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a b s t r a c t

The WHO estimates that, on average, dehydration caused by water borne illnesses claims up to 
1.5 million lives a year, with a disproportionate number of casualties located in developing nations. 
In order to mitigate risks to public health, previous studies have helped to gain extensive insights 
and create management techniques to ensure that water quality standards are maintained. The pres-
ent study will investigate a relatively neglected field, which is the need for the prioritization of mon-
itoring the quality of a water treatment plant’s inflow, which may vary significantly in quantity and 
quality throughout the day. The technique proposed for this investigation is a novel application of 
the multiple criteria decision making (MCDM) method, adapted particularly for the purposes of 
decision making for optimal scenarios, called the multi variable temporal decision making method 
for the selection of optimal solutions (MVTDMSOS). By cascading self-selecting neural network 
algorithms, which are implicit in such systems, this method is designed to eliminate human bias and 
aims to identify the priority parameters based on optimal, rather than normal, scenarios. The intro-
duction of polynomial neural networks ensures adaptability and alacrity of the modeling frame-
work. Test results encourage further application of the proposed technique.
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1. Introduction

The role of water treatment plants (WTP) in ensuring 
good public health is well documented across the literature. 
For instance, Đukić et.al. [1] studied the means to imple-
ment the removal of heavy metals from aqueous solutions 
through the use of treated clay filters. A later study by Dju-
kic et.al. [2] investigated the commercial viability of WTP 
systems through cost-benefit analyses carried out on infra-
structure case studies. Rauch and Harremoes [3] also iden-
tified optimal design and real-time management of urban 
water treatment plants in order to ensure consistent safety 
standards in domestic and commercial water supplies. Sim-
ilarly, Tchobanoglous and Burton [4] compiled a compre-
hensive wastewater engineering manual that addressed the 
most suitable ways to approach effluent disposal, wastewa-
ter reclamation, as well as advanced water treatment mech-

anisms. These studies have proven to be highly influential 
on the methods adopted to ensure the quality standards of 
supplied water are maintained around the world. 

In practice, the issue of water treatment contains many 
challenges, including sudden changes in the quality of 
intake water, mal-performance of treatment instruments, 
degradation of system performance, lack of skilled man-
power, etc., all of which reduce the overall performance 
efficiency of the plant. Of these challenges, the sudden 
change in quality of intake water especially impacts the 
quality of treated water that is distributed among consum-
ers, meaning that real-time monitoring of the quality of 
intake water is necessary. At present, there are very few 
WTPs with installed real-time monitoring of intake water 
[5,6]. Most WTPs monitor multiple parameters, detecting 
daily changes, but monitor only the intake point so if, as 
often occurs, they detect the change too late, it gives scant 
opportunity for implementing compensatory measures. 
Also, due to the single-point multiple-parameter mon-
itoring, the scope for implementing adaptive measures 
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is limited. It can also be the case that systems are prone 
to human preference and so can easily be manipulated, 
leading to sub-optimal results. Some of the most common 
methods used to detect change in the quality of intake 
water are: sample collection from strategic points in and 
around the WTPs; sensor-based monitoring schemes [7,8]; 
adaptation of bio-indicator based quality [9]; trend anal-
ysis [10]; cluster analysis [11]; and chemo-metric analysis 
of the quality parameters taken from data collected at the 
intake point of the treatment plant [12].

The sample-based and sensor-based schemes are unfa-
vorable due to the time (especially for the sample-based 
schemes) and cost involved in these types of monitoring 
systems. In the case of bio-indicator based systems, changes 
in the species and populations of bio-organisms often make 
it location-dependent. Cluster or trend analyses or index-
based systems depend on the type and amount of data col-
lected, accuracy of the modeling technology, as well as the 
number and type of input parameters selected to develop 
the model. Results may vary with location and time at 
which data was collected. These issues are why the present 
study proposes a method which will be free of human bias, 
adaptive to situations, consider only the significant param-
eters, and give results on the data collected from multiple 
points situated in strategic locations. Although the pro-
cedure uses sensors for real-time data collection, only the 
significant parameter along with time of data collection is 
preselected cognitively, so the requirement for sensor place-
ment and operation is limited and does not involve large 
economic constraints. The advantage of multipoint data 
collection is that the compensatory system in the WTP can 
be warned early, so that the mechanism has sufficient time 
to avoid or prevent the uncertainty.

1.1. Objective

The main objective of the present investigation is to 
develop a real-time monitoring system for the identifica-
tion of changes in water quality parameters of the intake of 
water into WTPs. This, in effect, also includes the develop-
ment of a media through which multiple factors affecting 
water intake quality can be measured and compared based 
on the importance of each factor. For this reason, an indica-
tor is developed to monitor all the correlated factors, but the 
identification of changes will be devised as per their influ-
ence on the overall quality of the intake water. Monitoring 
and identification is made at seven points before the intake 
point.

The indicator will be mapped with the input parameters 
using cognitive methodology, then a system-independent 
algorithm will be developed and installed to monitor the 
parameters for the detection of changes at seven different 
points. The methodology of development of the indicator 
and its implementation in the WTP is described in the next 
section.

1.2. Methodology in brief

The present study adopted a three-step methodology 
to achieve the objective. In the first step, the most import-
ant parameters (MIP) with respect to the WTP were identi-
fied by conducting a literature review. After the MIP were 

identified, the relative importance of the parameters were 
estimated with the help of two different multi criteria deci-
sion making methods, called the analytical hierarchy pro-
cess (AHP) and a new method developed for the purposes 
of this present study, termed the multi variable temporal 
decision making method for selection of optimal solutions 
(MVTDMSOS).

After the relative importance of the parameters was 
determined, the group method of data handling (GMDH) 
was used to map the indicator along with the input param-
eters. The indicator was developed as the direct and inverse 
weighted function of the beneficiary and non-beneficiary 
parameters with respect to the change in the quality of 
water in the intake. This step ensures the generation of a 
system-independent algorithm that allows the current 
method to be independent from the platform, and also pre-
vents any biases affecting decision-making by hiding the 
importance of the parameters.

By considering the temporal variation of the identi-
fied parameters at the selected points before the intake, 
we also incorporated the temporal impact of the parame-
ter. Although only the four MIPs are incorporated into the 
model to predict the quality of water intake, in practice, 
seven different points before it are also monitored.

2. Methods adopted

Three different methods were utilized to achieve the 
objective of the present study. Specifically, one neural-mod-
eling method and two decision-making methods were 
adopted. Section 2.1 and 2.2 describe the MCDM methods 
and 2.3 describes the neural-modeling method.

2.1. Analytical hierarchy process (AHP)

Multiple criteria decision making (MCDM) is a deci-
sion-making analysis approach that evaluates competing 
choices within a scenario. It considers tradeoffs that may 
be inherent in a system such as quality and cost effective-
ness, or efficiency and the time necessary to implement 
new methods, etc. One advantage of explicitly considering 
opportunity cost in decision-making scenarios, in particular 
WTPs, is that it often leads to more reasoned and better-in-
formed decisions. 

There are broadly two types of MCDM analyses meth-
ods; namely multiple criteria evaluation problems and 
multiple criteria design problems (this study utilizes the 
analytic hierarchy process, or AHP, which falls into the first 
category). The multiple criteria evaluation problems con-
sider a finite set of alternatives and evaluate them based on 
their outcome within the scenario. Competing choices can 
then be classified or sorted and an optimal choice allocation 
can be defined. Alternatively, a system of preference classes 
can be described which ranks options based on outcome. 
Multiple criteria design problems, on the other hand, con-
sider scenarios in which alternatives are not fully described. 
The alternatives can be infinite in number or may be of a 
large number if discrete numbers are outlined. Addition-
ally, the choice set may not be fully known, leaving an ele-
ment of uncertainty in the choice framework that the design 
process accounts for. 



P. De, M. Majumder / Desalination and Water Treatment 82 (2017) 44–5646

In practice, MCDM allows for both qualitative and 
quantitative parameters, and follows a pair-wise compar-
ison of importance between the alternatives with respect to 
the criteria selected and the objective of the decision-mak-
ing. Pair-wise comparison ensures the determination of 
the relative importance of alternatives, utilizing a scale to 
rate the pair-wise importance of the alternatives. It follows 
a unidirectional hierarchy, from the goal of the decision to 
the importance of the alternatives. This method is generally 
used when no specific utility function exists between the 
alternative and the criteria of decision-making. 

The analytic hierarchy process is a specific type of 
MCDM proposed by Saaty in1990 [13]. It is a method used 
for evaluating complex decision-making processes. Debnath 
et al. [14] utilized this method for Grey Water Recycling, 
whereas Rasli et al, [15] and Rahmati et al. [16] have applied 
this method for selection of location for urban parks and 
for prioritization of watershed vulnerability, respectively. 
There are numerous applications for AHP in the problems 
of water resources and its management [17,18]. The satisfac-
tory results depicted by the authors of these studies encour-
age the use of this method as a comparison with the new 
multi variable temporal decision making method for selec-
tion of optimal solution (MVTDMSOS).

The AHP is characterized by the categorization of attri-
butes of the scenario into hierarchies, each of which can be 
scrutinized before the scenario as a whole is studied. These 
attributes can include any factor related to the scenario and 
are deliberately broad in nature. They may include qualita-
tive as well as quantitative elements, may be either tangible 
or intangible, and may include both objectives and realities. 
The advantage of this approach is that the complexity of the 
scenario can be better evaluated if scope is present for the 
consideration of a broad range of attributes. 

The hierarchy obtained is then subject to internal com-
parisons. The various elements are divided into pairs and 
compared with pairs of other elements at different points in 
the hierarchy. This evaluation can be either based on empir-
ical evidence or on the decision maker’s objectives, or both. 
This aspect of the AHP allows the use of decision maker’s 
insight and rationale, which is often required in complex 
decision-making processes. Based on these comparisons, 
a numerical value is then attributed to each element of 
the hierarchy, which quantifies its significance relative to 
alternative pairs of criteria. This method does not offer a 
definitive solution to a complex problem; rather, it suggests 
which option from within a competing set is most likely to 
provide an optimal solution.

The AHP method was used to estimate the relative 
importance of the selected parameters with respect to the 
study objective; the manner in which it was applied is out-
lined in the following sections.

2.2.  Multi variable temporal decision making method for  
selection of optimal solution (MVTDMSOS)

The MVTDMSOS is a form of MCDM that is being 
proposed in the present study to approximate the rela-
tive importance of parameters with respect to the criteria 
considered. It differs from the AHP method in that it will 
yield the priority value or weight of importance for each 
of the selected alternatives used for selection of the opti-

mal (instead of the normal) solution. This implies that the 
estimated importance and selection of the option using this 
method will ensure system outputs are optimal. 

Popular MCDM applications, such as AHP, approxi-
mate the relative weight of importance for a normal output 
from the decision-making process. The MVTDMSOS, how-
ever, attempts to ensure that the relative importance of the 
parameters will give an optimal output from the decision 
making process. The adaptation of this condition is aimed 
at helping the decision maker to adopt an output measure 
that will yield maximum benefit from the system.

Another difference between normal MCDM methods 
and this method is that it considers temporal variation of 
the parameters. Both the alternatives and its time-lagged 
states are included as alternatives. The summation of the 
product function of priority parameters and the prior-
ity values are considered as the objective function. The 
relationship between the parameter and the goal of deci-
sion-making with respect to the criteria considered are 
also included by positioning the proportional factors in the 
numerator and inversely proportional factors in the denom-
inator. The proportionality of the factors change with the 
criteria and that is why separate objective functions have to 
be prepared for each of the criteria. This segmented nature 
of the optimization problem ensures the inclusion of the 
non-linearity that exists between the decision goal, criteria 
and the alternatives; as there will always be more than one 
objective function, the optimization procedure will always 
be multi-objective. The priority values of the parameters are 
considered as design variables, whereas the value of pri-
ority parameters is taken from the location for which the 
method is developed. As there will be different objective 
functions for each criterion, separate priority values for the 
parameters will be estimated for the different criteria. The 
priority value estimated for the criteria, which are directly 
proportional to the goal of the decision will be divided by 
the priority value determined for the non-beneficiary or 
inversely-proportional criteria. The final priority value of 
each of the parameters will be calculated from this ratio. 
The constraints of the design variable will lie between 0 
(least significant) and 1 (most significant).

All the objective functions and the final ratio will be 
interlinked, and the values calculated at the same time. the 
polynomial neural network algorithm was implemented 
in an attempt to find the optimal value of the objective 
function. 

2.3. Polynomial neural networks (PNN)

In recent years, simple neural network models have been 
replaced by more advanced and complex variants. Polyno-
mial neural networks [19,20] are one such type of new and 
advanced modeling framework which follows the neural 
network architecture, but is self-sufficient in the selection 
of optimal topology and number of inputs required to accu-
rately learn the modeling problem.

The group method of data handling (GMDH) [21] is 
a training algorithm which is applied to train PNN based 
models. It is a type of inductive analysis that uses datasets 
with multiple parameters to obtain an optimal allocation 
output, frequently used in data mining, prediction and 
optimization of problems, and in complex decision-making 
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analyses. It is particularly effective at building complexity 
within decision-making models by using a base function, 
which aggregates multiple inputs into one output forming 
a partial model. These partial models can be aggregated 
until a model of optimal complexity can be generated, 
which in turn produces the optimal output. A key feature 
of this model is in the application of external criteria such 
as the minimization of least squares, in order to minimize 
variation within the decision output that could arise from 
subjective biases implicit in the scenario, or from natural 
variation. 

The GMDH framework is versatile in the manner in 
which it can be applied in numerous partial models. One of 
the earliest was the multilayer inductive procedure, which 
proved to be very influential. Commonly known as poly-
nomial neural networks, this method has been invaluable 
for the development of computational systems in the past. 
They display many similarities to biological neurons, where, 
when transmitter chemicals surpass a particular threshold, 
the neuron is activated and emits a signal through the axon. 
This signal might be sent to another synapse, which in turn 
may activate other neurons. This principle of chains of 
effects being initiated is abstracted and applied to artificial 
neural network (ANN) models. 

ANN models can, in effect, approximate scenarios 
which may have a large number of inputs into a single 
output, which in turn can be used as an input into another 
model; in this way they replicate the multifaceted reper-
cussions of decision characteristics that are present in 
multiple criteria decision-making processes. Thus, a 
given number of inputs can be applied multiple times in 
a given set of formulae, leading to output decisions which 
implicitly give greater significance to those criteria that 
are inputted the greatest number of times into the interim 
“hidden” algorithms. 

However, the neural network algorithm has a drawback 
in that the number of hidden layers and inputs at which 
maximum accuracy can be achieved from the developed 
model has to be determined with the help of trial and error, 
or with the use of search algorithms. Such procedures are 
often time consuming and may not always ensure opti-
mality, as results may change when a different method is 
adopted or may differ in the next trial.

For the purposes of this study, the GMDH is construed 
as an algorithm that follows the neural network topology. 
It self-selects the number of hidden layers and inputs with 
which the output can be considered most accurate. In this 
way, the time required for model development as well as 
the error that may arise from using search models can be 
mitigated, compared to the earlier methods. The model 
adopted here uses GMDH to map the selected parameters, 
with the indicator as an output, to generate a system that 
will predict the quality of water intake. This prediction will 
be free of bias, as the importance of each of the parameters 
will be hidden in the algorithm. The model will also be plat-
form-independent and can be used in any similar system.

Along with GMDH, the present investigation also uti-
lized quick combinatorial or combinatorial optimization 
[22] training algorithms to find the optimal value of the 
weights of the interconnections between the input, hidden 
and output layers for comparison with the result derived 
from the GMDH algorithm.

3. Methodology

As outlined in Section 1, the present study describes an 
approach to monitor the quality of water intake for surface 
WTPs. In order to facilitate this enquiry, an indicator was 
developed to represent the overall quality of the water with 
respect to the study objective. In this way a new multi cri-
terion decision-making method was proposed. An existing 
MCDM was also used for the same purpose, with the input 
parameters and indicators being mapped with the help of 
a cognitive technology known as GMDH. This methodol-
ogy is described in detail in Sections 3.1–3.5. Fig. 1 depicts 
a schematic diagram of the methodology adopted in the 
present study. Fig. 2 shows the hierarchy of goals, criteria 
and alternatives for the MCDM step. The algorithm of the 
MVTDMSOS method is shown in Fig. 3, while the devel-
opment steps of the polynomial neural network model are 
depicted in Fig. 4.

3.1. Application of MCDM method to identify priority value

The MCDM method, as described in Section 2.1, 
is utilized in both objective and relative decision-mak-
ing. It has the distinct advantage of providing unbiased 
priorities with respect to the decision objectives. The 
present study utilizes two MCDM methods: analytical 
hierarchy process (AHP) and a new decision making 
method, the multi variable temporal decision making 
method for selection of optimal solutions (MVTDMSOS),  
proposed for the first time in this study. The MCDM 
method involves three steps that are described in Sec-
tions 3.1.1–3.1.3.

3.1.1. Selection of criteria

The decision making analysis process is carried out here 
with respect to two different criteria: technical efficiency 
and economic liability. The former compares the alterna-
tives with respect to their ability to impact the technical 
efficiency of the WTP and the latter represents the priorities 
in response to economic liabilities of the WTP that can be 
absorbed by alternatives.

3.1.2. Selection of alternatives

From the review of expert literature on the topic, it was 
found that changes in dissolved oxygen(DO), pH, turbid-
ity and total dissolved solids(TDS) within a span of 24, 48 
and 72 h have the maximum influence on performance effi-
ciency of WTPs. That is why all twelve of these parameters 
were considered in the decision-making method, ranking 
them in terms of priority. Table 1 (in the appendix) summa-
rizes and describes each of these parameters. 

3.1.3. Application of aggregation methods

The alternatives were ranked as per their significance 
from a review of studies on the topic. Following this, the 
AHP method was applied. In effect, all the alternatives 
were compared both with each other and with respect to 
the criteria under consideration. Priority values were then 
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Fig. 1. Schematic diagram of the methodology adopted in the present study.

Fig. 2. Hierarchy diagram of the decision making problem.
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Fig. 3. Schematic diagram of the methodology for the MVTD approach.

Fig. 4. Schematic diagram of the methodology adopted in the development of polynomial neural network model.
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calculated with the help of the product of the weight matrix; 
this shows the importance of a given factor in achieving the 
criteria, which can then be compared to the weight matrix 
of the alternatives with respect to the same criteria. The 
result of this is that the product gives the overall priority 
value of each of the alternatives.

Through the use of the MVTDMSOS model, an objec-
tive equation was developed. In this way, the objective 

function becomes directly proportional to the product sum 
of the priority values and the magnitude of the considered 
alternatives. This is beneficiary to the study’s objectives and 
as such, is inversely proportional to the non-beneficiary 
parameters.

The priority values of all the parameters were taken as 
design variables, having a constraint of 0 to 1. The neural 
network is used as the programming technique in order to 

Table 1
Criteria and alternatives considered in the AHP MCDM method

Name of the criteria Description

Technical efficiency The technical or functional efficiency or the property of the parameter which increases the quality 
of the water.

Economic liability The economic liability will depend on the hazardous impact that can be implemented by the 
parameter. The economical liability is directly proportional to the hazard potential of the 
parameter.

Name of the alternatives Description
Change in the dissolved 
oxygen concentration 
within 1 d

The change in the concentration of the parameter within 24 h of first sample collection. 
The concentration of DO is directly proportional to the usability of the intake water but inversely 
proportional to the requirement for treatment.

Change in the dissolved 
oxygen concentration 
within 2 d

The change in the concentration of the parameter within 48 h of first sample collection. 
The concentration of DO is directly proportional to the usability of the intake water but inversely 
proportional to the requirement for treatment.

Change in the dissolved 
oxygen concentration 
within 3 d

The change in the concentration of the parameter within 72 h of first sample collection. 
The concentration of DO is directly proportional to the usability of the intake water but inversely 
proportional to the requirement for treatment.

Change in the pH 
Concentration within 1 d

The change in the concentration of the parameter within 24 h of first sample collection. 
The concentration of pH is directly proportional to the usability of the intake water but inversely 
proportional with the requirement of treatment within the range of 6.5 to 7.5, but the relationship 
changes with lesser value of 6.5 and larger value of 7.5.

Change in the pH 
Concentration within 2 d

The change in the concentration of the parameter within 48 h of first sample collection. 
The concentration of pH is directly proportional to the usability of the intake water but inversely 
proportional with the requirement of treatment within the range of 6.5 to 7.5, but the relationship 
changes with lesser value of 6.5 and larger value of 7.5.

Change in the pH 
Concentration within 3 d

The change in the concentration of the parameter within 72 h of first sample collection. 
The concentration of pH is directly proportional to the usability of the intake water but inversely 
proportional with the requirement of treatment within the range of 6.5 to 7.5, but the relationship 
changes with lesser value of 6.5 and larger value of 7.5.

Change in the turbidity 
concentration within 1 d

The change in the concentration of the parameter within 24 h of first sample collection. 
The concentration of Turbidity is inversely proportional to the usability of the intake water but 
directly proportional with the requirement for treatment.

Change in the turbidity 
concentration within 2 d

The change in the concentration of the parameter within 48 h of first sample collection. 
The concentration of Turbidity is inversely proportional to the usability of the intake water but 
directly proportional with the requirement for treatment.

Change in the turbidity 
concentration within 3 d

The change in the concentration of the parameter within 72 h of first sample collection. 
The concentration of Turbidity is inversely proportional to the usability of the intake water but 
directly proportional with the requirement for treatment.

Change in the total 
dissolved solid (TDS) 
concentration within 1 d

The change in the concentration of the parameter within 24 h of first sample collection. 
The concentration of TDS is inversely proportional to the usability of the intake water but directly 
proportional with the requirement for treatment.

Change in the TDS 
concentration within 2 d

The change in the concentration of the parameter within 48 h of first sample collection. 
The concentration of TDS is inversely proportional to the usability of the intake water but directly 
proportional with the requirement for treatment.

Change in the TDS 
concentration within 3 d

The change in the concentration of the parameter within 72 h of first sample collection. 
The concentration of TDS is inversely proportional to the usability of the intake water but directly 
proportional with the requirement for treatment.
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maximize the objective equation. The values of the design 
variables at the optimal point give the priority values of the 
parameters in the MVTDMSOS.

In the case of MVTDMSOS, the objective equation was 
formulated with the help of the 24, 48 and 72 h variations of 
the parameters. 

3.2. Development of the Q-indicator

The Q-indicator was developed as the ratio of all the 
beneficiary and non-beneficiary parameters with respect to 
study’s objective. The product of the priority value and the 
magnitude of the beneficiary and non-beneficiary alterna-
tives was integrated separately and the ratio of the results 
yielded the Q-indicator, which is directly proportional to 
the quality of the intake water. Thus, the higher the Q-in-
dicator, the lower the vulnerability or requirement to adjust 
the functionality of the WTP.

3.3.  Development of polynomial neural network based models to 
map the input alternative to the output Q-indicator

In total, 24 different models were developed to estimate 
the Q-indicator from the input parameters. Table 2 shows 
the characteristics of the 24 different models. In summary, 
it can be concluded that number of inputs varied from 4 
to 12. The type of data transformation was also changed 

between the Arc Tangent function and no transformation. 
The MCDM method was also varied between MVTDMSOS 
and AHP, and the training algorithm varied between the 
GMDH and the Quick Combinatorial (QC) process. In total 
three models were prepared for each with 4, 8 and 12 inputs, 
respectively. Therefore, a total of twelve models were devel-
oped with the priority value derived from MVTDMSOS and 
AHP methods, and the same number of models developed 
again with the GMDH and QC training algorithms.

The predictions from the models were compared with 
each other based on performance metrics like mean abso-
lute error (MAE) [23], root mean square error (RMSE) [24] 
and the correlation coefficient (r) [25]. These three metrics 
were calculated with the help of the predicted data from the 
models, along with the actual data set which was fed into 
the model for training. A model prediction with high cor-
relation and low MAE and RMSE shows that the predicted 
data is in concordance with the actual data. The metrics 
were calculated for the data used for training as well as test-
ing, whereas the measurement from the testing phase was 
given higher priority compared to the metrics derived from 
the training phase. In general, sixty percent of the data was 
used for training and forty percent for testing.

The data for training and testing was generated with the 
help of the Random Forest Algorithm, where 10000 points 
of data was generated from which 4 set of data was used for 
training and testing purposes. Each set contained 250 points 
of data. The data were generated by considering the nor-

Table 2
Performance metrics of the selected models

Number of input Number of output Data transformation WVDM Training algo

4 1 None MVTDMSOS GMDH
4 1 Arc Tan of O/P MVTDMSOS GMDH
4 1 Arc Tan of O/P MVTDMSOS QC
4 1 None MVTDMSOS QC
8 1 None MVTDMSOS GMDH
8 1 Arc Tan of O/P MVTDMSOS GMDH
8 1 Arc Tan of O/P MVTDMSOS QC
8 1 None MVTDMSOS QC
12 1 None MVTDMSOS GMDH
12 1 Arc Tan of O/P MVTDMSOS GMDH
12 1 Arc Tan of O/P MVTDMSOS QC
12 1 None MVTDMSOS QC
4 1 None AHP GMDH
4 1 Arc Tan of O/P AHP GMDH
4 1 Arc Tan of O/P AHP QC
4 1 None AHP QC
8 1 None AHP GMDH
8 1 Arc Tan of O/P AHP GMDH
8 1 None AHP QC
8 1 w AHP QC
12 1 None AHP GMDH
12 1 Arc Tan of O/P AHP GMDH
12 1 None AHP QC
12 1 Arc Tan of O/P AHP QC
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mal distribution pattern for each of the parameters, and the 
output was calculated with the help of the function used to 
calculate the Q-indicator.

3.4. Sensitivity analysis

The sensitivity of the input parameters was estimated 
with the help of the ‘One Factor at a Time’ (OFAT) method 
[26], where one factor is changed to see the impact on the 
output of the model. The significance of each of the param-
eters and robustness of the selected model can be identified 
with the help of this analysis. 

3.5. Case study 

A case study utilized for the application of these mod-
els was selected from an area in the northeastern part of 
India. A surface water treatment plant there, which supplies 
treated water to semi-urban consumers, was identified and 
the indicator was used to monitor the quality of the water 
intake at eight different points, including the intake point.

The results from this study were expected to give the 
overall quality of the water or vulnerability of the water 
in the treatment plant from seven different points located 
before the intake point.

4. Results and discussion

Tables 3a and b show the results from using the MVTDM-
SOS and AHP methods, respectively. The priority values of 
the parameters, as determined by the two demonstrated 
methods that are in the tables, are included in the appen-
dix. Table 4 shows the RMSE, MAE and r achieved from 
the comparison of the actual and predicted values from the 
prepared models in training as well as in the testing phase. 
The results from the sensitivity analysis were revealed in 
Table 5, while the value of the indicator with respect to the 
concentration of DO, pH, TDS and turbidity are identified 
and listed in Table 6.

4.1. Most important parameter

As per the results of the MVTDMSOS and AHP analyses 
(Tables 3.1a and b), pH was found to have the highest con-
tribution towards controlling the overall quality of the water 
intake, for 24 h, or for both 24 h and 48 h, changes in the con-
centration of the parameters. If 24, 48 and 72 h changes are 
considered together, and then the most important parameter 
is identified to be the change in DO within 72 h. Conversely, 
in the AHP results, it was found that the change in the con-
centration of turbidity and DO within 24 h were the two most 
important factors which, respectively, increase and decrease 
the vulnerability of the intake of water.

4.2. Selection of the best model

Among the 24 models developed in the study for the 
estimation of the indicator (as shown in Table 4) models 

Table 3a 
Result from the MVTDMSOS results

Input 
parameter

Priority 
value

Rank of the 
parameter

Input 
parameter

Priority 
value

Rank of the 
parameter

Input 
parameter

Priority 
value

Rank of the 
parameter

cDO 0.466786 2 cDO 0.609791 5 cDO 0.727 3
cpH 0.919769 1 c2DO 0.757507 2 c2DO 0.457 5
cTurbidity 0.061954 4 cpH 0.865247 1 c3DO 0.993 1
cTDS 0.117456 3 c2pH 0.622108 3 cpH 0.379 7

cTurbidity 0.621488 4 c2pH 0.926 2
c2Turbidity 0.079348 8 c3pH 0.431 6
cTDS 0.485498 7 cTurbidity 0.706 4
c2TDS 0.607813 6 c2Turbidity 0.245 8

c3Turbidity 0.031 10
cTDS 0.013 12
c2TDS 0.019 11
c3TDS 0.235 9

Table 3b
AHP results

Criteria Tech Eco   

Weight of criteria 0.600000 0.400000 P.V RANK

cDO 0.322240 0.080562 0.225573 2
cpH 0.080562 0.107416 0.091303 4
cTurbidity 0.161123 0.322247 0.225573 1
cTDS 0.107416 0.161123 0.128899 3
c2DO 0.064449 0.040281 0.054782 5
c2pH 0.040281 0.046035 0.042583 8
c2Turbidity 0.046035 0.064449 0.053401 7
c2TDS 0.053708 0.053708 0.053708 6
c3DO 0.035805 0.026854 0.032225 9
c3pH 0.026854 0.029295 0.02783 12
c3Turbidity 0.029295 0.035805 0.031899 11
c3TDS 0.032225 0.032225 0.032225 9
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which have 4 input parameters trained with GMDH and 
which use the results from MVTDMSOS (Model No. 4, 
AOGM2) were found to be more reliable predictive frame-
works compared to the other 23 models (if the output data 
is transformed by the Arc Tangent function.)

The RMSE and MAE achieved by the selected model in 
the testing phase was found to be 0.33% and 1.20%, respec-
tively, whereas the correlation coefficient was found to be 
equal to 99.96%. The metrics, similar to MAE, display a 
larger mean absolute error of 3.03%, or 0.6 times the RMSE 
of the selected model. In addition, the correlation at the test-
ing period was found to be 0.04% less than that of the sec-
ond best model, in the case of the model output for the data 
with which the model was not trained.

4.3. Sensitivity analysis

The results of the sensitivity analysis of the two ben-
eficial parameters were 0.265 and 0.294, whereas for the 
non-beneficiary factors, the importance of the parame-
ters was found to be 0.206 and 0.235, respectively. All the 
sensitivity indicators corresponded to the priorities of the 
parameters.

4.4. Case study

The water quality was identified at the seven different 
points; along with the intake point. It was found that water 
quality of the intake point was worse than the other seven 
points. The best quality of water was found to be at point 
P6, and once this part of water reached the intake point, the 
dosing pattern needs to be adjusted. 

The changes in the beneficiary quality parameters 
were at a maximum (and variation in the non-beneficiary 
quality parameters at a minimum) in P6, as compared to 

other points. However, at the intake point, the change 
in beneficiary and non-beneficiary parameters was min-
imum and maximum, respectively, and that is why the 
requirement for change in functionality of the treatment 
plant was highest for water at the intake point and lowest 
at P6 compared to the other five points. This indicates 
that, with the help of the Q-indicator, users can make 
informed decisions on any changes in the operating pol-
icy of the WTP.

4.5. Scientific benefit

The Q-indicator enables any engineer at the surface 
water treatment plant to monitor the quality of the water 
intake. They may also adjust various points of functionality 
in the WTP to maintain the reliability of the treated water 
produced from the plant.

The Q-indicator is in practice both objective and cogni-
tive, with no probability of bias from external influences. 
It considers the impact of the quality parameters on tech-
nical efficiency and the potential of increasing hazards 
to affect the plant’s instruments. That is why the value 
of the indicator becomes proportional to the increase in 
the plant’s efficiency. The indicator can also be used in 
various ways to identify and mitigate any reduction in 
the plant’s efficiency. As it is portable, it can be encoded 
in digital instruments or fed into the distributed control 
or Supervisory Control and Automated Device Accesso-
ries based systems so that the entire process of quality 
deterioration and compensatory measures to mitigate the 
situation can be automated. These processes of limiting 
human interference can have positive repercussions on 
efficiency because biases and other cognitive errors are 
excluded. 

4.6. Limitation

The dependence of the indicator upon the parame-
ters, criteria and methods to find the relative weights can 
change the value of the indicator for the water samples 
collected from two different locations. That is why the 
selection of alternatives, criteria and methods of determi-
nation for the priority values can be streamlined with the 
help of a policy.

The indicator was only applied in the present study 
area; however, estimation of the indicator for other loca-

Table 5
Sensitivity analysis of the selected model (Model: 4AOGM2)

Name of parameters Sensitivity

cDO 0.264706
cpH 0.294118
cTurbidity –0.205882
cTDS –0.235294

Table 6
Values of the indicator for the intake point and seven points before the intake

Point cDO cpH cTurbidity cTDS Q-indicator value

Intake 0.231994 0.212158 0.951498 0.529875 0.105495
P1 0.810959 0.014459 0.500007 0.836428 0.111873
P2 0.250382 0.534467 0.181505 0.376415 0.13226
P3 0.814876 0.880367 0.389815 0.06644 0.138281
P4 0.847045 0.63894 0.410725 0.789808 0.129955
P5 0.23386 0.540415 0.31231 0.625608 0.126828
P6 0.439774 0.669392 0.21737 0.029508 0.138309
P7 0.699758 0.200556 0.905062 0.700315 0.117001
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tions could enrich the quality of the indicator and fur-
ther enable the tool to be used to reduce the impact of 
 disasters.

5. Conclusion

The present investigation proposed a new methodol-
ogy to identify the changes in quality of water to be treated 
in a water treatment plant. An indicator was developed 
with the most important parameters being used as input 
variables. These parameters were identified with the help 
of MCDM technology. A self-adaptation characteristic was 
included in the index by the application of polynomial 
neural networks.

A case study of a WTP in a semi-urban city was also 
presented and used as raw data in the indicator models. 
From these results, it is evident that the index can be used 
to monitor the changing quality of intake water. Such 
indicators can be useful for the introduction of automa-
tion and real-time monitoring technology in water treat-
ment plants, which can be both financially and technically 
beneficial.

From the results of the study, it was found that changes 
in concentration of DO within 24 and 72 h, as well as 
changes in turbidity within 24 h and changes in pH within 
24 h, contribute the most to changing the overall quality 
of the intake water, which can have economic and techni-
cal benefits. The self-adaptive capability of the index was 
introduced by implementing polynomial neural networks, 
through which 24 different models were developed. The 
model output determined by MVTDMSOS with four inputs 
was found to have better performance metrics compared to 
the other models. The best model was used to estimate the 
Q-value of the water at seven different points, as well as the 
intake point of the selected WTP. 

The results indicate that at the time the quality of 
water was monitored, the intake point had the most det-
rimental and point no.6 the highest water quality among 
all the points considered in the evaluation. These shows 
a requirement for adjustment in the treatment mecha-
nism for intake when the water of P6 reaches the point of 
intake of the WTP. If no adjustment were adopted, then 
over-use of chemicals and other unnecessary expendi-
tures might be incurred which can have repercussions for 
the profitability of the plant. Although the present meth-
odology depends largely on the type of MCDM methods 
adopted to identify important parameters (and also to 
select parameters), the indicator can still be useful for 
maintaining optimal performance in any WTP, regardless 
of the manner of analysis used. Indeed, there is scope for 
mitigating this limitation through the adoption of a uni-
form methodology applied by the regulation authority of 
WTPs.
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