig. 3). 
In the figure, color bars indicate the number of data assigned 
to individual neurons in the output map, and only half of 

Table 3 
Percentage change of the median values for representative samples (i.e., codebook vectors) in the SOM output map when individual 
variables are removed rotationally one at a time (%)a

DO EC BOD COD TOC TN TP SS Discharge

DOb −1.68 4.32 3.59 9.06 −3.43 2.30 −1.27 −10.35
EC −0.35 6.26 2.60 3.32 4.12 6.95 8.52 5.32
BOD −0.17 1.55 −2.20 0.14 −2.70 0.47 −11.16 −19.44
COD −0.45 −0.74 9.86 5.77 5.60 5.73 10.59 −6.59
TOC −0.11 −1.06 2.30 1.57 2.96 3.28 4.39 −1.29
TN −0.26 −1.28 6.16 −1.33 −0.10 −0.83 −0.04 3.24
TP −0.09 1.73 2.65 0.85 1.98 3.46 4.99 −1.64
SS 0.04 −1.41 3.86 −1.02 1.32 −0.44 2.74 −1.61
Discharge 0.13 0.19 7.69 −0.96 1.45 1.06 2.96 2.99

aSee Table 1 for full names of individual parameters.
bThe percentage change estimated was arranged in a row direction.

Table 4 
Rank order of significant variables for generating representative 
samples (i.e., codebook vectors) in the SOM output map

Rank Parameters Median valuesa

1 COD 5.75
2 EC 4.72

3 DO 3.51

4 TOC 1.94

5 BOD 1.88

6 TP 1.86

7 SS 1.37

8 Discharge 1.26

9 TN 1.06

aThe median values were estimated by the absolute changes of 
individual variables arranged in a row (see Table 3).

Fig. 3. Data distribution (pattern) assigned to individual SOM neurons for sampling locations from S-1 to 42. Note that 
concentration-based SOM analysis is conducted separately for each sampling location to evaluate temporal data repeatability per site.
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the entire sampling locations from S-1 to S-42 are shown as 
an example of temporal pattern analysis. Note that twelve 
neurons are specifically selected for this analysis because 
the monthly data are assumed to vary meaningfully from 
month to month as the general (or intended) purpose of the 
tributary water monitoring program, regardless of monitor-
ing years. Thus, if the monitoring data are modulated fairly 
well on monthly base (rather than on yearly base) without 
additional pollutant loads, they are evenly distributed in 
the twelve neurons. Otherwise, some neurons receive more 
data than expected. For example, a set of four to five monthly 
data should be assigned to individual neurons (in the normal 
case) when considering the entire monitoring period (from 
May 2011 to December 2015). As displayed in the figure, 
data distribution patterns across the neurons were highly 
variable depending on sampling locations. For example, 
extremely skewed distributions (i.e., a large number of data 

was assigned to a particular neuron) were observed for the 
sampling locations S-5 and S-13, whereas the monthly data 
were evenly spread in the twelve neurons for S-4, S-23, S-32, 
S-33, S-39, and S-40. Also, the skewness was moderate for the 
remaining sampling locations. 

Table 5 provides a complete list of sampling locations 
that contain more than twelve data in a particular neuron in 
this way. A total of 29 sampling stations were found to have 
at least twelve monthly data. Among them, S-5 and S-13 were 
ranked first and second in terms of a number of data, respec-
tively. In addition, two neurons in S-48 were in excess of the 
twelve monthly data. These results revealed that data repeat-
ability in three sampling locations was high (in other words, 
temporal variability of the monthly data was low), indicating 
that sampling frequency for these locations could be reduced 
preferentially to minimize the cost of monitoring ahead of 
other sites. Specifically, the monthly data between November 
in the previous year and February in the following year were 
very similar to each other for most of sampling locations, 
except for some sites.

4. Conclusion

The present study describes the methodology to elucidate 
complex spatial and temporal variation of the monthly data 
set obtained from the tributary water monitoring study using 
the non-linear data analysis tool, SOM. The full data set mea-
sured for almost 5 years included nine parameters, from which 
separate data sets were provided to SOM to effectively screen 
water pollution hotspots, important variables, and temporal 
patterns. From this study, we obtained the following results:

•	 Water pollution hotspots addressed by concentration- 
based analysis was much larger than those from 
load-based analysis. In contrast, the correlation between 
measured variables was stronger in load-based analysis 
than concentration-based analysis. Out of the two, load-
based analysis showed superior performance in appar-
ently detecting potential water pollution hotspots.

•	 Removing a particular variable (rotationally) from the 
full data set had a significant influence on the codebook 
vectors of the remaining variables, which represented 
their spatial and temporal variation over the tributaries. 
The SOM analysis was most sensitive to elimination of 
COD and EC; and least sensitive to variables such as dis-
charge and TN.

•	 A total of 29 sampling locations among all 83 sites 
investigated exhibited repeatable data patterns on the 
monthly time scale. We also observed similar patterns of 
the monthly data from November in the previous year to 
February in the following year for most of these sampling 
locations. Specifically, three sites S-5, S-13, and S-48 were 
found to have low temporal variability during the entire 
sampling period. 
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Table 5 
Sampling locations of concern that show high temporal data 
repeatability in (concentration-based) SOM analysis (see Fig. 3)

Sampling 
locationsa

Monthly data in specific neuron(s)b No. of data

S-1 1, 2, 11, and 12 12
S-2 1, 2, 3, 11, and 12 13
S-5 1, 2, 3, 4, 10, 11, and 12 16
S-7 1, 2, 3, 4, 11, and 12 14
S-8 1, 3, 4, 5, 6, 8, 9, and 10 12
S-9 1, 2, 3, 5, 11, and 12 13
S-10 1, 2, 3, 10, 11, and 12 13
S-12 1, 2, 3, 4, 11, and 12 12
S-13 1, 2, 3, 11, and 12 15
S-24 1, 2, 3, 11, and 12 12
S-26 1, 2, 4, 6, 10, 11, and 12 14
S-27 1, 2, 3, and 12 14
S-29 1, 2, 3, 10, and 12 14
S-30 1, 2, 3, 11, and 12 14
S-37 1, 2, 3, 11, and 12 13
S-48 1, 2, 3, 4, 11, and 12; and 3, 5, 7, 8, 

9, and 10
13 and 12

S-51 4, 5, 6, 7, 8, and 9 14
S-52 1, 2, 3, 4, and 12 12
S-58 1, 2, 3, 4, 11, and 12 14
S-60 1, 2, 4, 11, and 12 12
S-61 1, 2, 4, 5, 11, and 12 13
S-63 1, 2, 3, 4, 10, 11, and 12 14
S-65 1, 2, 11, and 12 12
S-68 1, 2, 5, 6, 7, 8, 9, 10, and 11 14
S-69 1, 2, 3, 11, and 12 13
S-70 1, 2, 3, 4, and 12 12
S-71 1, 2, 3, and 12 14
S-79 1, 2, 4, 11, and 12 12
S-81 1, 2, 3, 4, and 12 12

aRefer to Fig. 1 for individual sampling locations.
bNote that monthly data are presented regardless of monitoring year.
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