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ab s t r ac t
Theoretical calculations to estimate the minimum required energy for desalination are compared. In 
order to calculate the reversible energy to produce purified water from saline water, three different 
theoretical methods are applied, which are the second law of thermodynamics, the osmotic pressure 
theory and the vapor compression theory. For each method, the derivation of the equations to calcu-
late the theoretical minimum energy is reviewed in detail from the background and assumptions, and 
the equations are summarized for an infinitesimal and a finite recovery cases. Various temperatures, 
recoveries and the salinities of feed and product water are considered for case studies to analyze the 
quantitative difference between the methods. For 25°C and 35,000 ppm feed saline water, the min-
imum required energy to produce a unit product water of 0 ppm is calculated as 0.762, 0.742 and  
0.761 kWh/ton for an infinitesimal recovery and 1.068, 1.071 and 1.098 kWh/ton for a 50% recovery 
from the second law of thermodynamics, the osmotic pressure theory with the van’t Hoff equation 
and the vapor compression theory with the boiling point elevation Eq. (33), respectively. In general, 
it is supposed that the calculation of theoretical minimum energy could include 5%–10% uncertainty, 
depending on the conditions of the concerned case and the applied equation. It is believed that for the 
same conditions the theoretical minimum energy for desalination should be identical in nature, regard-
less of the type of desalination, for example, membrane, thermal or any other way of desalination.

Keywords:  Desalination; Theoretical minimum energy; Minimum separation work; Second law of 
 thermodynamics; Osmotic pressure theory; Vapor compression theory

1. Introduction

Desalination is known to be an energy intensive technol-
ogy, thus the energy consumption of desalination has gained 
much interest from academic and industrial societies. Current 
seawater reverse osmosis (SWRO) consumes around 3.6– 
4.0 kWh of electricity per ton of freshwater production [1]. 
To understand how large this energy for desalination is, it 
is  better to understand the typical household electricity 
consumption, which is 2.90 kWh/d/person in Korea, and  
12.45 kWh/d/person in UAE [2]. The residential water 
 consumption of 280 L/d/person in Korea [3] and 550 L/d/ 
person in UAE [4] can be interpreted as 1.12 and 2.20 kWheq/d/

person electricity consumption, respectively, if all consum-
ing water is assumed from a SWRO desalination plant at  
4 kWh/m3. Thus, desalination could add up 17.7%–38.6% to 
the household electricity consumption if there is no other 
freshwater source than desalination. Because of such a huge 
energy consumption, there have been a lot of efforts to reduce 
the energy cost of desalination, and the first step would be 
understanding the final goal which is the theoretical mini-
mum energy requirement for desalination.

The theoretical minimum energy required for desali-
nation has been well known since 1960s [5,6]. A typical 
approach of the second law of thermodynamics assumes 
seawater or saline water as a NaCl solution, and the Gibbs 
 function and the ideal gas law are applied. Once the Gibbs 
function  including chemical potential for a mixture is defined, 
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a simplified equation can be driven by assuming the solution 
as ideal and then by comparing the difference between the 
chemical potential of both the ideal mixture and the pure 
substances. From this simplified equation in terms of chem-
ical potential, the entropy increase from the pure substances 
to the ideal solution is obtained, thus the reversible work 
for mixing, which is the minimum separation work, can be 
calculated [7]. The second approach is based on the osmotic 
pressure theory. Once a proper equation for osmotic pressure, 
for example, the van’t Hoff equation, is given, the work by 
the osmotic pressure can be easily calculated, which is the 
minimum separation work [1]. The last approach is based on 
the vapor compression theory. Two isolated containers, one 
with feed saline water and the other with purified water at 
the same temperature, both at vapor saturated, can be consid-
ered. Though the water temperature is the same, the saturated 
pressure of the two containers is different due to the boiling 
point elevation (BPE) difference from different salinity. If an 
ideal compressor could transfer the steam vapor at lower 
pressure in the feed saline water container to the higher pres-
sure container with the purified water, the energy required 
for this isentropic compressor is the minimum energy for  
desalination [8]. Most of the researchers have introduced 
the theoretical minimum energy for desalination using one of 
the aforementioned methods, which numbers are reported in 
the range of 0.7–0.76 kWh/m3 for an infinitesimal recovery to 
produce pure water from 25°C and 35,000 ppm saline water. In 
case of a 50% recovery, the minimum work increases to about 
1.06 kWh/m3 [9,10]. Unfortunately, however, a comprehensive 
comparative study between the theories has been limited, 
from which the quantitative uncertainty could be understood 
from the assumptions made for each theoretical methods.

In this paper, the three known theoretical methods are 
reviewed with their background and assumptions. For the 
approach by the second law of thermodynamics, the corre-
spondent simplified equations for some limiting conditions 
are provided. For the approaches by the osmotic pressure 
theory and by the vapor compression theory, a hypothesis 
to obtain the generalized equation for an arbitrary recovery 
from the simpler equation for an infinitesimal recovery is 
proposed. Calculation results from three theoretical methods 
are compared for various temperatures, recoveries and the 
feed/product water salinities. Though the minimum work for 

desalination shall be the same in nature for the same condi-
tions, the quantitative comparison of the results from each 
theory is the purpose of this paper to understand the magni-
tude of uncertainties laying in the theoretical approaches for 
calculating the minimum work for desalination.

2. Schematic of desalination process

Desalination is a salt reject process to produce less 
saline water from more saline water. This process is entropy 
increasing, thus energy (or work) is required for desalination. 
In nature, solar energy is the main source for desalination, 
that is, part of seawater evaporates from the surface of oceans 
with solar energy and the released water vapor condenses in 
the cool air, becoming freshwater. In general, a desalination 
process can be described as in Fig. 1 [7]. 

In Fig. 1, N is the number of moles, and for subscripts, 
feed saline water is denoted as “f”, product water “p”, brine 
reject/blowdown “b”, salt “s” and water “w”, respectively. 

From the mass conservation of each species:

Ns,f = Ns,b + Ns,p (1)

Nw,f = Nw,b + Nw,p (2)

In order to calculate the number of moles in a solution, it 
is important to understand the dissociation level of each spe-
cies. In case of a NaCl solution, the degree of dissociation is 
studied as a function of molality, which is shown in Fig. 2 [11].

From Fig. 2, the degree of dissociation α is 0.797 for 
a 35,000 ppm (0.60 mol/kg) and 0.793 for a 45,000 ppm  
(0.77 mol/kg) NaCl solution at 25°C. It is noted that the degree 
of dissociation varies rapidly at a lower molality, which 
approaches to 1.000 for pure water (0.00 mol/kg). The follow-
ing equation shows that the total number of moles in a solu-
tion is (1 + α)N, where (1 + α) is called a dissociation constant.

NaCl Na Cl
( )1 −

↔ + −

α α αN N N
 (3)

Though the seawater, which is the interested solu-
tion in this paper, contains various dissolved solids, 

Fig. 1. Schematic diagram of desalination process [7].
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only NaCl is considered with the dissociation constant 
of 1.8 when the colligative properties of seawater are 
required. This kind of simplification, typically applied 
for the second law of thermodynamics and the osmotic 
pressure theory, could generate a certain uncertainty in 
calculating the theoretical minimum energy for desalting 
seawater.

3. Theories to calculate minimum work for desalination

Theoretical minimum work for desalination can be 
 calculated via three different approaches. In this chapter, the 
background and assumptions of each approach are explained 
in detail.

3.1. Minimum separation work by the second law  
of thermodynamics

The first method to calculate the theoretical minimum 
work for desalination is based on the second law of thermo-
dynamics. If seawater can be assumed as an ideal solution 
(or ideal mixture), each component follows the ideal gas law, 
and the entropy change during mixing can be calculated as 
follows:

∆Smixing,ideal = –Ru∑iNilnxi (4)

where Ru (=8.31446 J/mol/K) is the universal gas constant, Ni 
is the mole number and xi is the mole fraction of the i-th com-
ponent. The derivation of Eq. (4) is summarized in Appendix 
A (details can be found in reference [7]).

As the minimum work of separation is the reversible 
work, which is the same to the exergy destruction during 
mixing:

Wrev = Wmin,separation = T0 ∆Smixing,ideal = –RuT0∑iNilnxi (5)

where T0 is the reference temperature in K, that is, large 
enough reservoirs are assumed for each feed water, product 
water and brine discharge at T0.

For a desalination system in Fig. 1, where the substances 
are salt and water, the minimum required work will be:

Wmin = Wmin,feed – (Wmin,brine + Wmin,product) (6)

where

Wmin,feed = –RuT0(Ns,flnxs,f + Nw,flnxw,f) (6a)

Wmin,brine = –RuT0(Ns,blnxs,b + Nw,blnxw,b) (6b)

Wmin,product = –RuT0(Ns,plnxs,p + Nw,plnxw,p) (6c)

Then, Eq. (6) becomes:

W R T N x x N x x
N x
u s b s b s f s p s p s f

w b w b

min = +

+
0 ( ln( ) ln( )

ln(
, , , , , ,

, ,

/ /
/xx N x xw f w p w p w f, , , ,) ln( ))+ /

 (7)

Though Eq. (7) is derived from the ideal solution (ideal 
mixture) assumption, which is valid for sufficiently low 
saline water, Eq. (7) itself is valid for an arbitrary feed water 
salinity, recovery, and product water quality.

It is important to notice that Eq. (7) can be further simpli-
fied at each limiting conditions as follows:
• Condition 1. Infinitesimal recovery (R = 0+)

W R T N x x N x x

x x

u s p s p s f w p w p w f

s b s

min ≅ +0 ( ln( ) ln( ))

ln(

, , , , , ,

, ,

/ /

/ ff w b w fx x) , ln( ), ,→ →0 0/
 

(8)

• Condition 2. Pure product water (product water salinity 
Xp = 0 ppm) 

Fig. 2. Degree of dissociation α as a function of molality m (mol/kg) for NaCl(aq) at 25°C [11].
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W R T N x x N x x
N x
u s b s b s f w b w b w f

w p w

min ≅ +

+
0

1
( ln( ) ln( )

ln(
, , , , , ,

, ,

/ /
/ ff

s p w pN x

))

,, , → →0 1
 (9)

• Condition 3. C1 + C2 (R = 0+ and Xp = 0 ppm) 

W R T N xu w p w fmin ≅ 0 1, ,ln( / )  (10)

• Condition 4. C1 + C2 and sufficiently low feed water 
salinity (small enough Xf)

W R T N x

x x x x

u w p s f

w f w f w f w f

min ≅

→ = − ≅ − =

0

1 1 1

, ,

, , , ,ln( / ) ln leads to xxs f,
 

(11)

It is noted that Eq. (10) is identical to the equation in 
Elimelech and Phillip [10], while Eq. (11) is identical to the 
equation in Spiegler and El-Sayed [9].

3.2. Minimum separation work by osmotic pressure theory – 
 principle of membrane desalination

When pure liquid water is separated from an aqueous 
solution by a wall which is permeable to water and imper-
meable to the solute in the solution, it is known that water 
will pass from the pure water side to the solution side, and 
there is an equilibrium state when the pressure π (osmotic 
pressure) is exerted on the wall from the solution side [12]. 
The schematic diagram of osmotic pressure is given in Fig. 3.

Because the osmotic pressure of a solution is defined as 
the applied pressure to maintain the solution in equilibrium 
with pure solvent (net flux = 0 through the semi-permeable 
membrane), the minimum separation work for an infinites-
imal recovery (R = 0+) can be calculated by multiplying the 
osmotic pressure by a unit volumetric flow of the product 
water. Though there are various methods for the calculation 
of osmotic pressure since van’t Hoff [12], including [13], two 
representative methods are used in this paper.

The first method starts from the chemical potential equi-
librium at a semi-permeable membrane. At an equilibrium 
state, the chemical potential µ of the water must be the same 
on the both sides of the semi-permeable membrane [14].

µ µ πw wP P0 0( ) = +( )
solution

 (12)

For the chemical potential at the solution side (RHS),  
Eq. (A22) in Appendix A is applicable by assuming the 
 solution as ideal.

µ π µ πw w u w fP P R T x( ) ( ) ln ,0 0 0+ = + +
solution

 (13)

The change in the chemical potential with pressure may 
be included.

µ π µ µ π
π

w w
P

P

m w mP P V dP P V( ) ( ) ( )0 0 0
0

0

+ = + = +
+

∫  (14)

where Vm = V/N is the molar volume of water, which is 
assumed constant during the integration for the pressure 
change.

From Eqs. (12)–(14):

π = − = −
R T
V

x
N R T
V

xu

m w p
w f

w p u

w p
w f

0 0

,
,

,

,
,ln ln  (15)

and thus:

W V V R T N xp w p u w p w fmin = ≅ = −π π , , ,ln0  (16)

Eq. (16) is identical to Eq. (10), which is obtained 
for R = 0+ and Xp = 0 ppm from the second law of 
thermodynamics.

The second method is to use the van’t Hoff equation for 
estimating an osmotic pressure. It is well known that the 
van’t Hoff equation is obtained from the analogy between 
solutions and gases, and is valid only for sufficiently diluted 
solutions.

π =
N
V
R Ts f
u

,
0  (17)

W R T Nu s fmin = 0 ,  (18)

It should be noted that Eq. (18) is different to Eq. (11), 
even though the same limiting conditions of R = 0+, Xp = 0 
ppm and xw,f → 1 are assumed. Actually, as xw,f → 1:

Eq
Eq

. ( )

. ( )
, ,

,

18
11

1=
+

≅
N N
N

w f f

w p

s  (19)

Eq
Eq

. ( )
. . ( ) ln

,

,

11
10 16 1

1( ) =
=

− −( )
≅

Eq
x

x
s f

s f

 (20)

Eq
Eq

. ( )
. ( ) . ( ) ln( / )

,

, ,

18
10 16 1

1
=

= ≅
Eq

sN
N x

f

w p w f

 (21)

Therefore, both Eqs. (11) and (18) are valid for the suffi-
ciently low feed water salinity with R = 0+ and Xp = 0 ppm. 
However, it is very important to note that Eq. (20) becomes Fig. 3. Schematic diagram of osmotic pressure.
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0.9901 and Eq. (21) becomes 0.9757 when the feed water 
is a 35,000 ppm NaCl solution, and the numbers become 
0.9881 and 0.9706, respectively, for a 42,000 ppm NaCl 
solution. This shows that Eq. (18) loses its accuracy more 
rapidly than Eq. (11) when the feed salinity increases, and 
the quantitative error could be in the range of 1.0%–1.2% 
for Eq. (11) while the error could be 2.4%–2.9% for Eq. (18) 
when the equations are applied for the typical seawater 
salinity.

Though Eqs. (16) and (18) are derived for a pure water 
production (Xp = 0 ppm), it is not difficult to apply these 
equations for a finite salinity product water as follows:

W Vf pmin = − ×( )π π  (22)

W R T N x xu w p w p w fmin = 0 , , ,ln( / )  from Eq. (16)  (23)

W R T N Nu s f s pmin = −0( ), ,  from Eq. (18) (24)

Note that Eq. (23) does not have the full information of 
Eq. (8), though Eq. (16) was identical to Eq. (10) from the 
second law of thermodynamics. Eq. (24) could be rewritten 
as Wmin = RuT0Ns,b, but this expression will not be used here 
to avoid any misunderstanding of the relation between Wmin 
and Ns,b, that is, Wmin should be understood from the feed and 
permeate conditions, not from the brine reject/blowdown 
condition.

Now, the only assumption for Eqs. (23) and (24) is the 
infinitesimal recovery (R = 0+). In order to obtain the gen-
eralized equations for an arbitrary recovery, Eq. (24) will 
be examined first, which can be rewritten as follows using  
Ns = (1 + α)X/Ms:

W R T M X X k X Xu s f p f pmin = +( ) × − = −0 11 α / ( ) ( )  (25)

where k1 = RuT0(1 + α)/Ms = const.
For a finite recovery case, the feed water salinity varies 

from Xf to Xp while the permeate salinity could be assumed 
the same (Xp = const). For the averaging purpose of the mini-
mum work from the feed water side to the brine reject/blow-
down side, an integration path z should be taken along the 
same infinitesimal product amount, and the minimum work 
at z is:

W k X z Xpmin( ) ( ( ) )z = −1  (26)

where z is from the point A where X(A) = Xf to the point B 
where X(B) = Xb.

Now, the following equation is valid through the same 
product amount path z:

d
kp

p

( ( ) )
( ( ) )

X z X
dz

X z X
−

= −2  (27)

where k2 is another constant.

Then, the average minimum work from A to B is:

W k
dz

dz

k
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1
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,
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R T
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p

p p

u
s b s f

s b s

−

− − −

=
−

−

X
X Xln ln

ln0
,, , ,

, ,

) / ( )}p s f s p

u s f to b s p

N

R T

−

≡ −( )
N

N N0 log mean

 (28)

Alternatively, the average minimum work could be 
obtained by calculating Wmin, avg|f to b at the feed water to the 
brine reject side while assuming the pure water production 
and calculating Wmin, avg|p at the product water side with its 
finite salinity while assuming the pure water production, and 
then by observing the difference of Wmin, avg|f to b and Wmin, avg|p.

W R Tu s f b s pmin avg to log mean, , ,≅ −( )0 N N  (29)

Eq. (29) cannot be obtained from Eq. (28), while the dif-
ference between the two equations is not significant when 
the product water salinity is sufficiently low. The approach 
deriving Eqs. (28) and (29) inspires the following hypothesis:

Hypothesis A. If an equation f X TR X fp= + =0 0 0, ( , )  for cal-
culating theoretical minimum work at R = 0+ and Xp = 0 ppm 
shows a linear behavior on the salinity of feed water Xf for 
the interested regime, a generalized equation can be approxi-
mately obtained for an arbitrary recovery and product water 
quality by using the logarithmic average of salinity differ-
ence or salinity as follows:

f X X X T f

X X X X T
f

R Xp f b p R X

f p b p

R

p, ,( , , , )

( ( , ), )
0 0 0

0

≅

− −

≅

= + =

=

log mean

00 0+ − ×

− −
, ( , , ) ( )

( , )
X f p f p

f p b p

p
X X T X X

X X X X

/

log mean

 (30a) 

or 

f X X X T f X X T

f
R Xp f b p R X f b

R X

p

p

, ,

,

( , , , ) ( ( , ), )0 0 0 0

0

≅

−
= + =

= + =

log mean

00 0( , )X Tp
 (30b)

Eq. (30) is quite useful, because there are many cases 
where f X TR X fp= + =0 0 0, ( , )  is difficult to integrate analyti-
cally to obtain f X X X TR Xp f b p, ( , , , )0 . For example, Eq. (16) or  
Eq. (23) from the chemical potential equilibrium is difficult to 
derive a generalized minimum energy equation for an arbi-
trary recovery (and product water quality), while it is easier 
to show the linearity of Eq. (16) on the feed water salinity 
numerically as in Fig. 4.
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Note that Fig. 4 is prepared by assuming the seawater as 
a NaCl solution with the dissociation constant of 1.8, while 
more precise calculation is possible if other dissolved solids 
are considered with proper dissociation constants.

Now, as per Hypothesis A, the generalized equation for 
an arbitrary recovery and product water salinity from chemi-
cal potential equilibrium is easily obtained from Eq. (16):

W R T N x xu w p w p w f bmin avg to log mean, , , ,ln /≅ ( )0   (31)

3.3. Minimum separation work by vapor compression  
theory – principle of thermal desalination

Theoretical minimum energy for desalination can 
be explained by the vapor compression theory, which is 
the principal of thermal desalination. First, two vessels can 
be assumed, one vessel is with pure product water and the 
other with feed saline water. There are no gases inside the 
vessels other than a steam vapor. Assuming thermal equilib-
rium between two vessels, which means the two vessels are 
connected through an infinitely large and thin heat transfer 
area, the pressure at the vessel of feed saline water is lower 
than the other vessel due to the BPE caused from the salinity. 
Therefore, if there is a vapor passage from the saline water 
vessel at a lower pressure to the pure water vessel at a higher 
pressure, with a suitable compressor to increase the vapor 
pressure, the desalination process could be maintained. 
Fig. 5 describes the schematic diagram of desalination by 
vapor compression.

Though Fig. 5 is the process of the single Effect(Stage) 
MVC (mechanical vapor compression) desalination, it is gen-
erally understood that the schematic diagram explains the key 
principle of thermal desalination. It is noted that the steam 
vapor inside the saline water vessel is at a superheated condi-
tion, because the temperature is the same to that of the product 
water vessel due to thermal equilibrium. Now, the minimum 
work for this process will be the required work for compress-
ing vapor from P P T BPE P P Tv v1 0 2 0= − =sat sat( ) ( )to  through the 
isentropic (thus reversible) manner. In order to understand this 
cycle, a temperature–entropy diagram is provided in Fig. 6. 

For a finite ΔT, the required work for this cycle is the 
blue pentagonal area of a - b - c - d - e - a . For an infinitesimal 
∆T, the required work becomes much smaller, the red shaded 

triangular area of g - b - f - g , which will be the theoretical min-
imum work. In reality, the theoretical minimum work for 
thermal desalination would be obtained when ΔT = q/(U A) 
→ 0+, therefore, an infinitely large heat transfer area A or an 
infinitely large overall heat transfer coefficient U is required 
for a finite heat transfer rate q (ultimate heat-transferability). 
Analogically, the condition for the theoretical minimum work 
for membrane desalination could be understood as ΔP – Δπ = 
J/Lp → 0+, therefore, an infinitely small membrane resistance 
(or an infinitely large and thin membrane area) is required 
for a finite permeate flux of water Jw (ultimate membrane 
water-permeability Lp).

The theoretical minimum work from the vapor com-
pression theory at R = 0+ and Xp = 0 ppm can be written as 
a function of Xf and T0:

W h h
h P T s h P T
v v

v v v

min

sat sat

mass
mass BP

= × −
= × − −

( )
( ( ( ), ) ( (

2 1

2 0 2 1 0 EE( , )), ))T X sf v0 1

  (32)

where h is specific enthalpy and s stands for specific entropy 
which values are:

s sv v2 1=  (32a)

s s T P T T Xv v f1 1 0 0 0= −( , ( ( , )))sat BPE  (32b)

In this paper, IAPWS-IF97 (International Association for 
the Properties of Water and Steam: Industrial Formulation 
1997) is used to calculate all thermodynamic properties. As 
can be seen in Eq. (32), a BPE equation plays a crucial role 
for calculating the minimum work for desalination from the 
vapor compression theory. There are many equations for BPE 
of seawater, which are usually obtained either empirically or 
theoretically. Two BPE equations are tried in this paper to see 
the effect from different BPE on Wmin.

BPE A B( , )T X X= + +X CX2 3  (33)

A = × + × + ×− − −( . . . )8 325 10 1 883 10 4 02 102 4 6 2T T  (33a)

Fig. 4. wmin (kWh/ton) by osmotic pressure theory (chemical 
potential equilibrium) on salinity (g/kg) at 25°C.

Fig. 5. Schematic diagram of desalination by vapor compression 
theory [9].
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B = − × + × − ×− − −( . . . )7 625 10 9 02 10 5 2 104 5 7 2T T  (33b)

C = × − × − ×− − −( . )1 522 10 3 10 3 104 6 8 2T T  (33c)

In Eq. (33) [15], BPE is in °C or K, and it is known to be 
valid for 1 ≤ X ≤ 16% and 10 ≤ T ≤ 180°C. Another BPE equa-
tion [16], simpler than Eq. (33), is as follows:

BPE A B( , )T X X= +X2  (34)

A = − × + × +− −( . . . )4 584 10 2 823 10 17 954 2 1T T  (34a)

B = × + × +− −( . . . )1 536 10 5 267 10 6 564 2 2T T  (34b)

In Eq. (34), BPE is in °C or K again, and the accuracy is 
known to be within ±0.018 K for the applicable region of 

0 ≤ X ≤ 0.12 kg/kg and 0 ≤ T ≤ 120°C. Care should be taken 
for the fact that the dimension of salinity in Eqs. (33) and 
(34) are different. It is also noted that the error range of 
±0.018 K of Eq. (34) is not small, considering the typical 
BPE in desalination is in the range of 0°C–1°C.

When a unit mass of product water is considered at R = 0+ 
and Xp = 0, the linearity of Eq. (32) on the feed water salinity 
is numerically analyzed to apply Hypothesis A. Figs. 7 and 
8 show the satisfactory results when Eqs. (34) and (35) are 
applied as a BPE equation, respectively.

It should be noticed that Figs. 4, 7 and 8 show a possi-
ble strategy to acquire a new BPE equation by comparing the 
minimum work calculated by the vapor compression the-
ory with a candidate BPE equation with the minimum work 
 calculated by any other theoretical method.

As per the Hypothesis A, now the generalized equation 
for an arbitrary recovery and product water salinity from the 
vapor compression theory is easily obtained:

Fig. 6. Temperature–entropy diagram for vapor compression theory. (For a finite ∆T, the required work (W) for this cycle is the blue 
pentagonal area of a - b - c - d - e - a . For an infinitesimal ∆T, the required work is the red shaded triangular area of g - b - f - g , which is 
the theoretical minimum work (Wmin).)

Fig. 7. wmin (kWh/ton) by vapor compression theory (BPE, Eq. (34)) on salinity (g/kg) at 25°C.
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(
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 (35)

where s s s T P T T Xv v v f2 1 1 0 0 0= = −( , ( ( , ))).sat BPE

4. Results and discussion

In order to investigate each theoretical method in a quan-
titative manner, various cases are considered for comparison. 
Calculation cases for feed water salinities of 10,000, 35,000, 
42,000 and 45,000 ppm, temperatures of 25°C, 30°C and 35°C, 
recoveries of 0+, 40% and 50%, and product water salinities of 
0, 300, 1,000 and 3,000 ppm are carefully selected to observe 
the limits of and the quantitative differences between the equa-
tions for theoretical minimum work from different approaches 
and assumptions. All the calculations are made for producing 
a unit amount of product water. Some exemplary calculations 
for each theoretical method are described in Appendix B.

4.1. Minimum work calculation by the second law  
of thermodynamics

To understand the differences from each limiting assump-
tions, all the equations from (7) to (11) are considered for the 
calculation. Seawater is assumed as a NaCl solution with the 
dissociation constant of 1.8 in this chapter, while more pre-
cise calculation would be possible if major dissolved solids of 
seawater with proper dissociation constants for each compo-
nent are considered. Table 1 is the summary of the calculation 
results.

For Xf = 35,000 ppm and Xp = 0 ppm, the theoretical min-
imum energy to produce a unit product water is calculated 
as 0.762 kWh/ton for R = 0+ and 1.068 kWh/ton for R = 50%. 
As Eq. (8) is for the R = 0+ limiting condition, the gap between 
Eqs. (7) and (8) becomes larger for the higher recovery. Eq. (9) 

which is valid for Xp = 0 ppm overestimates the minimum 
work for the higher Xp, because the results are always for 
Xp = 0 ppm cases while less energy will be required when the 
product has a certain salinity. Eq. (11) is true only when Xf 
is sufficiently low, and the quantitative error compared with 
Eq. (7) for R = 0+ and Xp = 0 ppm is found to be 0.99% for  
Xf = 35,000 ppm while the error becomes much smaller as 
0.28% for Xf = 10,000 ppm, almost proportional to Xf at this 
range of feed water salinity.

4.2. Minimum work calculation by the osmotic pressure theory

For the same cases, the theoretical minimum energy 
requirements are calculated using Eqs. (16) and (31) from 
the osmotic pressure from chemical equilibrium, and using 
Eq. (18) and Eqs. (28) and (29) from the osmotic pressure from 
the van’t Hoff equation. Again, a NaCl solution is assumed 
with the dissociation constant of 1.8. Results are summarized 
in Table 2.

Note that Eqs. (16) and (18) are valid only for R = 0+,  
Xp = 0 ppm, while Eq. (31) and Eqs. (28) and (29) are valid 
for other cases but not applicable for R = 0+, Xp = 0 ppm. At  
R = 0+, Xp = 0 ppm, Eq. (16) from the chemical equilibrium shows 
exactly the same calculation results to those from the second 
law of thermodynamics, 0.762 kWh/ton for 35,000 ppm and 
0.214 kWh/ton for 10,000 ppm. This is logical because Eq. (16) 
becomes identical to Eq. (10) at this limiting condition. Instead, 
Eq. (18) from the van’t Hoff equation results in 0.742 kWh/ton 
for 35,000 ppm and 0.212 kWh/ton for 10,000 ppm at R = 0+,  
Xp = 0 ppm. For other cases, the results from osmotic theory 
usually show higher values than the results from the second 
law of thermodynamics, and the results from chemical equilib-
rium are a bit larger than the results using van’t Hoff. The dif-
ference between the results from Eq. (28) and the results from 
Eq. (29) shows that the difference between Eqs. (30a) and (30b) 
in the Hypothesis A is only 0%–0.25% for the studied cases.

4.3. Minimum work calculation by the vapor compression theory

Finally, the theoretical minimum works are calculated 
using Eq. (35) with BPE (Eq. (33)) or BPE (Eq. (34)), and 

Fig. 8. wmin (kWh/ton) by vapor compression theory (BPE, Eq. (35)) on salinity (g/kg) at 25°C.
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the results are compared in Table 3 with other results from 
the second law of thermodynamics and the osmotic theory.

It is obvious that the results from the vapor compression 
theory are highly dependent on the applied BPE equation. For 
25°C and 35,000 ppm feed water, Eq. (35) with BPE results 
in 0.761 kWh/ton at R = 0+, Xp = 0 ppm, which is surprisingly 
similar to the results from Eqs. (7) and (16), while Eq. (35) with 
BPE results in 0.706 kWh/ton. However, for the same feed 
water temperature and salinity, Eq. (35) with BPE results in 
1.090 kWh/ton at R = 50%, Xp = 300 ppm, while Eq. (35) with 
BPE results in 1.010 kWh/ton. In this case, the result from 
Eq. (35) with BPE is closer to the result from Eq. (31), while 
the result from Eq. (35) with BPE is closer to the result from 
Eq. (7). In general, the calculation results from the vapor com-
pression theory are mostly in the similar range to the calcula-
tion results from the second law of thermodynamics and the 
osmotic theory. Therefore, it is believed that the theoretical 
minimum energy requirement is not a function of the method 

of desalination, that is, the same minimum energy would be 
required for membrane, thermal and any other desalination 
methods.

All values are compared with the each corresponding 
result from the second law of thermodynamics for quantitative 
comparison. From all the data in Table 3, the standard devia-
tion is 9.68%. If the interested regime is limited to the 25°C and 
35,000 ppm feed water, excluding the case of Xp = 3,000 ppm, 
the standard deviation is calculated as 4.51%. If the results 
from Eq. (7), Eqs. (18) and (28) and Eq. (35) with BPE are 
selected for the 25°C and 35,000 ppm feed water, excluding the 
case of Xp = 3,000 ppm, the standard deviation becomes 2.40%.

5. Conclusion

The methods for calculating the theoretical minimum 
energy required for desalting seawater have been compared. 

Table 1
Theoretical minimum energy requirement (kWh/ton) for desalination by the second law of thermodynamics

Feed 25°C, 35,000 ppm 25°C, 10,000 ppm 42,000  
ppm

45,000  
ppm

25°C 30°C 35°C 35°C

Recovery 0+ 50% 0+ 50% 50% 0+ 50% 40% 40% 40% 40%
Product 0 ppm 0  

ppm
300  
ppm

300  
ppm

3,000  
ppm

0 ppm 300 ppm 1,000 ppm 0 ppm

Eq. (7) 0.762 1.068 0.725 1.026 0.799 0.214 0.264 0.986 1.003 1.020 1.217
Eq. (8) 0.762 0.762 0.725 0.725 0.539 0.214 0.185 0.817 0.831 0.844 1.020
Eq. (9) 0.762 1.068 0.755 1.057 1.020 0.214 0.286 1.066 1.106 1.124 1.217
Eq. (10) 0.762 0.762 0.761 0.761 0.759 0.214 0.214 0.918 0.933 0.949 1.020
Eq. (11) (% 
to Eq. (7))

0.754 
(99.01%)

0.754 0.754 0.754 0.752 0.213 
(99.72%)

0.213 0.907 0.922 0.937 1.007

Note: Eq. (7) for all general cases, Eq. (8) for R = 0+, Eq. (9) for Xp = 0 ppm, Eq. (10) for R = 0+ and Xp = 0 ppm and Eq. (11) for R = 0+, Xp = 0 ppm 
and small enough Xf limiting conditions. The bold values stand for the results from valid cases of each corresponding equation.

Table 2
Theoretical minimum energy requirement (kWh/ton) for desalination by osmotic pressure theory

Feed 25°C, 35,000 ppm 25°C, 10,000 ppm 42,000 ppm 45,000 
ppm
35°C25°C 30°C 35°C

Recovery 0+ 50% 0+ 50% 50% 0+ 50% 40% 40% 40% 40%
Product 0 ppm 0 ppm 300 ppm 300 ppm 3,000 ppm 0 ppm 300 ppm 1,000 ppm 0 ppm
Eq. (7) 0.762 1.068 0.725 1.026 0.799 0.214 0.264 0.986 1.003 1.020 1.217
Eq. (16) 0.762 0.762 0.755 0.755 0.696 0.214 0.207 0.897 0.912 0.927 1.020
Eq. (31) N/A 1.162 N/A 1.152 1.060 N/A 0.312 1.211 1.231 1.251 1.379
Eq. (18) 0.742 0.742 0.736 0.736 0.679 0.212 0.206 0.870 0.884 0.899 0.986
Eq. (28) N/A 1.0710 N/A 1.0618 0.9792 N/A 0.2968 1.1349 1.1539 1.1729 1.2874
Eq. (29) 
(% to  
Eq. (28))

N/A 1.0710 
(100.00%)

N/A 1.0620 
(100.02%)

0.9816 
(100.25%)

N/A 0.2971 
(100.09%)

1.1353 
(100.04%)

1.1544 
(100.04%)

1.1734 
(100.04%)

1.2874 
(100.00%)

Note: From chemical equilibrium, Eq. (16) for R = 0+, Xp = 0 ppm and Eq. (31) for other general cases. From van’t Hoff, Eq. (18) for  
R = 0+, Xp = 0 ppm, Eqs. (28) and (29) for other general cases. Eq. (7) from the second law of thermodynamics is included for comparison 
purpose. The bold values stand for the results from valid cases of each corresponding equation.
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For the same feed water, recovery and product water condi-
tions, the required work would be believed the same in nature, 
while the calculation results could be different depending on 
which theoretical approach is taken with certain assumptions. 
The second law of thermodynamics, the osmotic theory and 
the vapor compression theory are studied and the equations 
for general and some limiting conditions are introduced. 
The calculation results for 25°C–35°C, 10,000–45,000 ppm  
feed water salinity with 0%–50% recovery and 0–3,000 ppm 
product water salinity have shown the followings:

• The equation based on a certain limiting condition, such 
as R = 0+ and/or Xp = 0 ppm, could keep its accuracy at its 
limiting condition(s) only.

• A generalized equation for an arbitrary recovery and 
product water salinity could be obtained from the equa-
tion at R = 0+ and Xp = 0 ppm, if the linearity of the equa-
tion is valid for the interested regime.

• Theoretical minimum energy for desalting 25°C and 
35,000 ppm feed saline water is calculated as 0.762, 0.742 
and 0.761 kWh/ton for R = 0+ and Xp = 0 ppm, and is cal-
culated as 1.026, 1.062 and 1.090 kWh/ton for R = 50% 
and Xp = 300 ppm, by the second law of thermodynamics, 
the osmotic theory with the van’t Hoff equation and the 
vapor compression theory with BPE, respectively.

• The calculation of the theoretical minimum work could 
have 5%–10% difference depending on which theoretical 
approach is applied.

Overall, the theoretical minimum energy requirements 
from the three different approaches has been successfully eval-
uated and compared in a quantitative manner. From the fact 
that the osmotic theory, which is the principle of membrane 
desalination, and the vapor compression theory, which is the 
principle of thermal desalination, show the similar minimum 
energy, it is believed that the theoretical minimum energy for 
desalination is not a function of the method of desalination, 
that is, the same minimum energy would be required for any 
desalination methods when the same conditions are given. 
Additionally, the possibility of deriving a new BPE equa-
tion is found by comparing the minimum work calculation 
results, one by the vapor compression theory with an assumed 
BPE equation, the other by any other theoretical method or 
equation.
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Symbols

A — Heat transfer area, m2

G — Gibbs free energy, kJ, G = H – T S
H — Enthalpy, kJ
Jw — Permeate flux of water, m/s
Lp — Membrane water-permeability, m/s/Pa
h — Specific enthalpy, kJ/kg
m — Molality, mol/kg
N — Number of moles, molTa
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P — Pressure, Pa
q — Heat transfer rate, W
R — Recovery, %, R = product flow/feed flow
Ru — Universal gas constant = 8.31446, J/mol/K
S — Entropy, kJ/K
s — Specific entropy, kJ/kgK
T — Temperature, K or °C
U — Overall heat transfer coefficient, W/m2/K
V — Volume, m3

X — Salinity, kg/kg, %, ppm

xi — Mole fraction of the i-th component, x
N
Ni
i

j j

=
∑

W — Work, kJ, kWh, or W [J] = P [N/m2] × V [m3]
w — Specific work, kJ/kg or kWh/ton
α — Degree of dissociation
(1 + α) — Dissociation constant
µi —  Chemical potential of the i-th component,  

kJ/mol, µi
i P T N

i i i
G
N

g h T s
j

=
∂
∂









 = = −

, ,

π — Osmotic pressure, Pa

Subscripts

0 — Reference state
b — Brine reject (blowdown, discharge)
f — Feed saline water
p — Product (less saline water)
s — Salt
sat — At saturated
v — (water) vapor
w — (liquid) water

Appendix A. Minimum separation energy 
from the second law of  thermodynamics

A.1 and A.2 are the rearrangement of the work of Cerci 
et al. [7] to derive the entropy of mixing of an ideal solution.

A.1. Gibbs energy of a mixture

Gibbs (free) energy is used to determine the spontaneity 
of a process that occurs at constant temperature and pres-
sure. It is defined as follows:

G = H – T S, (A1)

where H is enthalpy, H = U + PV, U is internal energy, P is 
pressure and V is volume. For a process of ΔG < 0, the process 
is spontaneous (the process occurs without external help).

For a pure substance:

dH = +V dP TdS  (A2)

dG dH TdS SdT= − − = −V dP SdT  (A3)

For a mixture, however, G should be a function of 
 substances as well, so: 

G G P T N Ni= … …( , , , , , )1  (A4)

and from the chain rule: 

dG =
∂
∂









 +

∂
∂









 +
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







∑

G
P

dP G
T

dT G
N

dN
T N P N i i P T Nj, , , ,

ii  (A5)

Comparing Eqs. (A3) and (A5) leads to:

dG = − + ∑V dP SdT dN
i

i iµ  (A6)

where

µi
i P T N

i i i
G
N

g h T s
j

=
∂
∂









 = = −

, ,

 (A7)

In Appendix A, small letters are for the properties per 
mol, and overbar stands for a partial molar property in a mix-
ture. In Eq. (A7), µi is chemical potential, which stands for the 
change of a Gibbs energy when 1 mol of the i-th substance 
is added. (For a pure substance, it is identical to the specific 
Gibbs energy: µ = g = h – T s. Because the volume of individ-
ual substance is not conserved during mixing, the property of 
individual substance in a mixture is denoted with overbar.)

A.2. Ideal solution (ideal mixture)

If inter-molecular forces between difference substances 
can be neglected, a mixture is called an “ideal solution” or 
“ideal mixture”. Many liquid mixtures can be assumed as 
an ideal solution, which assumption simplifies the equations 
for thermodynamic properties.

For any function z = z(x,y), the following exactness test 
should be valid if the differential equation dz = Mdx + Ndy 
is perfect.

∂
∂




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


 =

∂
∂











M
y

N
x

x y

� �  (A8)

where M = ∂z/∂x and N = ∂z/∂y.
Material property is a state function, thus its differential 

equation should be perfect. Therefore, the differential equa-
tion of the Gibbs function, Eq. (A5) should be valid for the 
exactness test.

For constant P and Nj, Eq. (A5) is:

dG = − +SdT dNi iµ  (A9)

and for constant T and Nj, Eq. (A5) becomes:

dG = +V dP dNi iµ  (A10)

Exactness test for Eqs. (A9) and (A10) leads to:
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
 ≡ −

µ µi

N P N

i

P N i T P N
T T

S
N

s
i j j, , , , ,

� ii  (A11)
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v
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 (A12)

From µi = µi(P, T, x1, …, xk): 

d dg
P

dP
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dT
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i

T x

i

P x i

i

ii i

µ
µ µ µ

= =
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
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, ,


P T x

i

i

dx
, ,

 (A13)

Applying Eq. (A13) to Eqs. (A11) and (A12), the following 
equation is obtained:

d v dP s dT
x

dxi i i
i

i

i P T x
i

i

µ
µ

= − +
∂
∂









∑

, ,

 (A14)

For an ideal mixture, the heat of mixing and the volume 
change due to mixing are zero [17]. Thus:

∆ = −( ) =∑V N v v
i

i i imixing ideal, 0  (A15)

∆ = − =∑H N h h
i

i i imixing ideal, ( ) 0  (A16)

Eqs. (A15) and (A16) are identical equations, so 
v v h hi iι ι= =and .

Eq. (A14) is further simplified for constant T and Nj 
(assumption of Eq. (A10)) as:

d v dPi iµ = � �  (A17)

As the ideal gas equation of state (EOS) is valid for the 
individual substances in an ideal solution:

v R T Pi u= /   (A18)

Applying the Dalton’s law of partial pressure and assum-
ing no change in xi leads to:

d P d x P d x P d Pi i iln = = + =ln( ) (ln ln ) ln  (A19)

Therefore, Eq. (A17) becomes:

d v dP
R T
P

R Td P R Td Pi i
u

u u iµ = = = =dP ln ln  (A20)

Integrating left hand-side (LHS) and right hand-side 
(RHS) of Eq. (A20) from P to Pi gives:

LHS = = ( ) − ( )∫
P

P

i i i i

i

d T P T Pµ µ µ, ,   (A21a)

RHS = = − =∫
P

P

u i u i u i

i

R T d P R T P P R T xln ( ln ) lnln  (A21b)

So, the chemical potential change during mixing can be 
obtained as:

µ µi i i u iT P T P R xT( , ) ( , ) ln= −   (A22)

Eq. (A22) shows the fact that the chemical potential of the 
i-th substance in a mixture, µi(T,Pi), is smaller than the chem-
ical potential of a pure material, µi(T,P), by the amount of 
RuTlnxi (<0 for 0 < xi < 1). 

In order to use the relation of Eq. (A11), the partial 
 derivative of Eq. (A22) to temperature provides:
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∂

∂
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P x
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 (A23a)

RHS =
∂

∂

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


 + =− +

µi

P x
u i u i

T P
T

R x s T P R x
i

( , )
ln ( , ) ln .

,

 (A23b)

So, in terms of entropy:

s T P s T P R xi i u iι ( , ) ( , ) ln ,= −  (A24)

which shows the entropy of the i-th substance in a mixture  
(0 < xi < 1) is greater than the entropy of its pure material.

Then, the entropy of mixing of an ideal solution is:

∆ = − = −∑ ∑S N s s R N x
i

i i i u
i

i imixing ideal, ( ) ln  (A25)

A.3. Note on ideal solution (ideal mixture) assumption

The derivation in A.2 seems to be valid if liquid water 
could be assumed to follow the ideal gas law as well. 
However, this is usually not true considering a typical EOS 
for liquid water. For example, the cubic EOS for liquid water 
is given as:

( )( )P A v b R Tu+ − =  (A26)

where A is an attraction parameter and b is an effective 
molecular volume.

Eq. (A26) becomes the van der Waals’ EOS if A = a/v2 
and the Peng–Robinson EOS if A = aα(T)/(v2 + 2bv – b2) [18]. 
Usually A is in the order of 1.3 × 109 Pa [19], thus it cannot be 
ignored for the typical pressure regime of interest. Therefore, 
it seems it is difficult to apply the ideal gas law (including 
Dalton’s law of partial pressure) on liquid water, while calcu-
lation results from the equations driven under ideal solution 
assumption for many aqueous solutions show this assump-
tion is valid.

Appendix B. Exemplary calculations 
of minimum work for desalination

Though the equations for theoretical minimum work are 
derived for a certain amount of product water, calculations 
have been made for a unit water production. Therefore, 
 molality m (mol/kg) is used instead of the number of moles 
N (mol) to have the results in kWh/ton instead of kWh or kJ. 
The calculation details are shown for the case of 25°C and 
35,000 ppm feed water with 50% recovery and 300 ppm prod-
uct water.
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B.1. The second law of thermodynamics

Eq. (7) can be rewritten as follows:

w R T m x x m x x
m x
u s b s b s f s p s p s f

w b w b

min = +

+
0 ( ln( / ) ln( / )

ln( /
, , , , , ,

, , xx m x xw f w p w p w f, , , ,) ln( / ))+
 (B1)

For a 35,000 ppm NaCl solution with the dissociation 
constant of 1.8:

m
m
s f

w f

,

,

. [ / ] / . [ / ] . [ / ],
(

= × =

= −

1 8 35 58 44 1 078
1000 35

g kg g mol mol kg
))[ / ] / . [ / ] . [ / ],

/ ( ), , , ,

g kg g mol mol kg18 02 53 552=

= +x m m ms f s f s f w f ==

= + = − =

0 0197
1 0 9803
.

/ ( ) ., , , , ,

and
x m m m xw f w f s f w f s f

 

In the same way, at the product water side of 300 ppm, 
ms,p = 0.00924 mol/kg, mw,p = 55.477 mol/kg, xs,p = 0.0001665 
and xw,p = 0.9998335, and at the brine reject side of 69,700 ppm, 
ms,b = 2.147 mol/kg, mw,b = 51.626 mol/kg, xs,b = 0.0399 and xw,b = 
0.9601. Thus, Eq. (B1) is calculated as follows:
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B.2. The osmotic pressure theory (van’t Hoff)

Eq. (28) can be rewritten as follows:

w R Tu s f b s pmin avg to log mean, , ,( )= −0 m m  (B2)

Referring the calculations in B.1: 
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B.3. The vapor compression theory (BPE)

Eq. (35) can be rewritten as follows:

w h P T T X s
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 (B3)

where s s s T P T T Xv v v f2 1 1 0 0 0= = −( , ( ( , )))sat BPE .

For the given temperature and salinities, the boiling point 
elevation from BPE (Eq. (33)) are:
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Now, from Eq. (B3): 

w h hv vmin

kJ
kg

= − ×

= −( )







 ×

=

( )

. . .

.

2 1

2549 296 2546 577 1 4427

2 71

β

99 1 4427 1 090kWs
kg









 × =









. . kWh

ton

References
[1] UNESCO Centre for Membrane Science and Technology, 

University of New South Wales, Emerging Trends in 
Desalination, ISBN 978-1-921107-69-6, National Water 
Commission, Australian Government, 2008.

[2] Available at: http://www.nationmaster.com/country-info/stats/
Energy/Electricity/Consumption-by-households-per-capita 
(Accessed November 2016).

[3] Available at: http://www.etoday.co.kr/news/section/newsview.
php?idxno=1302501, newspaper article in Korean (Accessed 
November 2016). 

[4] Available at: http://www.khaleejtimes.com/550-litres-of-
water-used-per-day-by-a-uae-resident (Accessed November 
2016). 

[5] B.F. Dodge, A.M. Eshaya, Thermodynamics of some desalting 
processes, Adv. Chem. Ser., 27 (1960) 7–20.

[6] R.W. Stoughton, M.H. Lietzke, Calculation of some thermodynamic 
properties of sea salt solutions at elevated temperatures from data 
on NaCI solutions, J. Chem. Eng. Data, 10 (1965) 254–260.

[7] Y. Cerci, Y. Cengel, B. Wood, N. Kahraman, E.S. Karakas, 
Improving the Thermodynamic and Economic Efficiencies of 
Desalination Plants: Minimum Work Required for Desalination 
and Case Studies of Four Working Plants, Desalination and 
Water Purification R&D Program Final Report No. 78, Bureau 
of Reclamation, US Department of the Interior, 2003.

[8] B.W. Tleimat, M.C. Tleimat, Reduced Energy Consumption 
Evaporator for Use in Desalting Impaired Waters, Water 
Treatment Technology Report No. 11, Bureau of Reclamation, 
US Department of the Interior, 1995.

[9] K.S. Spiegler, Y.M. El-Sayed, The energetics of desalination 
processes, Desalination, 134 (2001) 109–128.



45S. Ihm, S. Woo / Desalination and Water Treatment 90 (2017) 32–45

[10] M. Elimelech, W.A. Phillip, The future of seawater desalination: 
energy, technology, and the environment, Science, 333 (2011) 
712–717.

[11] R. Heyrovska, Equations for densities and dissociation constant 
of NaCl(aq) at 25°C from “zero to saturation” based on partial 
dissociation, J. Electrochem. Soc., 144 (1997) 2380–2384.

[12] J.H. van ‘t Hoff, Die Rolle des osmotischen Druckes in der 
Analogie zwischen Lösungen und Gasen, Z. Phys. Chem., 1 
(1887) 481–508; translated and condensed in J. Membr. Sci., 100 
(1995) 39–44.

[13] G.N. Lewis, The osmotic pressure of concentrated solutions, 
and the laws of the perfect solution, J. Am. Chem. Soc., 30 (1908) 
668–683.

[14] Available at: http://www1.lsbu.ac.uk/water/osmotic_pressure.
html (Accessed November 2016).

[15] H.T. El-Dessouky, H.M. Ettouney, Fundamentals of Salt Water 
Desalination, Elsevier, Amsterdam, The Netherlands, 2002.

[16] M.H. Sharqawy, J.H. Lienhard V, S.M. Zubair, Thermophysical 
properties of seawater: a review of existing correlations and 
data, Desal. Wat. Treat., 16 (2010) 354–380.

[17]  K. Wark Jr., Advanced Thermodynamics for Engineers, 
McGraw-Hill, New York, 1995.

[18] D.-Y Peng, D.B. Robinson, A new two-constant equation of state, 
Ind. Eng. Chem. Fundam., 15 (1976) 59–64.

[19] M.Y. Chang, B.I. Morsi, Mass transfer characteristics of gases in 
aqueous and organic liquids at elevated pressure and temperatures 
in agitated reactors, Chem. Eng. Sci., 46 (1991) 2639–2650.


