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ab s t r ac t
Four artificial neural networks (ANNs) with several configurations predicted the coefficient of per-
formance (COP) of absorption heat transformer with duplex components. In this work, uncertainty 
analysis is applied to these ANNs models using Monte Carlo method with the aim to select the most 
appropriate ANN model in the sense that its structure when uncertainty was added, it gives a predic-
tion of the COP close to the experimental value of the same. Experimental conditions of absorption 
heat transformer with duplex components are used considering the COP ranged from 0.12 to 0.33. 
According to our numerical results the ANN model that considers three temperatures in the absorp-
tion cycle (TinGE-AB, TinAB-GE and ToutGE-AB) and one pressure level (PAB) in the input layer and four neurons 
in the hidden layer to predict COP was the most accurate. For this ANN model, normal probabilistic 
distribution of the COP is observed and the mean of the probabilistic distribution is close to the exper-
imental COP.
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1. Introduction

The present research introduces the estimation of uncer-
tainty in the coefficient of performance (COP; the dependent 
variable) of the absorption heat transformer with duplex 
compounds; it is based on Monte Carlo method since the 
addition of uncertainty in the operation variables (indepen-
dent variable). Martínez-Martínez et al. [1] presented four 
artificial neural networks (ANNs) model, who have pre-
dicted the COP for an absorption heat transformer with the 
aim of water purification. The models by Martínez-Martínez 

et al. [1] consider from three to six input operation variables 
to predict COP; these models meet strict statistics criterion, 
the error analysis and the use of matrix correlation. For the 
authors, the ANNs with four, five and six neurons in the 
input layer were successfully trained and validated (r2 > 0.99) 
for the COP prediction and complying with strict residual 
analysis. However, in the study, the standard deviation in the 
input operation variables was not considered.

An option to estimate the standard deviation is the 
Monte Carlo method. Rees [2] and Anderson [3] describe it as 
a mathematical approach that involves repeated calculation 
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of quantity, varying each time the input data randomly with 
their stated prediction limits. About the Monte Carlo method, 
Colorado et al. [4] used this numerical approach to estimate the 
standard deviation in an empirical model called “the hybrid 
model” to predict the heat load on an evaporator applied 
to a vapor compression refrigeration system using R134a 
as working fluid. According to the authors, the numerical 
estimation of standard deviation depends on characteristics 
of the model, and the limits of instrumentation can influence 
the accuracy of prediction. Boyaval [5] demonstrates the 
efficiency of the reduced-basis control-variate Monte Carlo 
method for uncertainty propagation in a representative 
uncertainty quantification framework aimed to compute 
expectations of a scalar output of the random partial 
differential equation solution for many values of the control 
parameters. Wang et al. [6] compared the numerical results 
of a random collocation method and a modified random 
collocation method with the traditional Monte Carlo method 
simulations in two heat transfer numerical cases: (i) a thermal 
plate and (ii) a sandwich structure, both to demonstrate the 
effectiveness and accuracy of the methods. 

In this research, we added several levels of uncertainty in 
the input operation variables considers in the artificial neu-
ral models by Martínez-Martínez [1]. The aim of this work 
is selected the most appropriate ANN model in the sense 
that its structure when uncertainty is added gives a predic-
tion of the COP close to the experimental value of the same. 
Moreover, the probabilistic distribution of COP prediction is 
observed. 

The novelties between studies done by Martínez-Martínez 
et al. [1] and Colorado et al. [4] and the present work are:

• Martínez-Martínez et al. [1] propose a residual analysis 
as criteria to select the best ANN model. In this research, 
we added several levels of uncertainty in the indepen-
dent variables, the most appropriate ANN model will be 
the one that propagates minor error, and it agrees with 
the experimental value. 

• Colorado et al. [4] present numerical information about 
Monte Carlo method and error propagation applied in an 
empirical model. However, the probabilistic distribution 
is not shown. In this work, Monte Carlo method is used 
to demonstrate the probabilistic distribution of the COP, 
it is predicted by ANN model.

Remaining of the paper is organized as follows: section 
2 shows the experimental equipment and instrumentation 
analyses. Section 3 presents the ANNs models used to pre-
dict the COP. Section 4 shows the uncertainty analysis and 
the Monte Carlo method. Section 5 contains the main results, 
consisting of the probabilistic distribution of COP calcu-
lated and the selection of the most appropriate ANN model. 
Finally, section 6 includes the concluding remarks. 

2. Experimental data: heat transformer and 
instrumentation

In the Research Center of Engineering and Applied 
Science in Cuernavaca, Morelos, Mexico, has located the 
test facility. This experimental rig consists of a water puri-
fication system integrated to a heat transformer composed 

to two duplex units generator–condenser and absorber–
evaporator. In the system, the lithium bromide water mixture 
was selected as the working mixture and water as working 
fluid. The thermal load design of heat transformer was 2 kW 
and built with stainless steel 316L (equipment and piping) to 
withstand corrosion effect. The approximate dimensions for 
heat transformer are 2.3 m × 2 m × 2 m and the entire system 
was covered with insulation foam. For more details of the 
operation and experimental data refer Morales et al. [7]. 

For the heat transformer, the COP is defined as the ratio 
of the useful heat delivered in the absorber QAB  divided 
by the waste heat load supplied to the generator QGE  plus 
evaporator QEV , the COP is given according to the following 
relation: 

COP AB

GE EV
exp = +



 

Q
Q Q

 (1)

The range of experimental coefficient of performance 
(COPexp) reported by Morales et al. [7] was from 0.1 to 0.36. 

The COP by Eq. (1) was calculated by following experi-
mental information, appropriate thermophysical properties 
of the lithium–bromide solution and working fluid, and ther-
modynamics balances. 

About instrumentation, the system was equipped with 
temperature, pressure and flow meter sensors on each side 
of the components in the absorption heat transformer cycle. 

The uncertainty measurement information is described 
in Table 1; however, it is valid only for the exclusive operating 
conditions investigated during the experimental campaign. 
A total of 16 operation variables considering flow, tempera-
ture and pressure were registered by digital data acquisition 
system. The refraction index is used for the concentration of 
lithium–bromide solution determination; sufficient samples 
of the solution are taken during the operation of heat trans-
former. Nevertheless, only six operational variables were 
considered to predict COPsim according to the analysis of the 
matrix correlation presented by Martínez-Martínez et al. [1]. 
Table 2 shows the range of experimental input operational 
variables and the COPexp in the absorption heat transformer. 

3. Artificial neural network models to predict the 
coefficient of performance

ANN is a model recommended by many authors for 
being fast and accurate to predict the dependent variable, 
these capacities are necessary for the real-time estimation in 
the process. 

In this research, the ANNs models by Martínez-Martínez 
et al. [1] were used. The aim of ANN models where the COP 
prediction in a heat transformer with duplex compounds. 

Four models were analyzed considering the hyperbolic- 
tangent transfer function in one hidden layer and a linear 
function in the output layer. The ANN models are enlisted in 
the following sections.

3.1. ANN model with six neurons in the input layer

Eq. (2) presents the model considering TinGE, TinGE-AB, 
TinAB-GE, ToutGE-AB, TinEV and PAB as independent variables in 
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the input layer, four neurons in the hidden layer in order to 
predict the coefficient of performance (COPsim). 

COPsim =
+

−
+

−
+

−
+




2
0 6578
1

0 4038
1

0 2596
1

0 0655
11 2 3 4

. . . .
e e e eϕ ϕ ϕ ϕ
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3.2. ANN model with five neurons in the input layer

Eq. (3) presents the model considering TinEV, TinGE, TinGE-AB, 
TinAB-GE and ToutGE-AB as input variables to calculate COPsim. 

COPsim =
−
+

+
+

−
+

−
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where

Table 1
Instrumentation equipment in the heat transformer

Variable Instrument Accuracy

Flow Flow meter ±5% in full scale
Range: 6.50 × 10–8 to 
2.83 × 10–7  m3/s
Maximum pressure: 
1,378,951.81 Pa
Material: stainless steel

Flow Flow meter ±3% in full scale
Maximum flow: 
5.30 × 10–4 m3/s 
Maximum pressure: 
1,378,951.81 Pa
Material: stainless steel

Pressure Manovacuometer ±0.5% in full scale
Range: 0–101,592 Pa
Type: Bourdon
Material: stainless steel
Localization: AB-EV

Pressure Manovacuometer ±2% in full scale
Range: 0–101,592 Pa
Type: Bourdon
Material: stainless steel
Localization: GE-CO

Pressure Pressure  
transducer

±0.25% in full scale
Range: 0–101,592 Pa
Output voltage: 0.5–5.5 V
Feed: 9-30 VDC
Localization: AB-CO and 
GE-CO

Temperature PT100 ±0.5 K for each 
measurement

Temperature RTD ±0.5 K for each 
measurement

RTD – Resistance temperature detector.

Table 2
Input variables used in the artificial neural networks models 
by Martínez-Martínez et al. [1] to predict the COPexp in the 
absorption heat transformer

Input operation 
variables

Operation range Localization

TinGE 338.76–358.83 K Input temperature 
of the generator that 
comes from waste heat 
source

TinGE-AB 329.4–351.24 K Input temperature 
of the solution to the 
generator that comes 
from absorber

TinAB-GE 323.85–351.97 K Input temperature 
of the solution to the 
absorber that comes 
from generator

ToutGE-AB 330.48–354.53 K Outlet temperature 
of the solution to the 
absorber that comes 
from generator 

TinEV 339.76–359.18 K Input temperature of 
the evaporator that 
comes from waste heat 
source

PAB 338.639–
1,219.10 Pa

Absorber pressure

COPexp 0.10–0.36 The coefficient of 
performance
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3.3. ANN model with four neurons in the input layer

Eq. (4) considers TinGE-AB, TinAB-GE, ToutGE-AB and PAB as 
variables in the input layer of ANN.
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3.4. ANN model with three neurons in the input layer

Eq. (5) predicts the COP as a function of TinGE, TinEV and 
PAB. 
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It is important to note that, the input operation variables 
were normalized before being incorporated into the models. 
Table 3 shows some experimental information used in this 
study on a COPexp range from 0.1200 to 0.3321.

4. Uncertainty analysis and Monte Carlo method 

This section describes briefly the uncertainty analysis 
and Monte Carlo method used in this work. Suppose that 
it has n variables X1, X2, …, Xn, which could be represented 
pressure, temperature, concentrations, etc., and also has a 
function based on them, that is,

Z f X X Xn= …( )1 2, , ,

In general, it has values of experimental measurements 
(denoted as xi ± ∈i) for each variable Xi, i = 1,2,…,n. These 
experimental measurements present uncertainties ∈i due to 
measurement limitations (e.g., instrument precision) which 
propagate to the combination of variables in the function Z. 
The uncertainty analysis (also known as a propagation of 

Table 3
Experimental information used in this study on a COPexp

TinGE (K) TinGE-AB (K) TinAB-GE (K) ToutGE-AB (K) TinEV (K) PAB (Pa) COPexp

343.3364 339.7128 338.4872 339.7274 344.232 75,719.6804 0.1200
356.4614 346.7049 344.8414 351.5564 357.1183 52,048.8143 0.1722
356.5211 344.4626 346.0458 351.1502 355.5401 58,787.7304 0.2306
357.3365 346.6257 349.2873 353.5942 355.1991 60,480.9254 0.3321
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uncertainty or error propagation) consists in analyzing the 
effect of variables uncertainties, xi ± ∈i on the function Z. That 
is, the uncertainty analysis allows to determine the uncer-
tainty of Z,∈, if the uncertainties, ∈1, ∈2,...,∈n are known. 
Thus, with the uncertainty analysis, it is possible to derive 
confidence limits to describe the region within which the true 
value Z may be found. That is, 

z Z z−∈≤ ≤ +∈  (6)

where

z f X X Xn n±∈= ±∈ ±∈ … ±∈( )1 1 2 2, , ,

To derive confidence limits (6) of the true value Z is nec-
essary to know the probability distribution of the variables 
X1, X2,…,Xn or assumed. In our study, setting it assumes that 
each uncertainty ∈1, ∈2,...,∈n  have Gaussian probability dis-
tribution with mean 0 and standard deviation σi, that is,

∈ ( ) = …i iN i n~ , , , ,0 1 2σ  for all   (7)

The uncertainty, ∈i, on a measure of the variable Xi (i.e., 
on xi), will be quantified regarding the relative standard devi-
ation (RSD) which is defined as: 

%RSD = ×
σ i
Xι

100  (8)

where σi and Xι
 are the standard deviation and the mean of 

the variable Xi, respectively. So, from Eq. (8) it obtains: 

σ i
X

=
( )%RSD ι

100
 (9)

Let RSDinstrument be the RSD of the measuring instrument 
and let Xι  the mean of the experimental measurements of 
the variable Xi, then considering in Eq. (9), RSD = RSDinstrument 
and X Xiι = , it has, 

σ i
X

≈
( )RSDinstrument ι

100
 (10)

In this manner, our study, it is considered X xi i i≈ +∈  
with xi the experimental measurement, ∈i as in Eq. (7) with 
σi given in Eq. (10). The uncertainties, ∈i, it propagates on Z 
with the Monte Carlo method. 

Remark: Note that the probabilities, 
P a P X x a P X x ai i i i i∈ =( ) = − =( ) = = +( ) , implies that if the 
probability of distribution of ∈i is known, then the probabil-
ity of distribution of the true value of Xi is also known.

The Monte Carlo method is developed and used in this 
work with the aim to propagate the error of the input vari-
ables in the ANNs models, one of the advantages of this 
method is to be able to show the type of distribution of 
the dependent variable because of adding a certain level of 
uncertainty in the independent variables and evaluating a 
mathematical function. Rees [3] and Anderson [4] were pio-
neers in the Monte Carlo method, and it is described in the 
following steps:

• For each independent variable, a certain level of uncer-
tainty was added assuming a distribution.

• For the model selected, in this study (Eqs. (2)–(5)), the 
Monte Carlo method is based on repeated calculations 
of COPsim, changing input data every time by a random 
selection from its error probability distribution.

• The predictions are collected and the form of the distribu-
tion is observed. In this research, the mean of the distri-

bution was named as COP ims
M

.

For this research, the ANNs models described in the 
previous section are evaluated under uncertainty using the 
Monte Carlo method. The independent variables of these 
models (Eqs. (2)–(5)) are operation variables measured from 
heat transformer temperature and pressure. Fig. 1 shows a 
schematic diagram of the union of experimental heat trans-
former, Monte Carlo method and ANN model. 

The uncertain limits of instrumentation in the heat trans-
former can influence the accuracy of the COP prediction by 

73 73.1 73.2 73.3 73.4 73.5 73.6 73.7 73.8 73.9

10
4

0

1

2

3

4

5

6

7

8

9

10

75.7 75.8 75.9 76 76.1 76.2 76.3 76.4 76.5

10
4

0

1

2

3

4

5

6

7

8

9

10

80 80.1 80.2 80.3 80.4 80.5 80.6 80.7 80.8 80.9

10
4

0

1

2

3

4

5

6

7

8

9

10

17.75 17.8 17.85 17.9 17.95

10
4

0

1

2

3

4

5

6

7

8

9

10

0.29 0.3 0.31 0.32 0.33 0.34 0.35

10
4

0

1

2

3

4

5

6

7

8

9

10

Fig. 1. Schematic representation of the system used to analyze uncertainties on artificial neural network model by the Monte Carlo 
method.
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ANN model. This work proposed two cases for instrumental 
measurement errors (RSDinstrument): 

Case 1:  The use of high precision equipment to measure 
the operation variables (%RSD = 0.1).

Case 2:  Increases in the uncertainty of input operation 
variables for a %RSD from 0.1 to 1 keep constant 
the COPexp.

5. Numerical results

In this section, the main contributions of this work are 
presented. First, case 1 assuming a %RSDinstrument = 0.1 and sec-
ond the case 2 evaluating %RSDinstrument in the interval [0.1, 1] 
weep constant the COPexp to 0.33. 

Case 1. The use of high precision equipment to measure 
the operation variables: in this work, we are interested in 
observing changes in the form of probabilistic distribu-
tion of COP, for this reason, numerical results assuming a 
Monte Carlo method with 1,000,000 random number will be 

presented. Four levels of COP were selected with the aim of 
covering all the experimental conditions, COP from 0.12 to 
0.33 was evaluated (Table 3). 

For this case, the use of high precision equipment for 
temperature and pressure measures was developed. This 
case was added considering a %RSD = 0.1 and normal prob-
abilistic distribution in the input operation variables for each 
ANN model.

The ANNs models presented in previous sections, Eqs. 
(2)–(5), were evaluated with Monte Carlo method with the 
aim of finding the best model from uncertainty propagation.

The ANN with six input variables, TinGE, TinGE-AB, TinAB-GE, 
ToutGE-AB, TinEV and PAB, to estimate the COP under uncer-
tainty was evaluated numerically, the results are shown in 
Fig. 2. Following with the numerical results, Table 4 shows 
the standard deviation calculated σCOP for each COPexp condi-
tion, it increases from 0.0001 to 0.0069 when the COPexp was 
increased from 0.1200 to 0.3321. The discrepancy between the 
COPexp and the mean of the probabilistic distribution were 
less than 4.6%. 
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Fig. 2. Probabilistic distribution generated with Monte Carlo method and the ANN model with six input neurons for (a) COPexp = 0.12, 
(b) COPexp = 0.17, (c) COPexp = 0.23 and (d) COPexp = 0.33. 
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The ANN model considering five input operation vari-
ables, TinEV, TinGE, TinGE-AB, TinAB-GE and ToutGE-AB, to predict the 
COP was tested with Monte Carlo method, the numerical 
results are illustrated in Fig. 3. It is interesting to note that, the 
probabilistic distribution for experimental conditions from 
COP = 0.12 to 0.33 were practically normal. The maximum 

absolute error between the experimental and the mean of the 
probabilistic distribution of the COP was calculated for each 
case as lesser than 6%. In this case, the standard deviation 
increases when the COPexp was increased, as shown in Table 5. 

The following ANN model considers four input vari-
ables, TinGE-AB, TinAB-GE, ToutGE-AB and PAB, in ANN model and 

Table 4
Numerical results for Monte Carlo method, n = 1,000,000 and artificial neural network model with six neurons in the input layer

COPexp  COPsim Eq. (2)
COPsim

M
COP COP

COP

simexp

exp

−
×

M

100
 

σCOP

0.1200 0.1254 0.1254 4.50 0.0001
0.1722 0.1662 0.1731 0.52 0.0037
0.2306 0.2389 0.2292 0.60 0.0057
0.3321 0.3098 0.3269 1.56 0.0069
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Fig. 3. Probabilistic distribution generated with Monte Carlo method and the ANN model with five input neurons for (a) COPexp = 0.12, 
(b) COPexp = 0.17, (c) COPexp = 0.23 and (d) COPexp = 0.33. 
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it is presented in Eq. (5). Fig. 4 shows the numerical results 
of Monte Carlo method, normal distribution was observed 
assuming experimental conditions to estimate the COP from 

0.12 to 0.33. Table 6 showed the COP ims
M

 and standard devi-
ation σCOP calculated from each probabilistic distribution 
for each COPexp. Table 6 shows the maximum absolute error 

between the experimental and the mean of the probabilistic 
distribution of the COP was calculated for each case as lesser 
than 7.7%. 

The model that involves three operation variables, 
TinGE, TinEV and PAB, in the input layer was evaluated consid-
ering four neurons in the hidden layer to predict the COP. 

Table 5
Numerical results for Monte Carlo method, n = 1,000,000 and artificial neural network model with five neurons in the input layer

COPexp  COPsim Eq. (2)
COPsim

M
COP COP

COP

simexp

exp

−
×

M

100

σCOP

0.1200 0.1273 0.1272 6.00 0.0003
0.1722 0.1697 0.1761 2.26 0.0035
0.2306 0.2387 0.2293 0.56 0.0053
0.3321 0.3087 0.3236 2.56 0.0059
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Fig. 4. Probabilistic distribution generated with Monte Carlo method and the ANN model with four input neurons for (a) COPexp = 0.12, 
(b) COPexp = 0.17, (c) COPexp = 0.23 and (d) COPexp = 0.33.
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Fig. 5 shows the probabilistic distribution obtained with the 
numerical model assuming experimental conditions to esti-
mate the COP from 0.12 to 0.33. As can be seen that, there 
is no normal shape in the distribution for COPsim equal to 
0.12, 0.23 and 0.33, this causes the mean value calculated 
from the distribution does not match with the prediction of 
ANN. Normal distribution was observed for experimental 

conditions of COP = 0.17. Table 7 shows that the maximum 

discrepancy between COPexp and COP ims
M

 was equal to 9.75%. 
Case 2. Increases the uncertainty of input operation vari-

ables for a %RSD from 0.1 to 1 keep constant the COPexp = 0.33: 
the %RSD was increased from 0.1 to 1 keeping fixed the COP to 
0.33. Figs. 6–8 show the numerical results of probabilistic dis-
tribution with the ANN with six, five and four input operation 

Table 6
Numerical results for Monte Carlo method, n = 1,000,000 and artificial neural network model with four neurons in the input layer

COPexp  COPsim Eq. (2)
COPsim

M
COP COP

COP

simexp

exp

−
×

M

100

σCOP

0.1200 0.1288 0.1292 7.67 0.0007
0.1722 0.1911 0.1767 2.61 0.0076
0.2306 0.2259 0.2308 0.08 0.0029
0.3321 0.3340 0.3199 3.67 0.0054
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Fig. 5. Probabilistic distribution generated with Monte Carlo method and the ANN model with three input neurons for (a) COPexp = 0.12, 
(b) COPexp = 0.17, (c) COPexp = 0.23 and (d) COPexp = 0.33.
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variables, respectively. As can be seen, normal distribution was 
observed for the neural network model with four input opera-
tion variables considering the input layer of %RSD from 0.1% 
to 1%. The models with five and six neurons in the input layer 
did not present a normal distribution for the COP prediction 
considering %RSD equal to or greater than 0.3. 

5.1. Analysis of numerical results 

According to section 3, the following relation can be 
expressed: 

 COPexp ≈ ANN(x1,x2,…,xn)

Let xk
i  be the ith value of xk variable, with k = 1,2,…,n, 

then the ith experimental coefficient of performance COPexp
i  

associated with the variables x x xi i
n
i

1 2, ,...,  can be expressed as: 

COP ANNexp , , ,i i i
n
ix x x≈ …( )1 2

In the uncertainty analysis xk
i  is replaced for xk

i
k± ε , then, 

COP ANNexp , , ,i i i i
n
i

nx x x± ≈ + + … +( )ε ε ε ε1 1 2 2  (11)

where εi is a random error. 
In Eq. (11), the random errors εk are taken as 1,000,000 

values, consequently several coefficients of performance 
values can be obtained which are denoted as COPsim

M . Thus, 
Eq. (11) can be rewritten as: 

COP COPsimexp , , , , ,i M
k
i k± ≈ = = …( )ε ε ε 1 1 000 000  (12)

Taking the means E of both side of Eq. (12), it obtains: 

COP COPsimexp
i ME E±   ≈  ε

implying: 

E E M i∈  =   −COP COPsim exp  (13)

Table 7
Numerical results for Monte Carlo method, n = 1,000,000 and artificial neural network model with three neurons in the input layer

COPexp  COPsim Eq. (2)
COPsim

M
COP COP

COP

simexp

exp

−
×

M

100

σCOP

0.1200 0.1379 0.1317 9.75 0.0168
0.1722 0.2468 0.1795 4.24 0.0324
0.2306 0.2104 0.2336 1.30 0.0107
0.3321 0.3047 0.3242 2.38 0.0050
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Fig. 6. Probabilistic distribution generated with Monte Carlo method and the ANN model with six input neurons keeping fixed the 
COPexp = 0.33 and increases the %RSD.
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Fig. 7. Probabilistic distribution generated with Monte Carlo method and the ANN model with five input neurons keeping fixed the 
COPexp = 0.33 and increases the %RSD.
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Fig. 8. Probabilistic distribution generated with Monte Carlo method and the ANN model with four input neurons keeping fixed the 
COPexp = 0.33 and increases the %RSD.
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If ε letting to zero, which is the same as E[∈] closer to 
zero, then the last equality

E M iCOP COPsim
  ≈ exp  (14)

which would imply that the ANN x x xi i
n
i

n1 1 2 2+ + … +( )ε ε ε, , ,
model is accurate, due to the structure of the ANN model, 
when the uncertainty was added, it obtains a prediction close 
to the COPexp

i . 
In this work, the absolute relative error 

COP COP

COP
simexp

exp

−   ×
E M

100 is calculated as a measure to show 

the equality (13) explained above.
In accordance with the previously explained, for the 

numerical results of case 1 in section 5, the ANNs with four, 
five and six operation variables in the input layer of archi-
tecture (see ANN models Eqs. (2)–(4)) have absolute small 
relative errors (Tables 4–6) satisfying the approximate (14). 
Therefore, these ANN models are the most appropriate for 
the prediction of the COP system studied.

Case 2 made the finest analysis of uncertainty because 
increases the uncertainty of input operation variables for a 
%RSD from 0.1 to 1 keep constant the COPexp = 0.33. Based 
on the numerical results of case 2, Figs. 6–8, the ANN mod-
els with five and six input variables present highest absolute 
relative errors to the ANN model with four input variables. 
Table 8 showed the numerical results when %RSD was 
increased from 0.1% to 1% in the input operation variables 
(TinGE-AB, TinAB-GE, ToutGE-AB and PAB). 

According to the analysis presented in the beginning 
of this section, it can be concluded that the ANN with four 
input operation variables satisfy the approximate (14) and 
consequently this model is the most accurate. 

6. Conclusions

The main contributions of this work are: 

• In this study, the ANN model with four input neurons in 
the input layer, TinGE-AB, TinAB-GE, ToutGE-AB and PAB it turned 
to be the most appropriate.

• The probabilistic distribution of the COP was showed 
and analyzed, normal distribution was observed with the 
ANN model with four input neurons in the input layer, 
TinGE-AB, TinAB-GE, ToutGE-AB and PAB. The other ANN models 
presented asymmetric distribution or excess of data in the 
right size when the %RSD was increased greater than 0.3. 

• The ANN that considers TinGE-AB, TinAB-GE, ToutGE-AB and PAB 
in the input layer and assuming a %RSD from 0.1 to 1 
presented the COP distribution as normal in the range of 
0.12 to 0.33.

• The standard deviation for the ANN model with four 
input operation variables was calculated and shown in 
Table 8. 
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Numerical results of uncertainty analysis for the ANN model with four operation variables in the input layer

%RSD  COPexp COPsim
M

COP COP

COP

simexp
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−
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M
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simCOP
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