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ab s t r ac t
A multi-objective hybrid optimization algorithm is presented combining harmony search and the 
Nelder–Mead simplex algorithm, applied to the solution of a bi-objective groundwater management 
problem. The objective functions of the corresponding optimization problem include pumping and 
installation costs to be minimized, along with the sum of supply discharges that is to be maximized in 
an aquifer. The number and position of production wells is addressed as a special feature of the prob-
lem. Optimal trade-offs among these conflicting objectives are found by determining the correspond-
ing Pareto front. The present multi-objective approach is compared with a harmony-based method of 
the literature. The comparison is performed both on the aquifer problem and two standard benchmark 
functions, with results that favor the present approach.
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1. Introduction

Evolutionary methods and algorithms are becoming 
increasingly popular in scientific and engineering applica-
tions involving optimization. Furthermore, in the past 15 
years, the interest of the scientific community is focused on 
multi-objective applications. These are applications with sev-
eral objectives to be satisfied. In such a case, a single solu-
tion that is optimal with respect to all objectives cannot be 
found, especially when these objectives are conflicting with 
each other. Therefore, in a multi-objective problem the term 
“optimal” cannot be used for a solution and the term “domi-
nation” is introduced instead. By definition, a solution domi-
nates another one when the first solution is no worse than the 
second solution in all objectives and it is better in at least one 
objective [1]. Thus, for a problem that requires all objective 
functions to be minimized, a solution x1 dominates another 
solution x2 if: 

∀ ∈{ } ( ) ≤ ( ) ∧ ∃ ∈{ } ( ) ≤ ( )i m f x f x j m f x f xi i i j j1 12 1 2, , : , , : 

� (1)

The solutions that are not dominated by any other solution 
are known as Pareto – optimal solutions or non-dominated 
solutions [2]. Any non-dominated solution is accep le since 
none of the objective functions can be improved in value 
without degrading some of the other objective values.

A popular algorithm for solving single-objective optimi-
zation problems is the Harmony Search algorithm (HSA) [3]. 
The algorithm has global characteristics, it has been studied 
intensively during the recent years and it has been applied 
to a great variety of optimization problems [4–6]. Several 
single-objective hybridizations of HSA have been proposed, 
especially with emphasis on specific mathematical or engi-
neering problems [7–11].

The Nelder–Mead (NM) method [12] is a simple, direct 
search, local optimization technique. The method is easy to 
implement in practice, it does not require the derivatives 
of the objective function and it involves the concept of an 
evolving population. These features make it particularly sui 
le for combination with evolutionary algorithms, such as 
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genetic algorithms and simulated annealing, as in [13] and 
[14], which deal with single-objective optimization of general 
benchmark functions. The only single-objective hybridiza-
tions of Nelder–Mead with Harmony Search appear to be 
one by Jang et al. [15] and another one by the present authors 
[16]. The question of comparison to other single-objective 
approaches has been addressed in those references. The pres-
ent treatment is, therefore, devoted exclusively to a multi- 
objective version of the water resources problem.

Multi-objective hybridizations of HSA, such as [17] 
and [18], are a lot rarer than single-objective ones. No 
multi-objective hybridization of HSA with the Nelder– 
Mead method is to be found in the literature, to the best of 
the present authors’ knowledge. In this paper, such hybrid-
ization is presented. The resulting hybrid algorithm com-
bines the typical background ideas contained in [2] and 
[19] and especially in their HSA counterpart (MOHS) [20], 
with a sui ly applied and presented here Nelder–Mead 
local search. The new algorithm is named multi-objective 
harmony simplex hybrid (MOHSH) and yields improved 
performance. It is geared to the solution of an aquifer 
management problem. The algorithm is also tested on two 
standard characteristic benchmark functions.

Groundwater management leads to challenging non-lin-
ear and non-convex mathematical programming problems, 
for which the choice of heuristic evolutionary methods has 
been es lished, in order to avoid computation of deriva-
tives and trapping in local optima [6]. Groundwater man-
agement via single-objective harmony Search has been 
treated in [6]. The characteristic problem presented here is 
bi-objective and the HSA is enhanced by the hybridization. 
The problem involves pumping cost minimization with both 
pumping rates and well locations as optimization param-
eters. Simultaneously, the total discharge of the wells is to 
be maximized leading to a multi-objective problem with 
conflicting objectives. Well locations are considered in the 
literature either as two additional continuous decision vari-
ables, namely the X and Y coordinates of the well [21] or as 
grid point coordinates in a discretized region of the study 
domain [22]. In this paper well locations are, more realisti-
cally, selected from a set of discrete candidate locations as in 
[23], but with a different selection scheme.

2. MOHSH algorithm

The MOHSH algorithm is the result of the hybridiza-
tion of HSA and Nelder–Mead method and its application 
in multi-objective problems. The incorporation of local and 
global search strategies in a unified algorithm provides the 
necessary flexibility for dealing with an overall non-con-
vex function landscape, while at the same time performing 
explorations in its locally convex regions. The local search by 
Nelder–Mead algorithm is not applied in every improvisa-
tion, giving time to HSA in order to alter the harmonies. The 
number of improvisations performed by HSA between the 
local searches is specified by the user through a parameter 
called NM_ST. In order to sort the obtained solutions, the fast 
non-dominated sorting and the crowded-comparison opera-
tor are used as they are described in [2]. Thus, every harmony 
is assigned two factors. The first one, np, is used to determine 
by how many other harmonies it is dominated. The second 

one, cd, indicates its relative distance from the next and pre-
vious harmonies according to all objective functions. Between 
two solutions, we preferred the one that has lower np. If the 
two solutions have the same np the one is preferred that has 
higher cd, meaning that it is located in a less crowded region.

In addition to the harmony memory (HM), two new slots 
are kept in memory: the archive [20] and the vault. The size 
of the archive (AS) is also user-defined and it is used in order 
to store the non-dominated harmonies. The vault is used to 
store the solutions of the archive before they are altered by 
the algorithm, in order to avoid applications of Nelder–Mead 
to the same harmonies. The steps of the proposed algorithm 
are as follows:

Step 1: Parameter setting
�Define the objective functions, the decision parame-
ters with their boundaries and the parameters of the 
algorithm.

Step 2: Initialization
�Fill the HM matrix with random decision variables in 
the feasible space. The HM matrix can be described 
as follows:
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where n is the number of variables and HMS is the 
number of harmonies stored in HM.

Step 3: Archive generation
�Evaluate the HMS harmonies and sort them with fast 
non-dominated sorting. The non-dominated harmo-
nies move to archive. The empty slots of the HM are 
filled with randomly generated harmonies until the 
size of the HM is HMS.

Step 4: Generation of new harmonies
A new harmony is generated HMS times as follows:
for i in range (n): 
Select a random harmony from archive xi

AR

Select a random harmony from HM xi
HM

if rand
x x rand x x
if rand
i i i i

( , ) :
( , ) * ( )
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Step 5: Update of the archive
�The new harmonies are evaluated and the combined 
HM, archive and new harmonies are sorted with fast 
non-dominated sorting and the crowded-comparison 
operator. The first AS harmonies move to archive. 
The harmonies in positions [AS + 1: HMS + AS] move 
to HM and the rest are discarded.

Step 6: Nelder–Mead implementation
�This step is executed every NM iterations. The vec-
tors that participate in the local optimization by the 
Nelder–Mead method are one member from the 
archive as guide and n members randomly picked 
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from the HM. Whenever a sorting procedure is 
required from the algorithm, the fast non-dominated 
sorting and the crowded comparison operator are 
applied. In order to evaluate the new solutions 
according to their performance in all the population, 
the harmonies from the archive and HM are added 
to the sorting. Thus, a more accurate ranking is given 
to the vectors with little computational cost, since 
these harmonies are already evaluated.

The procedure is repeated for every harmony in 
the archive that is not in the vault. The algorithm is 
terminated if one of the following criteria is met [19]:
•	 The simplex size is smaller than a predefined 

value. This value can be relative to the expected 
precision.

•	 A user-defined number of maximum iterations or 
function evaluations is reached.

Step 7: Update of the archive and the vault
�The harmonies that were obtained by the Nelder–
Mead implementation, the harmonies from HM and 
the archive are sorted. The archive and the HM are 
recreated with the same manner as in step 3. The vault 
is being replaced by the archive in order to avoid 
reevaluation of these harmonies from the Nelder–
Mead method. If the maximum number of iterations 
or function evaluations is reached, then the members 
of the archive compose the calculated non-dominated 
set. If not, the process is repeated from step 4.

3. Performance measures

In order to estimate the efficacy of the proposed algo-
rithm, two performance metrics are used. The first one is 
the C metric function and it is defined as follows [20]: let 
X′,X′′ ⊆ X be two sets of decision vectors. The function C 
maps the ordered pair (X′,X′′) to the interval [0,1].

C X X
a X a X a a

X
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The value C(X′,X′′) = 1 means that all solutions of X′′ are 
dominated by solutions from X′. The opposite condition 
C(X′,X′′) = 0 means that there is no solution in X′′ dominated 
by any solution in X′. Notably, both C(X′,X′′) and C(X′′,X′) 
have to be calculated since C(X′,X′′) is not necessarily equal 
to 1 – C(X′′,X′). This function is chosen because it does not 
require any knowledge of the true Pareto front in order to 
evaluate the algorithms in test.

The second performance metric Δ is used to measure 
the extent of spread achieved among the obtained solutions 
[2]. It is calculated as follows:
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where di is the Euclidean distance between consecutive solu-
tions in the obtained set of solutions, d  is the average of these 
distances, df and dl are the Euclidean distances between the 

extreme solutions and the boundary solutions of the obtained 
set and N is the number of the solutions. In an ideally distrib-
uted set, all di would be equal to d  and df = dl = 0. Therefore 
the Δ metric would be 0. The metric takes higher values for 
worse distributions. The application of the Δ metric does not 
require the knowledge of the true Pareto front but it requires 
its extreme solutions.

4. Application on test problems

Performance of MOHSH is tested on two well-known 
multi-objective problems: the Fonseca–Fleming and the 
Kursawe problem. Both problems are solved by the present 
MOHSH and by the MOHS [19] algorithm. The parameters 
used in the algorithms are shown in Table 1.

The Fonseca–Fleming problem [24] is defined as follows:
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The search domain is –4 ≤ xi ≤ 4, i = 1,2,3 and the optimal 
solutions are found for x1 = x2 = x3, xi ∈ [–1/√3,1/√3].

Notably, the iterations of HSA in MOHSH are about half 
of the iterations in MOHS due to the addition of the Nelder–
Mead method and the function evaluations it requires. The 
results are shown in Figs. 1 and 2. Both algorithms have 
a rather good approach of the true Pareto front while the 
differences between the calculated solutions are small. 
When the C metric is calculated, it shows that 28 solutions 
of MOHS are dominated by solutions from MOHSH while 
none of the solutions from MOHSH is dominated by solu-
tions from MOHS. The Δ metrics are ΔMOHSH = 0.57 and 
ΔMOHS = 0.71.

The Kursawe problem [25] is defined as follows:
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Table 1
Parameters setting

Parameter Abbreviation Value

Harmony memory size HMS 200
Archive size AS 100
Maximum functions evaluation MFE 25,000
Harmony memory 
consideration rate

HMCR 0.9

Maximum iterations of 
Nelder–Mead

MINM 20

Number of iterations between 
Nelder–Mead

NM_ST 10
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The search domain is –5 ≤ xi ≤ 5, i = 1,2,3. The Pareto-
optimal set is disconnected and the optimal solutions cannot 
be found with the use of a single equation. More information 
on the calculation of the optimal solutions can be found in [26]. 

The C metric shows that 47 solutions of MOHS are dom-
inated by solutions from MOHSH while 16 solutions from 
MOHSH are dominated by solutions from MOHS. The Δ 
metrics are ΔMOHSH = 0.60 and ΔMOHS = 0.72. It can also be seen 
from Figs. 3 and 4 that the MOHSH describe the true Pareto 
front in a slightly more accurate way.

5. Aquifer management

The basic objectives of groundwater management are 
usually the minimization of pumping cost and the maximi-
zation of total pumping rate. In order to estimate the optimal 
trade-offs between these conflicting targets the MOHSH and 
the MOHS algorithms are used.

A semi-infinite unconfined aquifer is considered. The 
boundary condition of the aquifer is a Dirichlet boundary on 
the south (lake level is set to 100 m).

The management period is set to 1 year, and the flow is 
considered unsteady. The initial saturated thickness of the 

aquifer is set to D0 = 100 m.The pumping wells are in the 
rectangle with coordinates (0; 0), (0; 6,000), (4,500; 6,000), 
(4,500; 0). The number of wells is considered unknown and 
is to be optimized as well. In order to simulate the Dirichlet 
boundary on the south of the aquifer, eight imaginary wells 
are placed, symmetrical to the boundary, of which the pump-
ing rate will be added. The candidate locations of the wells 
are shown in Fig. 5. The first objective function is the sum of 
the pumping rates of the wells which has to be maximized 
(Eq. (7)). The second objective function (Eq. (8)) is the cost 
function of pumping, calculated in an arbitrary unit, which 
has to be minimized. The first term of the cost function is 
the fixed cost of installing a well at location i and the second 
represents the operating expense of the well:
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Fig. 2. MOHSH application on Fonseca–Fleming test problem.

-12

-10

-8

-6

-4

-2

0

-20 -19 -18 -17 -16 -15 -14

f 2(
x)

f1(x)

Fig. 3. MOHS application on Kursawe test problem.

-12

-10

-8

-6

-4

-2

0

-20 -19 -18 -17 -16 -15 -14

f 2(
x)

f1(x)

Fig. 4. MOHSH application on Kursawe test problem.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f 2(
x)

f1(x)

Algorithm Results

True Pareto front

Fig. 1. MOHS application on Fonseca–Fleming test problem.



309A. Manolis et al. / Desalination and Water Treatment 86 (2017) 305–310

with G being a step function of the type:

G x
if x
if x
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where a1 = 20,000 is the installation coefficient and a2 = 0.256 is 
the operating coefficient, n is the number of wells that will be 
installed, qi is the pumping rate of the well i, ui coefficient that 
is equal to 1 when the well i is used and equal to 0 when it is 
not used, Hi is the surface altitude at the well i, hi is the water 
level at the well i, h0 = 90 m is the minimum desired water 
level at the aquifer, qmin = 0 m3/d the minimum pumping rate 
of the well i and qmax = 30,000 m3/d the maximum pumping 
rate of the well i. It must be noted that, when qi < 0.01 the well 
i is considered inactive and then ui is set to 0, by virtue of its 
definition (8a).

The constraint (9) is referred to the maximum allowed 
drawdown s = H – hi = 10 m. The drawdown is calculated by 
the simplified Theis equation.
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Since the aquifer is unconfined, the drawdown s is 
replaced with the corrected drawdown s′ where s′ is given as 
s – s2/2D0 with s given by Eq. (11) and D0 the initial saturated 
thickness of the unconfined aquifer. Every time the algorithm 
calculates the objective function, the corrected drawdown in 
every well that is being used is calculated as well. In order to 
handle the maximum drawdown constraint, a penalty term 
z (Eq. (12)) is added to the objective function that takes an 
infinite value when s mi

′ > 10 .
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Thus the objective function takes its final form of Eq. (13).
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In this manner, the algorithm rejects the solutions that 
violate the maximum drawdown constraint. The application 
of the constraint described in Eq. (10) is very simple for the 
HSA part of the algorithm, since HSA does not allow the deci-
sion variables to move outside of specified boundaries. In the 
NM part of the algorithm a barrier was implemented during 
the reflection and expansion steps of the method, forcing the 
variables to take values only in the feasible space.

The problem is solved by MOHSH and MOHS algo-
rithms for comparison purposes and the solutions obtained 
are presented in Fig. 6. The C metric function shows that 
32 solutions of MOHS are dominated by solutions from 
MOHSH while one solution from MOHSH is dominated 
by a solution from MOHS. Also as it is shown in Fig. 6, 
the solutions from MOHSH algorithm succeed on describ-
ing the whole extent of the Pareto front while the solutions 
from MOHS do not. The Δ metrics are ΔMOHSH = 0.75 and 
ΔMOHS = 0.83 meaning that MOHSH has a slightly better dis-
tribution of the solutions.

6. Conclusions and discussion

A multi-objective optimization approach is presented 
with a view to deal with a groundwater management prob-
lem. The problem considered involves both continuous and 

Well 
no X Y 

1 612 4506 

2 2889 3477 

3 956 2949 

4 3560 2246 

5 2458 2153 

6 1074 1954 

7 2233 526 

8 554 502 

Fig. 5. Plan view of the aquifer and locations of candidate wells.
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management problem.
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discrete variables. The HSA is combined with the Nelder–
Mead method, thus producing a new multi-objective hybrid, 
for the aquifer management problem that constitutes the main 
theme of the present paper. Additionally, the proposed algo-
rithm is also tested on two benchmark bi-objective problems 
of the literature. The comparisons are performed with a refer-
ence to an es lished harmony-based multi-objective algorithm 
that does not involve hybridization, in contrast to the present 
approach. The results are in favor of the proposed method, on 
the basis of es lished performance criteria for multi-objective 
algorithms.
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