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ab s t r ac t
In this paper, a nonlinear autoregressive with exogenous input (NARX) model is developed to predict 
the fouling in industrial-scale dead-end ultrafiltration (UF) system. For better representation of the 
operating regions, experimental data for training and testing were generated using design of experi-
ments, namely, the central composite design. The NARX model, which is basically a recurrent neural 
networks, was fed with four inputs: the forward pressure, backwash pressure, forward time and back-
wash time to predict the forward flow rate of a single 8 inch industrial UF membrane. The dynamic 
network learned the input–output mappings with great proficiency and showed decent accuracy in 
predicting forward flow rates for operating conditions different than that used during the training 
phase. Using different operating condition scenarios, the correlation coefficients (r) of the parity plots 
were ranged from 98.59% to 99.47%. In addition, using an informative and large data set allows smaller 
NARX network architecture to be built. The proposed NARX model provides an easy, quick-to-build 
and efficient time-dependent framework for fouling prediction that can be used for advanced process 
control algorithms and process optimization, in particular for large-scale industrial UF systems.
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1. Introduction 

Worldwide demand of clean water is rising especially in 
regions with water scarcity due to the rapid growth in pop-
ulation and economy as well as due to the ongoing deterio-
ration of freshwater resources. Together with the reduction 
in cost and energy consumption, membrane-based technol-
ogy becomes a preferred choice in most of the recent water 
production and waste treatment processes [1]. Ultrafiltration 
(UF) becomes a preferred option for chemical recovery, 
pre-desalination, wastewater reclamation, juice concentra-
tion, dairy making, medical usage and in treating oily waste-
water [1,2]. Concentration polarization and fouling are major 
problems shared by all membrane separation processes and 
limits its performance [3]. However, for UF system, concen-
tration polarization plays a dominant role during the fil-
tration of low molecular weight solutes or macromolecules 
[4]. Flux losses due to concentration polarization can be 
recovered using backwashing. However, more serious type of 

fouling is the one which occurs as a result of the deposition of 
the foulant on the porous surface or inside the porous struc-
ture of the membrane leading to a decrease in forward flow 
rate. Researchers were able to distinguish between reversible 
and irreversible fouling according to their responses to cer-
tain cleaning methods [5]. 

There are different forms of fouling in UF systems, e.g., 
biological fouling, scaling, colloidal, organic and inorganic 
fouling. Fouling can be developed through different mech-
anisms, namely, adsorption, pore blocking and cake/gel for-
mation [6]. Several parameters affect the rate and the extent of 
fouling in UF system, e.g., nature and concentration of solutes 
and solvents, membrane materials and its surface character-
istics, the pore size and its distribution, the hydrodynamics 
of the membrane modules, the cross-flow velocity (CFV), 
transmembrane pressure (TMP), pH, ionic environment and 
the cleaning protocols implemented [1,3,7]. It is important 
to predict the effect of the aforementioned parameters and 
their interactions on the productivity of the UF system under 
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different fouling conditions. Therefore, several Darcy’s-based 
relationships were found in the literature which has the form 
given by Eq. (1):
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where J is the volumetric flux, Δp is the TMP, Δπ difference in 
osmotic pressures, Rads is the resistance due to surface or pore 
adsorption, Rm is the empirically measured membrane resis-
tance, Rrev is the reversible resistance (not present after phys-
ical/chemical cleaning), Rirrev is the irreversible resistance and 
µ is the dynamic viscosity of the permeate. If the UF system 
is operated at constant TMP, then Eq. (1) shows that increas-
ing (Rads + Rrev + Rirrev) with time will lead to flux decline [6]. 
Fouling, unlike concentration polarization, is considered 
to be a function of time. Therefore, a dynamic modelling 
framework is more appropriate to predict the performance 
of UF system under fouling condition. Ho and Zydney [8] 
proposed a model to predict the forward flow rate through a 
fouled membrane at any given filtration time. The volumetric 
flow rate through the fouled membrane Q was given as:
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where Q0 is the initial volumetric flow rate through the clean 
membrane, α is the pore blockage parameter, ΔP is the TMP, 
Cb is the bulk colloidal concentration, µ is the solution viscos-
ity, Rm is the clean membrane resistance, Rp is the resistance of 
protein/colloidal deposit over a particular region of the mem-
brane, t is current time and tp is time at which a particular 
region was first covered or blocked by an aggregate. In spite 
of its theoretical basis, Eq. (2) requires the determination of 
several parameters which are usually difficult to be precisely 
and rapidly estimated, e.g., tp. Furthermore, only forward 
filtration stage is considered in Eq. (2) while backwashing 
was not addressed. The complexity and nonlinear nature of 
Eq. (2) and its counterparts available in literatures motivates 
the use of data-driven or empirical-based models for perfor-
mance predictions of membrane processes. 

Several investigations have considered the use of static 
neural network (NN) models for studying and controlling 
membrane separation processes. Using data collected from 
five desalination plants in the Gaza Strip, Aish et al. [9] devel-
oped multilayer perceptron and radial basis function neural 
networks for one week ahead forecasting. Total dissolved 
solids concentrations and permeate flow rate in the Gaza 
Strip desalination plants were predicted as outputs. Water 
temperature, pH, conductivity and pressure were used as 
inputs for both networks [9]. Recently, Cao et al. [10] devel-
oped a static feedforward NNs to study the performance of 
a vacuum membrane distillation. The statistically validated 
NN model showed that the effect of the vacuum pressure is 
the greatest on the permeate flux followed by the feed inlet 
temperature. Hamachi et al. [11] developed a recurrent NN 
to predict the permeate flux and deposit thickness of a cross-
flow microfiltration of a bentonite suspension. The inputs to 
their model were the TMP, CFV and concentration of the sus-
pension [11]. Although the wide range of static NNs appli-
cations in membrane separation processes, few studies have 

considered the application of recurrent NNs for performance 
prediction and control of large-scale UF systems. While 
feedforward NNs use supervised learning algorithms to 
update its weights, self-organizing map (SOM) is consid-
ered as an unsupervised learning network [12]. Ki et al. [13] 
used SOM to analyze a large data sets simulated using large 
number of hollow fibre direct contact membrane distillation. 
The SOM was found useful in grouping the simulation input 
parameters with respect to their thermal, geometrical and 
fluid dynamic influences on the mass and heat transfers 
[13]. Tayyebi and Alishiri [14] proposed a nonlinear inverse 
model control strategy based on NNs for a simulated Multi-
stage flash (MSF) desalination plant. In particular, three NNs 
were used to control the top brine temperature, level of last 
stage and brine salinity. Set-point tracking results indicated 
that NN-based controllers are robust tools for MSF plants. 
Barello et al. [15] developed a static NN-based correlation for 
estimating water permeability constant (Kw) of hollow fibre 
and spiral wound membranes]. The proficiency of their mod-
els was verified against experimental data from literature 
and was found useful in predicting Kw for any salinity and 
operating pressure under fouling conditions. Badrnezhad 
and Mirza [16] proposed a hybrid model that combines 
NN and genetic algorithms (GAs) for cross-flow UF of oily 
wastewaters [16]. While the role of NN was to predict the flux 
decline under various operating parameters, GA was used 
to optimize the operating parameters for a desired permeate 
flux. The validation shows good agreements while treating 
oily wastewater from Tehran refinery. 

As stated earlier, the amount of published works that are 
available in the literature on the application of recurrent NNs 
to membrane processes in general and large-scale industrial 
UF system in particular remains to be limited. In addition, 
the use of design of experiment (DoE) for NN modelling and 
in particular for fouling prediction is scarce. Accordingly, a 
rapid and precise data-driven approach that dynamically pre-
dicts the forward/filtrate flow rate through fouled membrane 
could be an attractive alternative. Specially, if the operating 
conditions such as backwashing flow, backwashing pressure, 
durations of forward filtration and backwashing are consid-
ered. Therefore, in this paper, a nonlinear autoregressive with 
exogenous input (NARX) model is proposed for predicting 
the long-term performance of an industrial-scale dead-end 
UF system operated under constant TMP. To reduce the risk 
of the well-known extrapolation problem encountered when 
NN-based models are used, the proposed NARX-based NN 
model was trained using a data set that spans a range of oper-
ating conditions determined systematically using one of the 
DoE techniques, namely, the central composite design (CCD).

2. Recurrent neural network modelling: architecture and 
learning algorithm

NNs can be classified into two main categories, namely 
feedforward networks (or static networks) and feedback net-
works (or recurrent networks) [12]. For static feedforward 
NNs, there are no feedback paths. A set of input–output data 
collected from the process to be modelled is presented to 
the NN. The differences between the actual output and the 
one predicted by the NN model are minimized while adjust-
ing the network weights (synaptic) using an optimization 
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algorithm, e.g., steepest descent [17]. On the other hand, 
recurrent NN is characterized by the presence of a feedback. 
That is, the model architecture allows the outputs from one 
or more nodes, e.g., the output layer, to be fed back to one or 
more nodes in previous layers, e.g., hidden or input layers. 
The feedback structure of the recurrent NN provides stor-
age capabilities to the output nodes through dynamic states, 
therefore, providing the network with some sort of memory. 
The latter makes recurrent NN very useful for modelling 
and identifying time-dependent phenomena such as fouling. 
Similar to feedforward NN, the basic elements of the com-
putation in recurrent NN are the neurons. These are simply 
a processors that take the weighted sum of the inputs from 
other nodes and apply nonlinear mapping (activation func-
tion) before passing the output to the next neuron. The out-
put os of a single neuron s having R inputs is given as:
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where f is the node’s activation function, x1, x2, …, xR are the 
node’s inputs, wsr is the connection weight between the r-th 
input and the s-th neuron and θs is the threshold for the s-th 
node. Depending on the problem and the location of the node 
within the layer, several differentiable activation functions (f) 
can be used, e.g., sigmoid, hyperbolic tangent sigmoid and 
linear functions. Fig. 1 illustrates the profile of three activa-
tion functions commonly used for NNs applications. For an 
arbitrary unit in a recurrent network, the activation at a given 
time t is given as:
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where oi(t) is the current output signal of node i, oj(t – 1) 
is the output signal of the node j at previous time sample 
and wij is the connection weight between node i and node 
j. Multiple layers of neurons with nonlinear transfer func-
tions provide the network with the required capabilities to 
learn the nonlinear relationships between input and output 
vectors. The NARX network is a special variant of recur-
rent dynamic networks. More specifically, NARX model is a 

generalization of the well-known autoregressive with exog-
enous inputs model used for time series modelling [18]. 
NARX model is gives as:

y k f y k y k m u k u k n i( ) [ ( ), , ( ); ( ), , ( )]+ = − − +1   ε � (5) 

where y(k + 1) is the output of network at time (k + 1), and 
y(k), y(k – 1), …, y(k – m) are the delayed outputs and can 
be thought of as network inputs along with the input sig-
nal u(k) and its delayed variants u(k – 1), …, u(k – n). εi is 
independently and identically distributed error compo-
nent. A diagram of the NARX network is shown in Fig. 2, 
with one-layer feedforward network. For multiple inputs 
and outputs, the input u(k) and output y(k) can be multi-
dimensional vectors. The training algorithm for the NARX 
network is an extension of the standard backpropagation 
algorithm of the static feedforward NN. The extension is 
based on the fact that the target outputs of the NARX model 
are available during the training phase of the network, and 
therefore, one could create what is called a series-parallel 
architecture by eliminating the feedback path [12]. As can be 
seen in Fig. 3, the series-parallel architecture uses the target 
outputs instead of feeding back the estimated output from 
the network during the training phase. A main advantage of 
such an arrangement is that the resulting network has feed-
forward architecture in which the classical static backprop-
agation learning algorithm (BPL) can be used to train the 
original parallel configuration of the NARX network (Fig. 2). 
The BPL is based on the gradient descent technique for solv-
ing optimization problems, that is, the minimization of the 
network cumulative error Ec with respect to the networks 
weights. Ec represents the sum of n squared errors E(k), 
where E(k) is the difference between the target output from 
the i-th output neuron ti(k) and the corresponding network 
prediction oi(k), q is total output neurons and n is the number 
of training patterns presented to the network for learning 
purposes, that is:
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BPL is designed to iteratively update the connection 
weights in the direction of the gradient decent of Ec. For 
offline learning at which all the training patterns are pre-
sented to the network at once, the BPL can be summarized 
as follows:
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where the vector w denotes the network weight vector, that 
is, the interconnection weights among all the neurons of the 
network. The backpropagation has its name due to the fact 
that the error signal is used to update the weight (wij) which 
connects a neuron j in a layer and the neuron i at the preced-
ing layer get its value from the knowledge of the error of the 
following layer [12]. That is, at every training cycle, the val-
ues of the weights are propagated backward from the output 
layer all the way to the input layer. 
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Fig. 1. Typical profiles of three common activation functions: 
(a) log-sigmoid transfer function, (b) tan-sigmoid transfer 
function and (c) linear transfer function.
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3. Experiment and method

3.1. Ultrafiltration setup and solution preparation

The industrial-scale UF system used in this study has 
been assembled at the University of Bahrain (Fig. 4). The sys-
tem consists of 8 inch X-FLOW XIGA 40 hydrophilic mem-
brane composed of a blend of polyvinylpyrrolidone and 
polyethersulfone. The 1.5275 m membrane has asymmetric 
microporous structure with a nominal pore size of 20 nm and 
a total membrane area of 40 m2. The element outer diameter, 
permeate collector inner diameter and the hydraulic mem-
brane diameter are 200, 42.6 and 0.8 mm, respectively. Two 
centrifugal variable speed pumps (Grundfos Lenntech) are 
used to vary between the forward (filtration) and backwash 
mode of operations. The speeds of the pumps were manually 
adjusted to achieve the required pressures. Several pneu-
matic valves (Georg Fischer) were used to facilitate different 
operation modes of the process. Turbidity and pH meters 
were provided to monitor the quality of the feed and prod-
uct streams. In addition, the pressures of the feed, product 
and backwash streams were monitored through pressure 

transmitters (Endress+Hauser) while the corresponding 
flow rates were monitored using magnetic flow transmitters 
(Endress+Hauser). Bourdon gauges and rotameters were 
provided for on-site monitoring. Measurements from all 
transmitters and the operating conditions of the pumps and 
valves were hard wired to the Allen-Bradley programmable 
logic controller (PLC) (MicroLogix 1200). The PLC in turn 
was connected to an supervisory control and data acquisition 
system (RSLogix 500) which provides full automation of the 
pilot UF plant. The sampling frequency of the SCADA system 
was 1 s. A simulated wastewater using suspended Aerosil 
200 was synthesized. The latter is a trade name of Degussa 
AG which consists of hydrophilic fumed silica (99.8% purity 
silicon dioxide) with average particle size of 12 nm and spe-
cific surface area of 200 m2/g. The amount of silicon dioxide 
(Aerosil 200) was mixed with a tap water and agitated for 
about 20–30 min. After ensuring that the suspended particles 
were consistently agitated, the system was started through 
the SCADA system. The SCADA program allows forward 
and backwash intervals to be entered as well as starting the 
pumps and operating the required valves. The feed was 

Fig. 2. NARX-based feedforward neural network (parallel architecture). The inclusion of time delays and feedbacks gives the network 
dynamic capabilities.

Fig. 3. NARX-based feedforward neural network (series-parallel architecture). 
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pumped through the membrane. A series of pneumatic valves 
directed the feed stream within the system before the filtrate 
was collected in the product’s tank. Once the allotted forward 
time was elapsed, backwash begins. During the backwash-
ing, part of the filtrate in the product tank was used to clear 
the filter cake formed during the forward phase. The reten-
tate was fed back to the feed tank. Backwashing was required 
to maintain the efficiency of the membrane and reduce the 
resulting flux decline. Backwashing is considered as an ener-
gy-efficient approach to prevent flux decline as opposed to 
increasing feed’s pressure. Although there are many operat-
ing parameters (input factors) that can influence the perfor-
mance of the UF system, forward pressure, backwash pres-
sure, forward time, the backwash time and the concentration 
of foulant in the feed stream were considered in the current 
study. The extent of fouling was realized through the flux 
decline observed by the filtrate of the UF system. In order to 
accelerate the onset of fouling, a very high concentration of 
the foulant was used (4,000 ppm) in all experiments.

3.2. Data collection and pre-processing

Different operating condition levels have different effects 
on the productivity of UF system as well as rate in which 

fouling develops. For efficient representation of possible 
range of operating conditions, DoE was employed in col-
lecting the data required to train and validate the NARX-
based NN. DoE becomes a necessary approach for data 
collection especially when significant interaction among 
factors/operating conditions exists. While characterizing the 
UF system under study, it was found that there is a significant 
interaction effect between the level of backwashing-pressure 
and backwashing-time on the filtrate production and hence 
the extent of fouling [7]. It would be impossible to detect 
such interaction using the widely used one-factor-at-time 
approach [19]. Therefore, collecting data within the frame-
work of DoE to train the NARX-based NN provides an infor-
mative basis that not only considers the individual factor 
effects but also considers the interactions among these fac-
tors. Different designs techniques have been developed for 
different purposes. However, in the current study, and in 
order to span a wide range of possible operating conditions, 
CCD was used. CCD design contains an imbedded 24 fac-
torial design, with centre points that are augmented with a 
group of extremes points (axial points) for possible curvature 
estimation [19]. Table 1 shows the levels of the four input 
factors used to generate the data for training and validating 
the NARX model. 

Fig. 4. The 8 inch industrial-scale UF system. The system is fully automated (Allen Bradely PLC) and operated through an SCADA 
system (RSLogix 500). 

Table 1
The levels of the four operating conditions used to train and validate the NARX-based neural network

Uncoded (coded) A: forward pressure (psi) B: backward pressure (psi) C: forward time (s) D: backwash time (s)

High (+1) 38 26 240 90
Low (–1) 23 12 120 30
Centre points (0) 31 19 180 60
Axial (+2) 46 33 300 120
Axial (–2) 16 5 60 0
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It is worth to emphasize here that fouling is a 
time-dependent phenomenon. The trained NARX-based 
NN is aimed to learn the nonlinear correlation patterns 
between the four operating conditions, namely, forward 
pressure, backwash pressure, forward time, backwash time 
and their effects on the forward flow rate as they evolve in 
time. Because different level combinations have different 
effect on the forward flow rate and the extent at which foul-
ing evolved, it was found that for some experiments, few 
minutes were only required before the flow was completely 
ceased. Therefore, different number of data points was gen-
erated for different experiment as shown in the last column 
in Table 2. Fig. 5 depicts the concatenated time series of the 
six measured time-series collected from 31 experiments. 
Responses generated using level combinations in Table 1 rep-
resent a data bank from which one can select data to train 
the NARX-based NN. Accordingly, and in order to train the 
proposed NARX-based NN, input/output data sets from 

the first nine experiments in Table 1 were concatenated. 
MATLAB® Neural Network Toolbox was used to train and 
validate the proposed NARX-based NN. In identifying NN 
models, normalization of the input and output data sets is a 
critical pre-processing step. The latter is particularly import-
ant when the operating variables are not of the same order of 
magnitudes. If no normalization was carried out, the learn-
ing algorithm would assign large weight for input with large 
numerical values and small weight for inputs with small 
numerical values. Accordingly, small input factor will be less 
represented in the NARX-based NN even if it exhibits signifi-
cant variations. Another aspect of normalization concerns the 
activation functions. For example, consider the log-sigmoid 
and tan-sigmoid transfer functions in Fig. 1. It can be seen 
that it is difficult for the activation function to distinguish 
between two different large values of n, since both of them 
will produce output values equal to 1.0 (e.g., sign (40) vs. 
sign (400)). To evade such difficulties, it was recommended to 

Table 2
The design table for 31 experiments used to train the NARX-based neural network (16 full factorial experiments + 7 centre points + 
8 axial points)

Exp. No. Forward pressure (psi) Backwash pressure (psi) Forward time (s) Backwash time (s) No. of experimental 
data points

1 0 2 0 0 1,024
2 –1 1 –1 –1 1,499
3 1 –1 1 –1 799
4 2 0 0 0 1,049
5 0 0 0 –2 349
6 –1 –1 1 1 899
7 0 0 –2 0 1,149
8 1 1 –1 –1 1,137
9 –1 1 1 1 949
10 –1 –1 –1 1 899
11 1 –1 1 1 889
12 1 –1 –1 1 849
13 1 1 1 –1 629
14 1 –1 –1 –1 749
15 0 0 0 0 749
16 –1 –1 –1 –1 749
17 1 1 1 1 899
18 0 0 0 0 749
19 –1 1 –1 1 649
20 0 0 0 0 749
21 0 0 0 0 749
22 –1 1 1 –1 549
23 –1 –1 1 –1 599
24 1 1 –1 1 719
25 0 0 2 0 719
26 0 0 0 0 749
27 –2 0 0 0 699
28 0 0 0 0 749
29 0 0 0 0 749
30 0 0 0 2 669
31 0 –2 0 0 749
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normalize the input/output data sets. Before presenting the 
data to the NARX-based NN, Neural Network Toolbox auto-
matically normalizes the data set between limits of –1 and +1, 
having the average value set at 0. The data were normalized 
according to the following formula:

x
x x
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i i

i i
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−
−
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where xi is an input or target variable, xi,min is the minimum 
value of the variable and xi,max is the maximum value of the 
variable. The normalization technique in Eq. (8) utilizes the 
complete range of the transfer function and hence every vari-
able in the data set has a similar distribution range.

4. Results and discussion 

To train and validate the NARX model, a data set consists 
of 31 experiments was made available as shown in Table 2. 
The DoE approach was adopted in the current study for data 
collection. DoE provides a systematic approach to span the 
entire feasible operating range of the UF membrane system 
and in particular useful when interactions between input 
factors are significant. In addition, the DoE approach aims 

to avoid the well-known extrapolation problems associated 
with the NN-based models [17]. A general practice in the DoE 
approaches is to choose the high, low and extreme levels of 
a factor far enough such that a change in the response can be 
observed, however, not too far apart such that the expected 
physical operating ranges of the system are exceeded. For 
example, the forward and back wash pressures are con-
strained by the maximum pressure that the membrane can 
withstand. Accordingly, it is expected that the well-known 
extrapolation problem associated with NN modelling will be 
less severe since the most feasible operating space was con-
sidered during the design. As a result, the predictions of the 
NARX network are expected to be within the space consid-
ered during the DoE. 

To illustrate the range of forward flow rate responses for 
different level combinations of the four input parameters of 
the UF system (forward pressure, backwash pressure, forward 
time and backwash time), Fig. 6 depicts four selected exper-
iments from Table 2. Fig. 6(a) shows the forward and back-
wash flows for Exp. No. 2. For the latter, forward pressure, 
backwash pressure, forward time and backwash time were 
23 psi, 26 psi, 120 s and 30 s, respectively. The forward and 
backwash flows of Exp. No. 5 are depicted in Fig. 6(b) where 
forward pressure, backwash pressure, forward time and 
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Fig. 5. Time series of the input–output data sets. (a) Forward pressure, (b) backwash pressure, (c) forward time, (d) backwash time, 
(e) backwash flow and (f) forward flow.
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backwash time were 31 psi, 19 psi, 180 s and 0 s, respectively. 
Note that in Exp. No. 5 no backwash was allowed. Therefore, 
and as expected for the high concentration (4,000 ppm) used 
in all experiments, complete blockage of the membrane was 
observed after 4 min. A vital observation is the different 
rate of flux declines observed under the different operating 
conditions. The different rate of declines actually makes the 
recurrent NN an appropriate choice for predicting the per-
formance of the UF system. Fig. 6(c) demonstrates the case of 
frequent backwashing and Fig. 6(d) shows the case of delayed 
backwashing. In fact, determining the optimal time for back-
washing is a trade-off between the required pumping energy 
and the preserving membrane’s efficiency. Therefore, exper-
iments in Table 2 gives a range of responses suitable to train 
the NARX model. Experiments 1–9 (Table 2) were selected to 
train the NARX model. The four inputs time-series and the 
output (forward flow rate) were presented to the network. 
Neural Network Toolbox® was used to design the network 
architecture. The network consists of one hidden and one 
output layers. Within the hidden layer, 10 neurons were 
used. The number of delays, that is, n and m in Eq. (5) were 
set to 2. The number of neurons and delays were chosen by 

trial and error. Sigmoid and linear transfer functions were 
used in the hidden and the output layers, respectively. The 
input time series were placed in a matrix X and the response 
in a matrix Y. The X matrix consists of 8,854 time-steps of 
five variables, that is, x1 = forward pressure, x2 = backwash 
pressure, x3 = forward time, x4 = backwash time and x5 = back 
wash flow. The time-steps are 1 s apart. The Y matrix consists 
of 8,854 time-steps of one variable, that is, the forward flow 
rate. The 8,854 rows in the X and its corresponding responses 
in the Y matrix were divided up randomly. 

Following the random division, 70% of the data set 
(6,198 points) was used to train the network. To assess the 
network’s generalization capability during the training 
phase, that is, the ability of the network to interpolate new 
patterns whose outputs are known to the user but not to the 
network, 15% of the data set was used (1,328 points). The 
latter is essential for terminating the training phase and pre-
vents overfitting the data. Finally, to test the resulting trained 
network, the remaining 15% of the data set was used (1,328 
points). The mean squared error (MSE), that is, the average 
squared difference between the outputs and the targets was 
used as performance index for the training, validation and 
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testing phases. The Levenberg–Marquardt backpropagation 
algorithm was used to train the network. 

In spite of the closed loop architecture of the NARX model, 
backpropagation algorithm can still be used by opening the 
feedback loop (Figs. 2 and 3). The latter was made possible 
due to the fact that output at different times were available 
during the training phase. Therefore, the open-loop architec-
ture can be used, where the application of the backpropaga-
tion algorithm becomes straightforward. The time required 
to train the network was 6 s using Intel® Core™ i5-2410M 
CPU with 4.0 GB RAM. The short training duration can be 
explained by looking at Fig. 7 where 18 epochs were only 
required to attain a small (MSE) value of 2.1163. The 18 iter-
ations were required before the validation and testing errors 
stopped decreasing further. The actual vs. the predicted for-
ward flow rate during the training, validation and testing 
phases are depicted in Fig. 8. For the given input–output 
data set, r = 0.9941, r = 0.99459 and r = 0.9943 for the train-
ing, validation and testing phases. As can be seen, most of 
the circles are close to the 45° line indicating that the NARX 
model was successful in learning the input–output patterns 
presented to the network. Fig. 9 shows the time series plots 
of the actual observations (test data set) vs. the predictions 

from the trained NARX model. A good agreement between 
the NARX network and the unseen data set was obtained. 
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Fig. 8. Parity plots (predicted vs. actual forward flow rate). (a) Training: r = 0.9941, (b) validation: r = 0.99459, (c) test: r = 0.9943 and 
(d) overall: r = 0.9942.
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To qualify the network, Fig. 10 depicts the autocorrela-
tion function of the prediction errors, that is, the error term 
(εi) in Eq. (5). As can be noticed, the predictions errors were 
uncorrelated indicating the adequacy of the model. In addi-
tion, input-error cross-correlation function shows no unusual 
patterns. To further verify the generalization capability of 
the identified NARX model, the inputs from experiment 
17 were scaled and presented to the trained NARX model. 
The data set for experiment 17 was completely new to the 
NARX model and consists of input matrix X of size 899 × 5 
and response Y matrix of size 899 × 1. Fig. 11 demonstrates 
the generalization capability of the identified NARX model 
for the inputs from experiments 17. The NARX model shows 
decent performance in predicting the forward flow rate, 
hence the fouling responsible of the flux decline. The values 
of the correlation coefficient (r) and the MSE were estimated 
as 0.9947 and 2.7905, respectively. Table 3 gives the correlation 
coefficient (r) and the MSE of all the experiments in Table 2. 
As can be seen from Table 3, simulations of the trained NARX 
network yielded forward flow rates which are very close to 
the observed values. The latter can be perceived from the 
high correlation coefficient values (~0.99 for most of the runs). 

The first 9 runs in Table 2 provide a rich and informa-
tive data set to train the NARX model. As can be seen from 
Table 2 for the first 9 runs, columns 2–5 spans different oper-
ating levels of the four input factors. In fact, this large and 
informative data set allowed the identification of a smaller 
NARX architecture (one neuron and one time delay). The 
main advantage of the latter is the short training time. The 
correlation coefficients of the NARX model using one neuron 
and one time delay element were 0.9917, 0.9921 and 0.9937 
for the training, validation and testing, respectively. When 
the trained model was used to predict the forward flow 
rate using the input operating conditions for experiment 17, 
it yielded a correlation coefficient and MSE of 0.99402 and 
2.7485, respectively. On the other hand, when as smaller data 
set consists of experiments 4–6 were used to train the NARX 
network (2,297 points), the correlation coefficients of the 
NARX model using one neuron and one time delay element 
was 0.9922, 0.9949 and 0.9912 for the training, validation and 
testing, respectively. The correlation coefficient for the parity 
plot for testing experiment 17 was 0.9791. Although the slight 
decrease in the correlation coefficient value, one can notice 
the ability of DoE trained NARX network in predicting the 
forward flow rate with good accuracy.

5. Conclusions

Predicting the impending fouling of UF membrane 
becomes an essential requirement in water treatment plants. 
Therefore, an NARX network was built to predict the 
forward flow rate and hence the rate of fouling of an indus-
trial-scale UF system. The UF membrane system was system-
atically subjected to different operating conditions collected 
using DoE. The network inputs were the forward pressure, 
backwash pressure, forward time and backwash time. The 
NARX model showed high proficiency in predicting the for-
ward flow of the UF system when data different than those 
used during the training phase is presented to the NARX 
model. The proposed NARX model could be of advanta-
geous for advanced UF plant control algorithm and process 
optimization.
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Table 3
The generalization capability of NARX in predicting different experiment conditions in Table 2 

Exp. No. Correlation 
coefficient (r)

Mean squared 
error (MSE)

Exp. No. Correlation 
coefficient (r)

Mean squared 
error (MSE)

10 0.9918 2.9846 19 0.9932 2.1634
11 0.9901 3.1561 22 0.9859 3.0933
12 0.9918 3.0118 23 0.9882 3.5310
13 0.9938 2.3978 24 0.9913 3.9111
14 0.9911 3.8940 25 0.9903 2.2508
15/18/20/21/26/28/29 0.9932 2.6549 27 0.9908 2.3709
16 0.9877 3.8242 30 0.9921 2.6867
17 0.9947 2.7905 31 0.9860 4.0347

Note: The mean squared error (MSE) and correlation coefficient (r) are for testing.


