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a b s t r a c t

An empirical genetic programming (GP) model is developed to predict the performance of air and 
water gap membrane distillation (AGMD and WGMD) processes. Feed temperature, Tf, feed concen-
tration, Cfeed, feed flow rate, Qf, and coolant flow rate, Qc, were considered as input parameters, and 
the permeate flux was considered to be the output. The gap width is kept constant for both configu-
rations (AGMD and WGMD) so the comparison between these two designs is based on the fixed gap 
width. In order to evaluate the accuracy of model, the effects of operating factors on the permeate flux 
were studied and compared to the experimental data. Moreover, some statistical analysis was done 
and exhibited a good agreement between predicated and experimental results. Using the obtained 
model, the impact of different variables on the process performance calculated and it was found 
that Tf , has the most important effect on the process performance. Finally, the optimum conditions 
were found by Genetic Algorithm (GA) as: Qf = 4.512 L/min, Cfeed = 0.145 g/L, Tf = 90°C, Qc = 3.132 
L/min with a maximum permeate flux of 38.972 L/m2 h and 83.621 L/m2 h for AGMD and WGMD, 
respectively.
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1. Introduction

As time goes by, the existence and supply of fresh water 
for the human population on planet earth will become 
an issue of great magnitude due to the scarcity of it [1–3]. 
More countries, especially those with already limited access 
to freshwater resources, such as those in the Middle East 
which only has access to less than 1% of the total existing 
global drinkable water per capita, will be exposed to more 
serious problems [4]. Therefore, one of the strategic options 
to satisfy the current and future request for freshwater in 
countries established around the Persian Gulf is to build up 
desalination units which hence causes the immediate need 
to construct economic units for water desalination to arise. 
Nowadays, it has been proved that membrane separation 
processes have several advantages for desalination and water 
reuse of contaminated resources, in comparison to the con-
ventional separation methods [5–9]. Membrane distillation, 

which is a thermally driven separation process has emerged 
particularly for desalination. A hydrophobic membrane 
as a contactor media separates two fluids kept at different 
temperatures where the separation is obtained by the mass 
transfer of the pure vapor [10–12]. The partial vapor pressure 
difference of sides of membrane which is caused by the tem-
perature difference is the driving force of the process [1,13–
16]. Significant benefits of MD includes: a very low effect of 
feed concentration on the desalination performance, and the 
theoretical ability to reach 100% salt rejection [1,13,17,18]. 
Typically, there are four types of membranes arrangements 
for MD process: vacuum membrane distillation (VMD), air 
gap membrane distillation (AGMD), direct or water contact 
membrane distillation (DCMD or WGMD), and the sweep-
ing gas membrane distillation (SGMD) [17,19,20]. AGMD 
configuration is appropriate for water desalination [21], on 
the other hand water gap has exhibited a higher efficiency 
and less heat loss in comparison to AGMD [17,22,23]. There-
fore, these two arrangements are commonly used for the sea-
water desalination.
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Toward making efficient and low-cost designs of mem-
brane separation processes, the development of mathe-
matical models to predict and optimize the membrane 
separation performance would be useful [24–28]. The 
mathematical models developed for any processes could 
be obtained using two different methods: (1) Theoretical 
models obtained from solving the governing equations of 
process [9,16,29]. (2) Empirical models, which is also known 
as black box modeling, does not need to investigate the 
mechanisms of the process [20,30–32]. The superiority of 
the empirical modeling compared to the theoretical models 
is that it has the possibility to develop quickly the objec-
tive function using for process optimization [14]. Moreover, 
empirical models are more accurate than theoretical ones 
[33]. However, theoretical models have more generality 
and once the model is obtained it can be applied to a wide 
range of problems, but the black box models are usually just 
applicable to a certain problem and has no generality.

Khayet and Cojocaru [31] developed an artificial neural 
network model to predict the performance of AGMD pro-
cess. The air gap thickness, feed temperature, condensation 
temperature and the flow rate of the feed were considered 
as input parameters, whereas the objective function was the 
performance index, which was defined as the permeate flux 
times the salt rejection. Constructed model could describe 
the process very well with a linear regression of 0.95 over 
test data. In similar work [32], they used artificial neural 
network, to model the sweeping gas membrane distillation 
process. 

Genetic programming (GP) as a branch of genetic 
algorithm (GA) is a progressive method for repetitively 
producing nonlinear input–output mathematical expres-
sions in any complex system has been used in a wide vari-
ety of applications such as medical, engineering, and etc. 
[2,34–39]. Suh et al. [40] employed the GP for estimating 
membrane damage in the membrane integrity test. They 
used GP as an alternative approach to construct a model 
to estimate the area of membrane breach while considering 
other input data (fluorescent nano particle concentration, 
the pure water permeance and transmembrane pressure). 
Developed GP models predicted the area of the membrane 
breach with a good agreement with the experimental data. 
Shokrkar et al. [37] used GP for modeling the treatment 
process of oily water by microfiltration membranes, they 
considered the operating conditions including: concentra-
tion, trans-membrane pressure, temperature, and cross-
flow velocity as input variables and the permeate flux as 
the output. They successfully showed that GP is capable to 
describe the behavior of the system.

In the current study, for the first time we have applied 
the GP technique for modeling and optimization of the 
AGMD and WGMD processes. The impact of operating 
variables on the permeate flux is also investigated which 
would help to design an economic process. In order to 
reduce experimental costs, experimental data in the work 
of Khalifa [17], were used to develop and verifying the GP 
models. four factors, namely, feed temperature, Tf, feed con-
centration, Cfeed, feed flow rate, Qf and coolant flow rate, Qc, 
were considered as input parameters, whereas the objective 
function was the permeate flux. Predictive models were 
obtained based on GP, used for optimization of operating 
conditions.

As mentioned above, Khayet and Cojocaru have used 
neural network for modeling of AGMD [31], and SGMD 
[32] processes, successfully. In order to demonstrate the 
reliability of GP modeling tool in various MD processes, 
the experimental data of these papers were extracted 
and modeled by GP and compared to the neural network 
results. Typically, GP exhibited a higher accuracy than neu-
ral network. The results of this comparison are presented in 
Appendices A, B.

2. Genetic programming (GP)

GP which was introduced by Koza [41] for the first time, 
is known as extension of the genetic algorithms, but aspect 
of the system it is much more useful than genetic algorithm. 
GP is a biologically inspired systematic approach for get-
ting computers to automatically solve a problem, and it is 
based on natural rules that follow biological evolution [42]. 
Its mechanism is based on machine learning approach that 
optimizes a mathematical expression due to a fitness bench-
mark [41]. GP is known as automatically defined function; 
it means, it is able to find a mathematical function for a 
certain problem, automatically [34]. The GP technique is 
explicit and does not need conceptual designs [43]. Each 
program in the GP is described by a tree. For example Fig. 1 
shows a representation of the function tree for f(a, b) = sin(a) 
+ 6*sqrt(b) . The binary arithmetic functions, ‘−’, ‘+’ and ‘*’ 
each have two sub-trees, but mathematical functions such 
as ‘tan’, ‘sin’ and etc. commonly have one sub-tree. In Fig. 1, 
the connection points are named nodes and regards with 
the location in the tree, these nodes are divided into two 
kind as: (1) Internal nodes are called as function; these func-
tions receive one or more input values and produce a single 
output value (e.g. +, −, ×, sin, cos, exp, etc.) (2) Nodes at the 
end of arms of tree are called terminal and specify input 
variables and constant values.

For any problem, it is necessary to specify the five major 
preparatory steps for the basic version of genetic program-
ming as follows [44]:

The terminal set: A set of input parameters (indepen-
dent variables).

The function set: A set of specific functions (such as ‘+’, 
‘–‘, ‘*’, ‘sin’ and etc.) used in connection with the terminal 
set to develop solution to the desired problem.

sin 

a 

* 

+

6 sqrt 

b
Fig. 1. Sample of a GP tree.
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The fitness function: Fitness function evaluates each 
member of population and determine the difference 
between predicted results and actual data.

The control parameters: This includes parameters that 
control the GP process operations.

The termination criterion: This is commonly a pre-
defined number of iteration or a tolerance for the fitness 
function.

It should be noted that the first three steps determine 
the area of search for solution, while the final two steps con-
trol the quality and speed of the search.

Fig. 2 is a flowchart of GP problem solving approach. 
The basic mechanism of GP for a specific problem that 
requires finding a mathematical model is based on a repet-
itive computational process and can be summarized as 
follows:

(a)	Initialization: once loaded the problem data, pri-
mary population of programs created randomly.

(b)	Fitness evaluation: fitness value, which specify how 
well the model solves the problem, for the popula-
tion evaluates.

(c)	New generation: new generations of programs are 
iteratively created by selecting parents based on 
their fitness and breeding them via genetic operators 
including crossover, mutation and reproduction.

(d)	Termination criteria: when one of the termination 
criteria; satisfactory fitness or maximum number of 
generation achieved, the program ends.

Genetic operators introduce variability in the chromo-
somes and make evolution possible, which may produce 
better chromosomes in next generations. The function of 
the crossover operator is to produce new models from two 
parent models by combination of obtained data from the 
parents. This operator tries to combine vital components 
of two expressions in order to create a better mathemati-
cal function. However, crossover produces many new off-
spring, it does not provide any new information into the 
population, and the population tends to become more and 
more homogeneous as one begins to dominate. A mutation 
operator is often introduced to guard against premature 
convergence. In reproduction, a single model is chosen and 
a random sub-tree in it is replaced with a freshly generated 
sub-tree, then that model is placed in the new population. 
Reproduction is straightforward. It simply copies the chro-
mosome and places it into the new population.

This study applies the GP technique to find a mathe-
matical function for prediction of permeate flux of AGMD 
and WGMD processes. In this procedure, the fitness func-
tion analyses the root mean square error (RMSE) between 
the value from real data set and that obtained from the 
model. The terminal is set as [Tf, Cfeed, Qf and Qc], and the 
functions are set as [+, –, *, /, sin, cos, tan, tanh] and the 
target responses are: permeate flux for AGMD and WGMD. 
The fitness function evaluates the root mean square error 
(RMSE) between the value from original learning data set 
and that of each chromosome.

3. Data set

The experimental results obtained by Khalifa [17] were 
used to construct GP models. These experimental data illus-
trate the permeate flux of MD process under different con-
ditions. The author studied the effects of feed flow rate, feed 
concentration, feed temperature and the coolant flow rate 
on the permeate flux in AGMD and WGMD processes. In 
total, 154 experimental data were obtained. A brief limita-
tion of the model variables has been listed in Table. 1.

4. Results and discussion

4.1. Permeate flux modeling

GP technique which is employed in this study has 
developed multiple input, single output models as a novel 
approach in membrane distillation process for prediction 
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Fig. 2. Solution procedure of GP approach.
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of the permeate flux using an experimental data set that 
obtained from [17]. This data set provides information 
about permeate flux under various operating conditions 
in both membranes configurations: AGMD and WGMD. 
Two different models were developed for each processes. 
In total, 154 experimental data were obtained, 75% of all 
the data were utilized for constructing the models, whereas 
the remaining were used to evaluate the models. Normal-
ization of data is carried out to construct a more effective 
GP model for both the model variables and the response. In 
the present study, the model variables and target (perme-
ate flux) have been normalized before training the models 
in order to help in the generalization of the GP model. For 
normalization of the input parameters the below equation 
was used:

z
x x

x xi
i=
−
−

min

max min

� (1)

where zi is the normalized variable while xi, xmin and xmax are 
the actual, minimum and maximum values of parameters, 
respectively. For normalization of the response data Eq. (2) 
was used [31,45]

Y U L
y y

y yi
i= − −
−
−

( ) min

max min

1 Δ Δ � (2)

where Yi, ymin, and ymax indicate the normalized, minimum 
and maximum values of the response, respectively; ΔU and 
ΔL are small variations which are considered to define the 
model limited extrapolation ability (in this study ΔU = ΔL 
= 0.1).

In order to find the best model for predicting the pro-
cesses, 250 generations and 200 populations were con-
sidered. The optimum tree depth was 6. Fitness function 
evaluated the root mean square error (RMSE) of each 
individual between the experimental values and which is 
returned by the models. The performance of GP models is 
illustrated in Fig. 3, the predicted permeate flux is plotted 
against the experimental value for data used to train the 
models. The predicted permeate flux in comparison to the 
experimental results for the test data is shown in Fig. 4. As it 
can be seen from Figs. 3 and 4, the GP models were capable 
to predict the permeate flux in a good agreement with the 
experimental results, for a broad range of operating condi-
tions. The best-so-far GP models that were obtained after 
satisfying termination criterion for AGMD and WGMD are:

Table 1
Limitation of variables used for GP models construction

Variables Range

Input variables  
Qf (L/min) 1–6
Cfeed (g/L) 0.145–60
Th (°C) 50–90
Qc (L/min) 1–4
Output variables
AGMD permeate flux (kg/m2h) 5–35
WGMD permeate flux (kg/m2h) 14–67
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Fig. 3. Predicted permeate flux versus experimental data for 
training data (a) AGMD, (b) WGMD.
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where x1, x2, x3 and x4 denotes the normalized values of Qf, 
Cfeed, Tf and Qc respectively, y1 and y2 indicate the normalized 
permeate flux for AGMD and WGMD, respectively. The 
running time of the GP model development for the reported 
condition was almost 5 min with Lenovo laptop (Core i5, 
RAM 6GB, Windows Eight). It should be noted that similar 
to the artificial neural network [31,32] and response surface 
methodology [20], GP models are also applicable to a single 
data set (which used to develop the model) and cannot be 
used for extrapolation purposes.

In order to demonstrate the validity of the developed 
models, some statistical parameters, which describes the 
model performance in estimation of permeate flux, are cal-
culated and presented in Table 2. The formulas for calcu-
lating statistical parameters are presented in Ref. [46]. The 
R-square value illustrates that model results are fitted to the 
experimental result perfectly. The values of, MSE, SSE, and 
RMSE show that the proposed models have a little devia-
tion from experimental data.

4.2. Effect of feed temperature

Fig. 5 shows the permeate flux versus the feed tempera-
ture at the feed flow rate of 1.5 L/min, feed concentration 
of 0.145 g/L and the coolant flow rate of 2 L/min, for both 
AGMD and WGMD configurations. Naturally, as feed tem-
perature increases, the permeate flux tends to increase as 
well [16,47], hence the models satisfy this expectation very 
well. Qtaishat et al. [48], reported a similar trend in DCMD 
configuration, but at higher feed temperatures, their devel-
oped model had a few deviations. This deviation was 
more obvious in the work of Hwang et al. [49]. As it can 
be shown from Fig. 5, proposed GP models provided good 
agreement with experimental data for a wide range of feed 
temperature.

4.3. Effect of feed concentration

As depicted in Fig. 6, the effect of feed concentration on 
the permeate flux was mathematically modeled and com-
pared to the experimental data. Conditions of this test are: 
feed flow rate = 1.5 L/min, feed temperature is 70°C and 
coolant flow rate of 2 L/min. As shown in Fig. 6, the GP 
models provided excellent prediction for permeate flux. It 
is illustrated in Fig. 6 that as feed concentration increases, 
the permeate flux tends to slightly decrease for both AGMD 
and WGMD, and this is in coherent with published data [50]. 
Alklaibi and Lior [9] also found a similar trend. A reason for 
this behavior may be that, increasing the feed concentration 
causes a decline in the vapor pressure of feed that results in 
decrease in the driving force. Moreover, it is showed that 
WGMD has higher permeate flux than AGMD yet.
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Fig. 5. The effect of feed temperature on the permeate flux for 
AGMD and WGMD.
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Fig. 6. The effect of feed concentration on the permeate flux for 
AGMD and WGMD.

Table 2
Statistical parameters of the GP models

Statistical 
parameter

R2 SSE MSE RMSE NB%

MD process AGMD WGMD AGMD WGMD AGMD WGMD AGMD WGMD AGMD WGMD

Training data 0.995 0.992 14.411 57.731 0.253 1.012 0.502814 1.006 –0.134 0.315
Test data 0.994 0.990 1.174 16.103 0.059 0.805 0.242287 0.897 –0.284 0.796
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4.4. Effect of feed flow rate

The experimental and predicted permeate fluxes in var-
ious feed flow rates and for a concentration of 0.145 g/L, 
feed temperature of 70°C and coolant flow rate of 2 L/min 
are presented in Fig. 7. Fig. 7 implies that the GP models 
showed good coherence with experimental data for both 
AGMD and WGMD. As it was expected the WGMD has a 
higher permeate flux than AGMD in the whole of the feed 
flow rate ranges. It is depicted in Fig. 7, as feed flow rate 
increases the permeate flux tends to increase, this increment 
is sharp when the feed flow rate is low and as flow rate 
increases the permeate flux increases slightly. Similar obser-
vation is reported by Chen et al. [51] for a DCMD arrange-
ment, however, in their work there were some errors in 
prediction of permeate flux as feed flow rate was increas-
ing. In contrary to the most theoretical models GP provided 
a good prediction about permeate flux for a wide feed flow 
rate ranges in comparison to the experimental data. 

4.5. Flow rate of coolant effects

As depicted in Fig. 8, the effect of the coolant flow rate 
on the permeate flux was mathematically modeled and 
compared with the experimental data. Conditions of this 
test are: feed flow rate = 1.5 L/min and feed temperature 
is 70°C and feed concentration is 0.145 g/L. However, the 

coolant flow rate has minimal effect on the permeate flux 
in both AGMD and WGMD configurations, but as it was 
expected the coolant flow rate has more effect on the AGMD 
configuration in comparison to the WGMD. As coolant flow 
rate increases 400% permeate flux increases only, 14% and 
7% for AGMD and WGMD, respectively. 

4.6. Parameter analysis

As mentioned in previous sections the influence of oper-
ating parameters on the permeate flux was investigated for 
both AGMD and WGMD configurations. In this section we 
are motivated to determine the impact of each operating 
parameter on the response target. For this purpose, deriv-
ative of each curves in Figs. 5–8 were calculated and their 
average value is reported in Table 3. As it was expected feed 
concentration has a negative impact on the permeate flux, 
ie. increasing feed concentration causes a decline in the per-
meate flux, and in the AGMD configuration, this is more 
obvious. It can be concluded that feed temperature has a 
major impact on the permeate flux for both MD arrange-
ments. This kind of information is very useful for designing 
an economic MD process.

4.7. Process optimization

Theoretically, the highest feed flow rate, highest feed 
temperature and lowest feed concentration should give 
the highest permeate flux. However, these parameters may 
have some interactions with each other. In order to optimize 
a membrane process, performance index, which is defined 
as permeate flux times the salt rejection, should be maxi-
mized. However, as salt rejection factor in MD processes is 
close to 100%, permeate flux considered to be maximized.

The simplest way to get the optimum values for the 
operating conditions is the classical optimization approach. 
In this method, the derivate of the equation (the expres-
sion for the permeate flux which has been obtained in 
section 4.1) with respect to each variable (x1, x2, x3 and x4 
which refer to Qf, Cfeed, Tf and Qc, respectively) should be 
calculated separately, the next step is to obtain the roots 
of these derivative expressions, these roots are considered 
as the optimum values for each variables (Tf, Cfeed, Qf, Qc). 
However, this strategy is not suitable to solve very compli-
cated problems in which the objective function is discon-
tinuous, nondifferentiable, or extremely nonlinear. Because 
the developed GP models are nonlinear, genetic algorithm 
(GA) method was employed for optimization, instead of the 
classical approach. GA is capable to solve both constrained 
and unconstrained optimization problems and it is based 
on natural selection process that imitates biological evo-
lution for survival of the fittest. The algorithm constantly 
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Table 3
Growth rate of permeate flux with respect to operating variables

MD process Variables

Qf Cfeed Th Qc

AGMD 0.619 –0.237 0.779 0.102

WGMD 0.500 –0.166 0.821 0.048



A.A. Tashvigh, B. Nasernejad / Desalination and Water Treatment 76 (2017) 30–3936

refines a population of individual solutions, which leads to 
an optimal solution. At each iteration, the genetic algorithm 
takes individuals at random from the present population 
and utilizes them as parents to make the children for the 
next generation. Similar to GP, GA also uses three genetic 
operators including: crossover, mutation and reproduction 
to breed the present population. The basic mechanism of 
GA for a specific optimization problem can be summarized 
as follows:

1.	 The algorithm starts by making a random initial 
population.

2.	 The algorithm then creates a sequence of new pop-
ulations from the current one. It uses three genetic 
operators (crossover, mutation and reproduction) 
for this matter. 

3.	 The algorithm stops when one of the stopping crite-
ria is reached; either the maximum iteration number 
is reached or the error becomes smaller than the pre-
defined value.

In this work genetic algorithm toolbox in Matlab soft-
ware was employed for optimization. Developed GP mod-
els for both AGMD and WGMD have been introduced to 
the software as the objective function which should be max-
imized.

The computed optimum conditions given by the GP 
models is summarized in Table 4.

The obtained optimal conditions are within the experi-
mental data limit and as it was expected the higher the feed 
temperature and lower feed concentration leads to a higher 
permeate flux but the feed and coolant flow rates are not 
in their highest value, so it means that these variables have 
some interaction with each.

5. Conclusions

An important objective of this work was to show the 
applicability of GP for modeling AGMD and WGMD pro-
cess for prediction and optimization of the permeate flux. 
The GP method offers a feasible approach for predicting 
the permeate flux under different operating condition. The 
effects of operating factors including feed flow rate, salt 
concentration, feed temperature and coolant flow rate on 
the permeate flux were studied, and the gap width was 
kept fixed for both designs. The results showed a very good 
agreement with the experimental data in a wide range of 
operating condition. Feed temperature, Tf and feed flow 
rate, Qf were found as the crucial parameters on the pro-
cess performance. Also it was found that feed concentra-

tion and coolant flow has lesser effect on the permeate 
flux. It was illustrated that, WGMD has higher permeate 
flux than AGMD particularly in lower feed temperatures. 
This may be considered as an advantage when developing 
water gap design in some applications where the maximum 
feed temperature is limited (eg. Pharmaceutical and food 
industries). The obtained optimal conditions results in the 
best process performance are: Qf = 4.512Lmin, Cfeed = 0.145 
g/L, Tf = 90°C, Qc = 3.132 L/min with a maximum permeate 
flux of (38.972 L/m2 h and 83.621 L/m2 h) for AGMD and 
WGMD, respectively.

References

[1]	 M.M.A. Shirazi, A. Kargari, D. Bastani, L. Fatehi, Production 
of drinking water from seawater using membrane distillation 
(MD) alternative: direct contact MD and sweeping gas MD 
approaches, Desal. Water Treat., 52 (2014) 2372–2381.

[2]	 A. Asadi Tashvigh, F. Zokaee Ashtiani, A. Fouladitajar, Genetic 
programming for modeling and optimization of gas sparging 
assisted microfiltration of oil-in-water emulsion, Desal. Water 
Treat., 57 (2016) 19160–19170.

[3]	 A.Asadi Tashvigh, A. Fouladitajar, F.Z. Ashtiani, Modeling 
concentration polarization in crossflow microfiltration of oil-
in-water emulsion using shear-induced diffusion; CFD and 
experimental studies, Desalination, 357 (2015) 225–232.

[4]	 Y.M. Manawi, M. Khraisheh, A.K. Fard, F. Benyahia, S. Adham, 
Effect of operational parameters on distillate flux in direct 
contact membrane distillation (DCMD): Comparison between 
experimental and model predicted performance, Desalina-
tion, 336 (2014) 110–120.

[5]	 M.M.A. Shirazi, A. Kargari, M. Tabatabaei, Evaluation of com-
mercial PTFE membranes in desalination by direct contact 
membrane distillation, Chem. Eng. Process. Process Intensif., 
76 (2014) 16–25.

[6]	 S. Gupta, C.R. Prabha, C. Murthy, Functionalized multi-walled 
carbon nanotubes/polyvinyl alcohol membrane coated glassy 
carbon electrode for efficient enzyme immobilization and glu-
cose sensing, J. Environ. Chem. Eng., 4 (2016) 3734–3740.

[7]	 H. Rabiee, S.M.S. Shahabadi, A. Mokhtare, H. Rabiei, N. Alvan-
difar, Enhancement in permeation and antifouling properties 
of PVC ultrafiltration membranes with addition of hydrophilic 
surfactant additives: Tween-20 and Tween-80, J. Environ. 
Chem. Eng., 4 (2016) 4050–4061.

[8]	 M. Norouzi, M. Pakizeh, M. Namvar-Mahboub, The Effect of 
highly dispersed oxidized multi-walled carbon nanotubes 
on the performance of PVDF/PVC ultrafiltration membrane, 
Desal. Water Treat., 57 (2016) 24778–24787.

[9]	 A. Alklaibi, N. Lior, Membrane-distillation desalination: sta-
tus and potential, Desalination, 171 (2005) 111–131.

[10]	 L. Lin, H. Geng, Y. An, P. Li, H. Chang, Preparation and prop-
erties of PVDF hollow fiber membrane for desalination using 
air gap membrane distillation, Desalination, 367 (2015) 145–
153.

[11]	 A. Khalifa, H. Ahmad, M. Antar, T. Laoui, M. Khayet, Exper-
imental and theoretical investigations on water desalination 
using direct contact membrane distillation, Desalination, 404 
(2017) 22–34.

[12]	 A. Alklaibi, N. Lior, Comparative study of direct-contact and 
air-gap membrane distillation processes, J. Ind. Eng. Chem. 
Res., 46 (2007) 584–590.

[13]	 A. Alsaadi, N. Ghaffour, J.-D. Li, S. Gray, L. Francis, H. Maab, 
G. Amy, Modeling of air-gap membrane distillation process: a 
theoretical and experimental study, J. Membr. Sci., 445 (2013) 
53–65.

[14]	 M. Khayet, T. Matsuura, Membrane Distillation: Principles 
and Applications, Elsevier, 2011.

[15]	 A. Khalifa, D. Lawal, M. Antar, M. Khayet, Experimental and 
theoretical investigation on water desalination using air gap 
membrane distillation, Desalination, 376 (2015) 94–108.

Table 4
Optimal condition for AGMD and WGMD

Operating parameter Permeate flux (kg/m2h)

Qf  

(L/min)
Cfeed 
(g/L)

Th  
(°C)

Qc 
(L/min)

AGMD WGMD

4.512 0.145 90 3.132 38.972 83.621



A.A. Tashvigh, B. Nasernejad / Desalination and Water Treatment 76 (2017) 30–39 37

[16]	 A. Alklaibi, N. Lior, Transport analysis of air-gap membrane 
distillation, J. Membr. Sci., 255 (2005) 239–253.

[17]	 A.E. Khalifa, Water and air gap membrane distillation for 
water desalination – An experimental comparative study, Sep. 
Purif. Technol., 141 (2015) 276–284.

[18]	 N. Mokhtar, W. Lau, A. Ismail, W. Youravong, W. Khongna-
korn, K. Lertwittayanon, Performance evaluation of novel 
PVDF–Cloisite 15A hollow fiber composite membranes for 
treatment of effluents containing dyes and salts using mem-
brane distillation, RSC Adv., 5 (2015) 38011–38020.

[19]	 A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: A 
comprehensive review, Desalination, 287 (2012) 2–18.

[20]	 A.E. Khalifa, D.U. Lawal, Application of response surface and 
Taguchi optimization techniques to air gap membrane dis-
tillation for water desalination—A comparative study, Desal. 
Water Treat., 57 (2016) 28513–28530.

[21]	 F.A. Banat, J. Simandl, Desalination by membrane distillation: 
A parametric study, Sep. Sci. Technol., 33 (1998) 201–226.

[22]	 G. Meindersma, C. Guijt, A. De Haan, Desalination and water 
recycling by air gap membrane distillation, Desalination, 187 
(2006) 291–301.

[23]	 A.A. AlcheikhHamdon, N.A. Darwish, N. Hilal, The use of 
factorial design in the analysis of air-gap membrane distilla-
tion data, Desalination, 367 (2015) 90–102.

[24]	 Q.-F. Liu, S.-H. Kim, Evaluation of membrane fouling models 
based on bench-scale experiments: a comparison between 
constant flowrate blocking laws and artificial neural network 
(ANNs) model, J. Membr. Sci., 310 (2008) 393–401.

[25]	 K.-J. Hwang, C.-Y. Liao, K.-L. Tung, Analysis of particle fouling 
during microfiltration by use of blocking models, J. Membr. 
Sci., 287 (2007) 287–293.

[26]	 S.M.G. Demneh, B. Nasernejad, H. Modarres, Modeling inves-
tigation of membrane biofouling phenomena by considering 
the adsorption of protein, polysaccharide and humic acid, Col-
loids Surf., B Colloids Surf., B, 88 (2011) 108–114.

[27]	 H. Moshiri, B. Nasernejad, H. Ale Ebrahim, M. Taheri, Solution 
of coupled partial differential equations of a packed bed reac-
tor for SO2 removal by lime using the finite element method, 
RSC Adv., 5 (2015) 18116–18127.

[28]	 G. Rao, S.R. Hiibel, A. Achilli, A.E. Childress, Factors contrib-
uting to flux improvement in vacuum-enhanced direct contact 
membrane distillation, Desalination, 367 (2015) 197–205.

[29]	 A. Alklaibi, The potential of membrane distillation as a stand-
alone desalination process, Desalination, 223 (2008) 375–385.

[30]	 A. Shahsavand, M.P. Chenar, Neural networks modeling of 
hollow fiber membrane processes, J. Membr. Sci., 297 (2007) 
59–73.

[31]	 M. Khayet, C. Cojocaru, Artificial neural network modeling 
and optimization of desalination by air gap membrane distil-
lation, Sep. Purif. Technol., 86 (2012) 171–182.

[32]	 M. Khayet, C. Cojocaru, Artificial neural network model for 
desalination by sweeping gas membrane distillation, Desali-
nation, 308 (2013) 102–110.

[33]	 I. Hitsov, T. Maere, K. De Sitter, C. Dotremont, I. Nopens, Mod-
elling approaches in membrane distillation: A critical review, 
Sep. Purif. Technol., 142 (2015) 48–64.

[34]	 T.-M. Lee, H. Oh, Y.-K. Choung, S. Oh, M. Jeon, J.H. Kim, S.H. 
Nam, S. Lee, Prediction of membrane fouling in the pilot-scale 
microfiltration system using genetic programming, Desalina-
tion, 247 (2009) 285–294.

[35]	 A. Nazari, S. Riahi, Computer-aided Prediction of the ZrO2 
nanoparticles’ effects on tensile strength and percentage of 
water absorption of concrete specimens, J. Mater. Sci. Technol., 
28 (2012) 83–96.

[36]	 M.R. Karahroudi, S.M. Shirazi, K. Sepanloo, Optimization of 
designing the core fuel loading pattern in a VVER-1000 nuclear 
power reactor using the genetic algorithm, Ann. Nucl. Energy, 
57 (2013) 142–150.

[37]	 H. Shokrkar, A. Salahi, N. Kasiri, T. Mohammadi, Prediction 
of permeation flux decline during MF of oily wastewater using 
genetic programming, Chem. Eng. Res. Des., 90 (2012) 846–853.

[38]	 A.Asadi Tashvigh, F.Z. Ashtiani, M. Karimi, A. Okhovat, A 
novel approach for estimation of solvent activity in polymer 
solutions using genetic programming, Calphad, 51 (2015) 35–41.

[39]	 M. Karimi, A. Asadi Tashvigh, F. Asadi, F.Z. Ashtiani, Deter-
mination of concentration-dependent diffusion coefficient of 
seven solvents in polystyrene systems using FTIR-ATR tech-
nique: experimental and mathematical studies, RSC Adv., 6 
(2016) 9013–9022.

[40]	 C. Suh, B. Choi, S. Lee, D. Kim, J. Cho, Application of genetic 
programming to develop the model for estimating membrane 
damage in the membrane integrity test using fluorescent 
nanoparticle, Desalination, 281 (2011) 80–87.

[41]	 J.R. Koza, Genetic programming: on the programming of com-
puters by means of natural selection, MIT press, 1992.

[42]	 J.R. Koza, R. Poli, Genetic Programming, in: E.K. Burke, G. 
Kendall (Eds.) Search Methodologies: Introductory Tutorials 
in Optimization and Decision Support Techniques, Springer 
US, Boston, MA, 2005, pp. 127–164.

[43]	 A. Fouladitajar, F.Z. Ashtiani, A. Okhovat, B. Dabir, Membrane 
fouling in microfiltration of oil-in-water emulsions; a compari-
son between constant pressure blocking laws and genetic pro-
gramming (GP) model, Desalination, 329 (2013) 41–49.

[44]	 M.J. Willis, H.G. Hiden, P. Marenbach, B. McKay, G.A. Mon-
tague, Genetic programming: an introduction and survey of 
applications, in: Second International Conference On Genetic 
Algorithms In Engineering Systems: Innovations And Appli-
cations, 1997, pp. 314–319.

[45]	 B. Sarkar, A. Sengupta, S. De, S. DasGupta, Prediction of per-
meate flux during electric field enhanced cross-flow ultrafil-
tration—a neural network approach, Sep. Purif. Technol., 65 
(2009) 260–268.

[46]	 A. Okhovat, S.M. Mousavi, Modeling of arsenic, chromium 
and cadmium removal by nanofiltration process using genetic 
programming, Appl. Soft Comput., 12 (2012) 793–799.

[47]	 A. Alklaibi, N. Lior, Heat and mass transfer resistance analysis 
of membrane distillation, J. Membr. Sci., 282 (2006) 362–369.

[48]	 M. Qtaishat, T. Matsuura, B. Kruczek, M. Khayet, Heat and 
mass transfer analysis in direct contact membrane distillation, 
Desalination, 219 (2008) 272–292.

[49]	 H.J. Hwang, K. He, S. Gray, J. Zhang, I.S. Moon, Direct contact 
membrane distillation (DCMD): Experimental study on the 
commercial PTFE membrane and modeling, J. Membr. Sci., 371 
(2011) 90–98.

[50]	 V. Calabro, B.L. Jiao, E. Drioli, Theoretical and experimental 
study on membrane distillation in the concentration of orange 
juice, J. Ind. Eng. Chem. Res., 33 (1994) 1803–1808.

[51]	 T.-C. Chen, C.-D. Ho, H.-M. Yeh, Theoretical modeling and 
experimental analysis of direct contact membrane distillation, 
J. Membr. Sci., 330 (2009) 279–287.



A.A. Tashvigh, B. Nasernejad / Desalination and Water Treatment 76 (2017) 30–3938

Appendix A

y x x x x= − + −
+

0 1385 0 1287 3 092 0 1758
7 712

1 3 2 4. . . exp( . cos( ))
. cos(sinn( )) . tanh(sin(cos(cos( ))))
. cos( co

x x x

x x
1 1 2

1 4

6 522
0 4813

+ −
− − + ss( ) sin( ) tanh( ) . )

. exp(cos(cos( ))

x x x

x x
3 1 3

2
2

1

0 0024

0 1893

− + +

− − −− + +

+ −

cos( ) ( ))

. sin( . ) . tanh(cos(tan

x si x

x
1 3

10 00825 0 9754 0 5482 hh( ) ))
. sin( . ) . ( .

x x x

x x x x x
2 1 2

2

3 4 2 1 30 4813 4 947 0 005603 9 633
−

− − − +

++ + + +
+

exp(cos( )) tanh( )) . .
. sin(

x x x x x1 1 1 4 2
20 00825 0 01299

0 1287 ccos( ))tanh(sin(tanh( ))
tanh( ))(tanh( ) cos

x x x x x

x x
1 2 2 4 2

1 3

− −
+ + (( . )) .x1 8 349 13 05− −

x1: A, x2: Tf, x3: Tc, x4: Q, y: Permeate flux.

Table A.1
Experimental data for AGMD process from Ref. [31]

Input variables Flux GP model

A (mm) Tf 
(°C)

Tc 
(°C)

Q 
(L/h)

y 
(kg/m2h)

y 
(kg/m2h)

3 70 25 200 45.487 44.55897

3 70 15 200 50.232 49.75071
3 60 25 200 30.185 29.77823
3 60 15 200 35.264 34.6058
3 70 25 150 43.959 43.11001
3 70 15 150 47.468 47.6298
3 60 25 150 29.288 29.21906
3 60 15 150 34.279 33.37467
3 65 26.1 175 34.42 34.19406
3 65 13.9 175 39.997 40.03531
3 71 20 175 45.382 45.87081
3 59 20 175 29.264 28.30934
3 65 20 205 37.837 38.05299
3 65 20 145 36.855 36.88464
3 65 20 175 36.85 36.98495
4.2 70 25 200 38.951 38.46393
4.2 70 15 200 43.345 42.63955
4.2 60 25 200 26.629 25.96124
4.2 60 15 200 29.039 29.54689
4.2 70 25 150 35.349 36.33258
4.2 70 15 150 39.079 39.92976
4.2 60 25 150 24.461 24.71967
4.2 60 15 150 25.642 27.72689
4.2 65 26.1 175 29.569 29.73678
4.2 65 13.9 175 34.681 35.31849
4.2 71 20 175 41.648 41.98409
4.2 59 20 175 24.82 25.4775
4.2 65 20 205 34.52 34.60547
4.2 65 20 145 31.277 31.14287
4.2 65 20 175 33.528 32.4061
7.4 70 25 200 31.565 32.01301
7.4 70 15 200 36.866 36.79917
7.4 60 25 200 20.964 21.48601

Input variables Flux GP model

A (mm) Tf 
(°C)

Tc 
(°C)

Q 
(L/h)

y 
(kg/m2h)

y 
(kg/m2h)

7.4 60 15 200 25.941 25.68948
7.4 70 25 150 27.81 28.68772
7.4 70 15 150 32.675 32.63901
7.4 60 25 150 19.626 19.0505
7.4 60 15 150 23.776 22.41909
7.4 65 26.1 175 25.651 24.66011
7.4 65 13.9 175 29.547 30.48146
7.4 71 20 175 34.284 34.7827
7.4 59 20 175 20.444 21.53551
7.4 65 20 205 28.481 29.78197
7.4 65 20 145 25.547 25.0705
7.4 65 20 175 26.905 27.4722
3 30 20 175 3.147 3.993917
3 40 20 175 9.189 8.272396
3 50 20 175 17.669 18.54953
4.2 30 20 175 2.827 2.310808
4.2 40 20 175 7.898 7.658679
4.2 50 20 175 16.406 15.40362
7.4 30 20 175 2.039 2.427773
7.4 40 20 175 5.613 5.916667
7.4 50 20 175 12.159 12.99068
3 70 20 200 45.273 45.98672
3 65 15 150 38.738 39.4845
3 65 25 200 34.238 35.96185
3 60 15 175 32.151 33.59277
4.2 70 20 200 40.507 39.9004
4.2 65 15 150 34.198 33.77528
4.2 65 25 200 32.505 32.07832
4.2 60 15 150 29.622 27.72689
7.4 70 20 200 34.931 34.46156
7.4 65 15 150 27.642 27.60795
7.4 65 25 200 27.855 26.72604
7.4 60 15 175 24.025 23.65339
3 71 13.9 205 51.075 50.34009
3 63 13.9 205 37.111 36.74585
4.2 71 13.9 205 47.289 47.64093
4.2 63 13.9 205 35.039 35.78124
7.4 71 13.9 205 40.938 40.72187
7.4 63 13.9 205 32.898 31.41694

Table A.2
Comparison between neural networks and GP

Data set R2

Neural network from 
Ref. [31]

GP 
model

Training data  0.9965  0.9961
Validating data  0.9483  0.9767
Test data  0.9493  0.9885
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x1: Tf, x2: Ua, x3: Uw, y: Permeate flux.

Table B.1
Experimental data from Ref [32]

Input variables Flux GP model

Tf (°C) Ua (m/s) Uw (m/s) J (kg/m2h)*10–3 J (kg/m2h)*10–3

68 1.932 0.2 1.106 1.1085
54 1.932 0.2 0.636 0.694664
68 0.966 0.2 0.65 0.615143
54 0.966 0.2 0.459 0.444998
68 1.932 0.14 0.969 0.970204
54 1.932 0.14 0.74 0.699402
68 0.966 0.14 0.582 0.572325
54 0.966 0.14 0.326 0.323418
70 1.449 0.17 1.016 1.021619
52 1.449 0.17 0.499 0.53395
61 2.028 0.17 0.841 0.84619
61 0.869 0.17 0.499 0.513087
61 1.449 0.206 0.989 0.789927
61 1.449 0.134 0.634 0.669004
61 1.449 0.17 0.67 0.784802
68 1.449 0.17 0.919 0.91487
54 1.449 0.17 0.542 0.540941
65 1.884 0.17 0.988 0.908319
58 1.014 0.17 0.528 0.539457
65 1.014 0.17 0.647 0.623989
58 1.884 0.17 0.698 0.675115
65 1.594 0.194 0.849 0.910218
58 1.304 0.146 0.78 0.704337
65 1.304 0.146 0.626 0.657286
61 1.738 0.146 0.893 0.857911
58 1.594 0.194 0.686 0.731417
61 1.159 0.194 0.61 0.614508
54 0.966 0.17 0.361 0.354406
68 0.966 0.17 0.579 0.600088
54 1.932 0.17 0.679 0.660409
68 1.932 0.17 1.024 1.08174
54 1.449 0.14 0.549 0.547809
68 1.449 0.14 0.846 0.855928
54 1.449 0.2 0.562 0.606213
68 1.449 0.2 0.966 0.95881
61 0.966 0.14 0.473 0.468192
61 1.932 0.14 0.896 0.935827
61 0.966 0.2 0.409 0.493856
61 1.932 0.2 0.804 0.841409
65 1.69 0.185 0.956 0.973742
57 1.69 0.185 0.688 0.720706

Input variables Flux GP model

Tf (°C) Ua (m/s) Uw (m/s) J (kg/m2h)*10–3 J (kg/m2h)*10–3

65 1.207 0.185 0.704 0.732976
57 1.207 0.185 0.543 0.607479
65 1.69 0.155 0.873 0.860497
57 1.69 0.155 0.639 0.628444
65 1.207 0.155 0.6 0.633407
57 1.207 0.155 0.559 0.516849
66 1.449 0.17 0.887 0.911478
56 1.449 0.17 0.625 0.633561
61 1.738 0.17 0.993 0.970701
61 1.159 0.17 0.552 0.564909
61 1.449 0.188 0.802 0.760207
61 1.449 0.152 0.664 0.728292

Table B.2
Comparison between neural networks and GP

Data set R2

Neural network 
from [32]

GP 
model

Training, validation and test data 0.8 0.9372
Validating data 0.93 0.9

For more description about nomenclatures which used in 
appendices, readers are referred to [31,32].


