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a b s t r a c t

An experimental study has been performed to evaluate the single slope hybrid solar still integrated 
with heat pump (SSDHP). The purpose of this study is to determine the effectiveness of solar still 
and its modeling using artificial neural networks (ANNs) with the help of experimental data. Most 
influencing parameters (the solar radiation, glass cover temperature, basin temperature, water tem-
perature and temperature of the evaporator) at an hour interval on the performance of hybrid solar 
still using ANNs model are discussed in this paper. Effect of an air compressor on the productivity of 
SSDHP and assess the sensitivity of the ANN predictions for different combinations of input param-
eters as well as to determine the minimum amount of inputs necessary to accurately model solar still 
a performance for the prediction of actual distiller output results. The experimental result SSDHP 
with air will give 100% higher yield as compared to the SSDHP without air but SSDHP dramatically 
maintains its lead by 25% at 9 h. While this duration maximum difference in yield of SSDHP with 
and without air observed that SSDHP with air gives 34.61% higher yield as compared to without air 
during 11 to 12 hour due to the influence of basin temperature. SSDHP with air was recorded 33.33% 
higher yield as compared to the SSDHP without air. For training, validation, test and all, value of R 
is equal to 0.99454, 0.99121, 0.99974 and 0.99374 respectively in ANNs proposed model which shows 
very good agreement with the experimental result. Satisfactory results for the SSDHP with air will 
pave the way to predict performance result for different climate regimes, with sufficient input data, 
the ANN method could be extended to predict the performance of other solar still designs also.
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1. Introduction

Clean drinkable water is a birthright of the human being 
as much as clean air. Asia and the Pacific is one of the most 
disaster-prone regions in the world. In 2013, over 17,000 peo-
ple died due to the infected water, which accounts for 90% 
of all water-related disaster deaths globally [1]. Most of the 
available water purification methods are costly and easily 
anticipated a future increase in energy costs. Water purifica-
tion such as reverse osmosis, electrolysis, multi-effect, and 
multi-stage are few of them. Which defiantly increase the 

price of water drastically, whereas costs required for pump-
ing and transportation of purified water up to the desired 
location from purification unit will also boost the price. Pas-
sive solar still can be used in a view of low-cost production, 
as an alternative to energy-intensive approaches for getting 
purified water from saline, brackish or polluted water in the 
remote locations [2,3]. Many researchers have been reported 
different construction and optimization of tool and tech-
nique for enhancing the yield of single slope passive solar 
stills [4–6,30–32]. Present development in solar stills, daily 
water distiller output/yield ranges from 1 to 7 liters per 
square meter of still basin area [7–12], hence for feeding pota-
ble water to a small community requiring 200 m3/d needs 
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3,00,000–20,00,000 m2 land area to meet the demand of pota-
ble water. As a high capital cost, involved in solar distillation, 
due to the primary land and equipment hence accurate pre-
diction of an expected distillate production unit is essential 
for the success of the project and doing optimization of capi-
tal investment and maximizing the production rate. Effect on 
the productivity of a single slope solar still due to the inter-
nal reflector (IR) have been reported, simultaneous use of the 
front and side walls enhance its efficiency by 18%. However, 
installation of an IR on back wall it can increase the efficiency 
by 22% [13]. A solar still coupled with hot water tank gen-
erally doubles the distilled water output in the 24-h period, 
due to continuous heating of basin water from tank water. 
Hot water tank coupled solar stills gives higher output, in the 
night due to a higher temperature difference in basin water 
and cover temperature [14]. A comparison of forced circula-
tion show the influence of different environmental, design, 
and operational parameters condition on hybrid solar still 
yield and efficiency have investigated and reported [15]. It 
has been reported that the effect of bubbling and ambient 
air, simultaneous air bubbling and cooling of the glass cover 
gives 33.5 and 47.5% higher output respectively as compared 
to the conventional solar still [16].

Eltawil and Omara [4] have reported a newly developed 
solar still which has constituted to burst air bubble at the 
water surface and powered by the photovoltaic system and 
give 51–147% more productivity as compared to the simple 
solar still. Considerable improvement in productivity may 
be obtained if the water vapor is carried away directly by 
the flowing air in single basin solar still, and modified fac-
tor (F) has validated with the experimental result [17]. The 
mathematical correlation for “Lewis number” were also 
reported developed for the prediction of mass flow rates 
[18]. Whereas experimental evaluation of simple solar dis-
tiller (SSD), and hybrid solar still connected to a heat pump 
(SSDHP) were also reported [19,20]. Analysis of water 
must be done as per the guideline of WHO before and after 
desalination process [21].

Numerous design and testing work of different 
researchers have given emphases on methods to improve 
distillate quantity; there is still a need to develop a predic-
tive model that would be able to accurately estimate long-
term distillate production. Theoretical evaluation of the 
hybrid solar stills needs thermal modeling, which requires 
a sound knowledge of the heat and mass transfer within the 
distiller unit and auxiliary unit. In response to this need, 
an artificial neural network model was considered as an 
alternate tool that could use more easily for the prediction 
of solar still performance using weather data. Multi-layer 
Perception (MLP) networks in artificial neural networks 
(ANNs) has the ability to learn the linear as well as no linear 
behavior between inputs and output parameters. hence it 
may be used for several engineering application [22]. Multi-
ple uses of ANNs for modeling and prediction in engineer-
ing was reported by Kalogiriou [23]. He has also discussed 
the identification of most influencing input parameter. As 
ANNs network is highly data driven with the capability of 
capturing complex behavior of any system, learning from 
the input and targeted data which supplied to ANNs for 
training and testing purpose. After an ANNs architecture 
has been designed, the network must be trained in order to 
create the optimum set of weights and bios for each connec-

tion until there is no more change in the synaptic weights. 
This results in a minimized difference between the actual 
and predicted target variables. ANNs have a potential 
advantage over traditional empirical models and multivari-
able regression analysis because it has the ability to account 
the interaction between input variables [24]. The ability 
of solar stills to produce water for small communities is 
highly beneficial for remote and arid regions. With the help 
of advancements in computational technology, the applica-
tion of ANNs in the field of passive/ active solar distillation 
could predict the accurate result of yield, which needs large 
computation in case of classical modeling techniques.

In this paper, the effectiveness of artificial neural net-
works in modeling the performance of solar stills is stud-
ied using experimental data is reported for SSDHP, which 
will pave the way to get a prediction of yield for proposed 
model for any other geographical condition with an input 
of desired input parameter.

2. Construction of experimental setup

In the present experimental work, test-rig of single 
SSDHP with and without air pump has been designing 
and constructed to investigate the effect of the air bubble 
and their schematic arrangement and an actual photograph 
of an SSDHP without air pump are shown in Fig. 1a and 
1b respectively, where as Figs. 2a and 2b depict schematic 
arrangement with added air pump for the Tunisian con-
dition. Figs. 1a and 2a depict different components of the 
experimental setups of SSDHP without and with air pump 
respectively. SSDHPs test rigs are made with the help of 
stainless steel material of 3 mm thick plate, which has 0.4 
m2of the basin area. Lower and higher wall of distiller units 
are kept 480 mm and 610 mm high to make 30o of glass 
cover inclination,considering latitude 33°52′53″ N and Lon-
gitude 10°05′53″ E of city Gabès in Tunisia during the sum-
mer condition. Transparent 4 mm thick glass material has 
used as a cover for the basin area with 90% transmittance, 
in both the cases of SSDHP. Gasket rubber material has used 
in between basin top and glass cover and further sealed 
with window putty to prevent the leakage of vapors from 
basin to ambient. The condensation water was collected in 
a collector channel, which is deposited at the lower end of 
the glass cover and small plastic pipe will be used to ter-
minate collector channel. Fresh water was finally collected 
in an externally graded cylinder attached at the end of the 
discharge pipe. Feed raw/saline water pipes were fitted to 
another side wall for feeding the brackish water into a dis-
tiller unit. Fig. 2a shows that the air compressor is connected 
to a screen equipped with holes for diffusing air into the 
seawater basin of distiller unit of SSDHP. This is added in 
order to increase the rate of evaporation of water containing 
in the basin by SSDHP. The air blower connected to an air 
screen, further it was connected to a compressor. The flow 
rate of air establishes at 310–3 kg/s whose inlet temperature 
ranges from 27–30°C throughout the experimentation.

3. Experimental procedure

The experimental setup is designed and constructed in 
the engineers national of Gabe’s (latitude 33°52’53”N and 
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longitude 10°05’53”E) to investigate the effect of air bubbles 
on developed distiller unit and its comparative study with 
the similar SSDHP unit without air. The starting time of the 
work was October 2013 and continued to September 2014, 
during the period of July 2014. While the experimentation 
temperature of the glass cover, water, and evaporator was 
measured with the help of K type thermocouple, the flow 
rate of air was recorded with the help of rotameter and dis-
tillate output was measured and recorded with the help of 
graduated cylinder on an hourly basis.

2.1. Uncertainty analysis

The measurements of the parametric variables, air flow 
rate, water temperature, water level and relative air humid-
ity and temperature at the basin inlet and water surface, 
have been recorded during the experiments. Details of all 
measuring equipment are tabulated in Table 1. Rotameter 
with a range of 5–2000 L/h and an uncertainty of 4.6% is 
used for measuring air flow rate. The water temperature in 

the basin is measured using the thermometer-Pt100 which 
works in the range from −20 to +26°C with an uncertainty of 
2.6%. The relative humidity and temperature of air streams 
are measured using 2 thermo-hygrometers which work in 
the range from 0 to 100% RH and from −40 to +12°C and its 
uncertainty is 1.4%.

Table 1
Range and accuracy of different measuring equipment

Instrumentation Number Range Accuracy

K-type thermocouple 5 –200–1250°C ±2°C
Digital differential 
pressure manometer 

2 (+–)2bar ±2%

Digital 
thermohygrometer

2 0–100% RH ±1.4%RH

Rotameter 2 5–2000 L/h ±4.6%
Thermometer-Pt100 4 −20 – +26°C 2.6%

Fig. 1a. Schematic arrangement of SSDHP without air pump.

Fig. 1b. Actual photograph o SSDHP without air pump. Fig. 2b. Actual photograph o SSDHP without air pump.

Fig. 2a. Schematic arrangement of SSDHP with air pump.
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2.2. Structure of neural network model

The concept of artificial neurons was first introduced 
in 1943 [25], and applications of ANNs in research areas 
begin with the introduction of the back-propagation train-
ing (BP) algorithm for feed forward ANNs in 1986 [26]. An 
ANN is an information-processing system that roughly 
replicates the behavior of a human brain by emulating the 
operations and connectivity of biological neurons. ANNs 
represent complex, nonlinear functions with many param-
eters that are adjusted (calibrated or trained) in such a way 
that the ANN’s output becomes similar to measured output 
on a known data set. ANNs need a considerable amount 
of historical data to be trained, upon satisfactory training, 
an ANN should be able to provide output for previously 
‘‘unseen” inputs. The main differences between the vari-
ous types of ANNs involve network architecture and the 
method for determining the weights and functions for 
inputs and neuron’s (training) [27]. The multilayer percep-
trons (MLP) neural network has been designed to function 
well in modeling nonlinear phenomena. A feed-forward 
MLP network consists of an input layer and output layer 
with one or more hidden layers in between. Each layer 
contains a certain number of artificial neurons. An artifi-
cial neuron in a typical ANN architecture (Fig. 3) receives 
a set of inputs (signals (x) with weight (w), calculates their 
weighted average (z), using the summation function), and 
then uses some activation function to produce an output

o = f(z),  (1)

where Z x wi i
i

n

=
=
∑

1
 (2)

The connections between the input layer and the middle 
or hidden layer contain weights, which usually are deter-
mined through training the system. The hidden layer sums 
the weighted inputs and uses the transfer function to cre-
ate an output value. The transfer function (local memory) 
is a relationship between the internal activation level of the 
neuron called the activation function and the outputs. A 
typical transfer function is a sigmoid function f(z), which 
varies from 0 to 1 for a range of inputs [28]. In time series 
prediction, supervised training is used to train the ANN in 

such a way as to minimize the difference between the net-
work output and the measured target. Therefore, training 
a process of weight adjustment that attempts to obtain a 
desirable outcome with least squares residuals. The most 
common training algorithm used in the ANN literature is 
called BP. General Regression Neural Networks (GRNNs) 
predicts continuous outputs. GRNN nodes require two 
main functions to calculate the difference between all pairs 
of input pattern vectors and estimate the probability den-
sity function of the input variables. The difference between 
input vectors is calculated using the simple Euclidean dis-
tance between data values in attribute space. Weighting 
the calculated distance of any point by the probability of 
other points occurring in that area yields a predicted output 
value.

E X y f x y dy f x y dyY X XY XY( ) = ∗ ( ) ( )∫ , , ;  (3)

A one-hidden-layer network is commonly adopted by 
most ANN modelers in case of linear behavior whereas in 
multi-layer hidden layers are chosen in case of nonlinear 
behavior of input to target values (output); the number of 
hidden nodes M in this model is between I and 2I + 1 [29], 
where I is the number of input nodes. As a guide, M should 
not be less than the maximum of I/3 and the number of 
output nodes O. The optimum value of M is determined by 
trial and error. Networks with fewer hidden nodes are gen-
erally preferable because they usually have better general-
ization capabilities and fewer over fitting problems [30–32]. 
If the number of nodes is not large enough to capture the 
underlying behavior of the data, however, then the perfor-
mance of the network may be impaired. In this study, a trial 
and error procedure for hidden node selection was carried 
out by gradually varying the number of nodes in the hid-
den layer.

The input layer consists of the various weather variables 
and saline water volume with the output layer consisting of 
the target (actual yield observed experimentally) distillate 
production. The hidden layer consisted of twenty-three pro-
cessing units. The transfer function used for all processing 
units was the tangent sigmoid function due to its superior 
performance compared to alternative transfer. The ANN 
model is created with a set of weather and saline water vol-
ume data as inputs and a set of daily distillate production as 
the target (output) variable. Before proceeding to the train-
ing process, the input and target variables were normalized 
between 0 and 1 through dividing by the maximum value 
in each variable’s range. It will accelerate the training pro-
cess and enhances the network’s generalization capability. 
Eighty percent of the entire solar still performance data set 
is used for training purposes and the remaining 20% is used 
to test/validate the network’s predictive ability. For the 
training, validation and testing record data set from Octo-
ber 2013 to September 2014 is used.

For network generalization and to stop training valida-
tion data is used, whenever generalization stops improv-
ing. The testing data set consists of data not previously 
included in training or validation and are used to provide 
an independent measure of network performance. Solar 
still data set consisted of 100 data points with 70 points 
used for training, 10 points for validation, and 20 for testing 
the trained network. Training/testing process of the ANN Fig. 3. ANN architecture for typical layer perception.
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model was repeated with different combinations of weather 
variables to found out the best performing combination of 
input weather variables. Incident radiation (isolation) and 
ambient temperature play very important role in the radi-
ation and convection of the distiller units as a source of 
energy. The rate of condensation and heat removal rate will 
depend on the glass surface temperature and wind velocity, 
as glass surface temperature influence due to the ambient 
and wind velocity hence both parameters is also considered 
as an input parameter for ANN model.

4. Results and discussion

While the experimentation variation in incident radi-
ation on the inclined cover surface of the experimental 
setup has been recorded on 24th July 2014 with the help of 
Precision Spectral Pyranometer and represented in Fig.  
4, which shows that it’s a sunny day. At our latitude, the 
maximum value of incident radiation was recorded 1000 
W/m2 between 12–13 h on a clear day at solar noon in the 
summer months. The variation of basin temperature of 
SSDHP with and without air pump with respect to time is 
shown in Fig. 5 basin temperature of the SSDHP with air 
will maintain its superiority throughout the experiment 
as compare to the SSDHP without air, just after half hour 
interval of the experimentation, it suppressed to SSDHP 
without air by 3.85%. In both the cases initially it increases 
linearly but basin temperature of SSDP maintains its lead 
by 27.74%, before SSDHP without air temperature starts 
the decline. Whereas maximum temperature of SSDHP 
recorded 88°C, which is 41.93% higher as compared to 
the basin temperature of SSDHP without air at 13 h as it 
receives. However basin temperature of SSDHP with air 
gradually decreases from 88°C to 73°C by 17% between 13 
to 17 h, but basin temperature of SSDHP with air reduce 
more rapidly from 69°C to 50°C by 27.53% between 10 
h to 17 h. At the end of experimentation basin tempera-
ture of SSDHP with air is recorded 46% higher as com-
pared to SSDHP without air due to the influence of air 
bubble in basin air. Fig. 6 depicts the variation of water 

and glass surface temperature with respect to time, the 
water temperature is higher than that of the air in, there-
fore heat transfer from the water to the air occurs during 
this process. At the same time a transfer of material in 
the same direction occurs, the phenomenon of vaporiza-
tion has the effect of decreasing the temperature of the 
water on the one hand and of increasing the humidity 
and the temperature of the air of other Share. It is shown 
that the water temperature is of the order of 85°C without 
air and does not exceed 75°C with air. The same applies 
to glass, which does not exceed 40°C with air. Compar-
isons of productivity of SSDHP with and without air is 
illustrated in Fig. 7, which shows that SSDHP with air 
will give higher yield as compared to the SSDHP without 
air due to the influence of air discharge in its basin area. 
At the beginning of experimentation SSDHP with air will 
give 100% higher yield as compared to the SSDHP with-
out air but SSDHP dramatically maintains its lead by 25% 
at 9 h, which further reduced from 10 h onwards up to 14 
h. While this duration maximum difference in yield of 
SSDHP with and without air observed that SSDHP with 
air gives 34.61% higher yield as compared to without air 
during 11–12 h due to the influence of basin temperature 

Fig. 4. Behavior of incident solar radiation with respect to time.

Fig. 5. Variation of basin temperature of SSDHP with air and 
without air with respect to time.

Fig. 6. Variation of water and glass temperature of SSDHP with 
air and without air with respect to time.
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and mix gradient. Between 14–15 h SSDHP without air 
further increases slightly as compare to SSDHP with air 
and further reduces from 15 h till the experimentation, at 
the end of experiment SSDHP with air will give 33.33% 
higher yield as compared to the yield obtained from 
SSDHP without air. Artificial neural network modeling 
results of training validation and test for the SSDHP with 
air done with the help of MATLAB software. The Pearson 
correlation coefficient (R2 value) is also calculated to mea-
sure the correlation between predicted and actual yield, 
represent in Fig. 8. Where, top performing architecture 
uses the temperature of the glass surface (Tg), water (Tw), 
Basin (Tb), evaporator (Te) and incident solar radiation (I) 
as an input parameter for the training and evaluation. 
Artificial neural network modeling result for the SSDHP 
with air is presented in Fig. 9, which shows the varia-
tion of actual yield obtained while experimentation with 
respect to the yield obtained through the ANN model on 

Fig. 7. Variation of actual observed yield of SSDHP with and 
without air with respect to time.

Fig. 8. Variation of ANN mode result as an output with respect to target data.
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a linear trend line. The primary criteria for evaluating 
the performance of different combinations of input data 
architectures are the percentages of model predictions 
which is within 10% of actual daily distillate production 
of SSDHP with air represented in Fig. 10.

5. Conclusion

Following conclusions are drawn on the basis of out-
door experimental results and theoretical evaluation did 
with the help of ANN Model:

•	 The SSDHP with air will give higher yield as compared 
to SSDHP without air due to the enhancement of heat 
mass transfer rate and newly design ANN network 
model for SSDHP can be used for the estimation of its 
output for different conditions and a different set of the 
input parameter.

•	 Trained ANN model predicts actual daily distillation of 
SSDHP less than 10% variation of actual yield for both 
the cases.

•	 With the help of input parameters, ANN model easily 
evaluates SSDHP with and without air. It will give more 
relevance for the construction and installation for large 
scale production.
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