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a b s t r a c t

In this work, novel adsorbent was developed by using deep eutectic solvent system as function-
alization agent of carbon nanotubes for the removal of arsenic ions from water. Artificial neural 
network (ANN) approach was used to predict arsenic removal from water.  The developed adsor-
bent was characterized using Raman spectroscopy, Zeta potential and FTIR. The experimental work 
was designed to study adsorption process parameters and they were initial concentration of arsenic, 
adsorbent dosage, pH and contact time. After using three models to identify the suitable kinetic 
model with different pH values, the pseudo-second order best described the adsorption kinetics of 
the system. Different indicators were used to determine the efficiency and accuracy of the (BP-ANN) 
model which are (MSE), (RMSE), (RRMSE), (MAPE). Moreover, the (FB-ANN) adequacy was checked 
by coefficient of correlation R2 which found to be 0.9968. By conducting a comparative study for the 
experimental and the predicted results, it was found that the (FB-ANN) model was able to predict 
the adsorption capacity of arsenic removal satisfactorily.  
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1. Introduction 

Arsenic is one of the extensively distributed metals in 
nature in water, soil and air. The water pollution arises due 
to the change of the environmental condition and industrial 
activities, that brings significant consideration of specialists 
on its remediation skills. An earlier study demonstrates that 
ten millions of individuals are comprehensively exposed to 
poisonous substantial metals per day [1]. Arsenic is one of 
the most poisonous heavy metals and its availability in water 

makes the water not desirable for drinking. The accumula-
tion of arsenic can affect the human health such as kidney, 
blood cell, lesion of skin, lung, brain, stomach and even can-
cer [2–4]. Therefore, the world health organization (WHO) 
determined the maximum allowable arsenic amount at the 
drinking water is 0.01 mg/l [5]. Different techniques have 
been used for the removal of arsenic from water such as ion 
exchange [6], oxidation-precipitation [7], coagulation and 
filtration [8] and adsorption [9]. However, the performance 
of these techniques are not sufficient enough, therefore the 
need for a new method is vitally important. Nevertheless, 
the adsorption method gained a high interest and consid-
ered as one of the most appropriate methods due to the abil-
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ity of removing a small amount of heavy metals from a large 
amount of water solution. The effectiveness of adsorption is 
majorly dependent on the selection of appropriate process 
condition, including the mass of sorbent, pH, system tem-
perature and the process duration [10]. Several studies have 
been done by using different type of materials to remove the 
arsenic ions from water for example, clay minerals [11], acti-
vated carbon [12] and biomaterials [13]. However, the use 
of traditional adsorbents have a drawbacks such as small 
adsorption capacity and low adsorption efficiency [14]. 
Consequently, the need for the high efficient adsorbents is 
necessary to remove the arsenic ions from water solution. 
Therefore, researchers work on finding a new promising 
material. Carbon nanotubes (CNTs) have different proper-
ties which make it convenient to several applications in elec-
tronics, optics, water treatment, nanotechnology and some 
of material science fields [15]. The nanoparticle is used as 
the most effectual adsorbent material for the removal of sev-
eral pollutants, due to their special features such as, catalytic 
potential, large surface area, small size and high reactivity 
[16]. The most and effective material used in the water treat-
ment field is carbon nanotubes (CNTs) for the removal of 
several types of pollutants [17,18]. However, there are some 
limitations in the CNTs application due to various flaws in 
solubility, difficulty in manipulation, and aggregation. In 
contrast, CNTs have a great property by interaction with 
other compounds and have a greater interaction after sur-
face functionalization [19]. 

The oxidative functionalization of CNTs surface can 
increase the surface charge of CNTs, and this need to use 
a strong acid which is environmentally harmful. Therefore, 
finding a new kind and environmentally friendly material 
is crucial for the new application development [20,21].

The deep eutectic solvents (DESs) is one of the ionic liq-
uid analogues which is presented by Abbot et al. in 2003 
[22] as a cheaper replacement for developed ionic liquids 
(ILs). Generally, DESs made up from two or more com-
pounds. Deep eutectic solvents (DESs) are identified as liq-
uid combination formed by the complexation of hydrogen 
bond acceptors (HBA) and hydrogen bond donors (HBD) 
[23,24]. The malting point of the mixed compounds are 
lesser than the individual compound [23]. In contrast, DES 
has several advantages comparing to the conventional ILs 
such as, diversity of physical properties and different molar 
ratios, easy to synthesis and cheaper price of compounds. 
Recently, DESs were reported in many applications; exam-
ples of such are the uses of ChCL-based DES as a functional 
additive for starch-based plastics [25], the synthesis of zeo-
lite analogues [26], mediums for the deposition of specific 
metals in electro and electroless plating of metals [27,28]. 
And most recently, in nanotechnology applications [29].

 The adsorption process is complicated due to many 
variables involved which can affect the adsorption effi-
ciency. The conventional linear method for modelling 
of this kinds of processes is difficult, artificial neural net-
work (ANN) techniques is the alternative for mapping the 
nonlinear relationship between variables and output pro-
fessionally, can identify and reproduce non-linear relation-
ship between inputs during training procedure in various 
input-output schemes [30]. Recently, ANNs technique are 
used for various engineering applications. ANNs consist of 
a massive parallel architecture which can solve the compli-

cated problems by the assistance of highly connected neu-
rons organised in layers. ANN considered as a powerful 
tool in identifying the relationships between the parame-
ters specially at the non-linear and complex relationships. 
Experiments have been successfully performed to use ANN 
to model the adsorption of arsenic [30–32].

1.1. Problem Statement 

The use of the conventional ionic liquids (ILs) is consid-
ered as environmentally harmful due to the use of strong 
acids and higher cost comparing to the deep eutectic sol-
vent (DES). The use of DES has many advantages over ILs 
such as the diversity of physical properties and easy to 
synthesis. In general, the adsorption process is complicated 
due to the effect of many variables involved in the process, 
due to that the use of ANN techniques can recognize the 
relationship between variables such as adsorbent dosage, 
concentration of the heavy metals, pH and contact time. 
Artificial intelligence (AI) process is powerful technique 
that has been used successfully for the engineering appli-
cations since decreases the required time and cost for the 
experimental work. The advantages of the modeling tech-
niques are formulating the knowledge, describing the pro-
cess and extending the experimental results.

1.2. Objective 

One hydrogen bond donor (HBD) which is glycerol (Gly) 
and one type of phosphonium based salts are used which is 
methyltriphennylos phosphonium bromide (MTPB) to pre-
pare the DES, the salts is mixed with (Gly) to produce the 
DESs. Therefore, the CNTs were pre-oxidized with KMnO4 
and subsequently functionalized by the synthesized DESs.
The functionalized CNTs are used to remove the As3+ from 
water. Four variables will be considered during the exper-
imental work such as, adsorbent dosage, heavy metal con-
centration, PH and processing time. 

The artificial neural network (ANN) modeling tech-
nique will be used in this study to create an ANN model to 
establish the relationship that exists between the variables, 
and to predict the adsorption capacity of the DES-CNTs 
forAs3+ removal from water solution based on the experi-
mental data set prepared in the lab scale. 

2. Experimental and methodology 

2.1. Chemicals and materials 

The materials used in the experimental work are multi-
wall carbon nanotube (MWCNTs) with specification of D 
6–9 nm × L5 µm, >95% carbon, potassium permanganate 
(KMnO4), Gly, hydrochloric acid (36.5–38%), and sodium 
hydroxide pellets were all provided by SIGMAALDRICH. 
The arsenic standard solution of 1000 mg/L and MTPB with 
>99% purity were provided by Merck, Germany.

2.2. Synthesis of DESs

The synthesising of DES was the result of stirring a mix-
ture of Gly and MTPB at molar ratio of 3:1 HBD: salt at 400 
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rpm and temperature of 80ºC. The mixing time was 3 h until 
the DES turn into homogenous mixture without precipita-
tion [33]. The produced DES will be referred as (m) in this 
study. The prepared DES is kept in controlled environment 
to avoid the effect of the humidity. 

2.3. Functionalization of MWCNTs by M-DES

After drying the pristine MWCNTs (P-CNTs) at 100ºC 
overnight. 7 ml of KMnO4 was added to 200 mg of P-CNTs 
and sonicated for 2 h at 65ºC to produce K-CNTs [34]. The 
functionalization by m-DES was conducted by mixing 200 
mg of K-CNTs with 7 ml of m-DES under sonication for 3 
h at 65ºC to produced mK-CNTs. Later, a filtration process 
was performed by washing the functionalized CNT using 
distilled water and filtered by PTFE 0.45 µm membrane 
until the pH of the filtered water reached neutral. 

2.4. Characterization of functionalized CNTs

The characterization of the P-CNTs, K-CNTs and 
mK-CNTs adsorbent was done by using Fourier transform 
infrared (FTIR) to recognize the surface modification. The 
Raman spectroscopy also used to find the Raman shift spec-
tra to recognize the degree of functionalization. The zeta 
potential also used to study the partials surface charge.

2.5 Adsorption experiments 

The prepared mK-CNTs adsorbent was used in this 
study to remove the As3+ from water. Batch adsorption 

study was conducted using various amount of adsorbent 
(20, 30 and 40 mg), arsenic concentration (1, 3 and 5 mg/L) 
and different values of pH (3, 5 and 8). A 50 ml of contami-
nated water in a 250-ml flask, the flasks were shaking at 180 
rpm using a mechanical system at room temperature. The 
number of samples prepared in this study is 213. The con-
centrations of arsenic were tested at different time to study 
the equilibrium time of adsorption.   

3. Back propagation neural network (BPNN)

Recently, a significant improvement in the artificial neu-
ral network (ANN) techniques use in different fields for the 
prediction of difficult and complicated systems. ANN sys-
tem able to improve the predicting ability of models at time 
the statistical and mathematical procedure are complicated 
to predict and formulate with anticipated accuracy. In this 
study, the sorption efficiency estimation by using analyti-
cal and mathematical tools is complicated due to the com-
plexity and non-linear relationship between the variable of 
arsenic (III) removal. Consequently, in this study the ANN 
techniques have been used for prediction reason due to the 
high ability of ANN to perceive the input and output pro-
fessionally in the complicated situation.  

The back propagation neural network (BP-NN) struc-
ture containing of three different layers such as input 
layer which receive the inputs from the source, hidden 
layer which process the received signals from the input 
layer and output layer which deliver the results have been 
predicted in this study, the structure of the feed-forward 
back-propagation presented in Fig.1. There are two stages 

Fig. 1. Feed-forward back-propagation neural network structure.
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in the neural network functioning the first stage is training 
and the second stage is testing.  The structure of the net-
work can be presented as B-R-N, the input layer presented 
by B which is identified by the number of input variables. 
Whereby, the hidden neuron of hidden layer is presented 
by R, the number of output layer neuron is presented by 
N the number of the output layer neuron is depending on 
the number of desired output. An output sources deliver 
information to input layer, the inputs number depending 
on the output sources variable, the input layer sends the 
information to the hidden layer and do all the processing 
on the information and send them to the output layer, the 
output layer creates the result and send it to an external 
receptor. The interaction between the layers is called as 
weight (Wii) the weight factor can modify the values of 
the transferred signals, the sigmoid transfer function (f) 
also modify the total of the information. In the same way, 
the output layer signals also modified by the weight fac-
tor (Wii) of the kth layer. All the modified information by 
sigmoid transfer function (f) are combined at the output 
layer [35]. 

Let Is = (Is1, Is2, Is3….IsI), S = 1,2,3,…,N is Sth manner among 
N input manner, where Wkj and Wji are the connection 
weight between jth hidden neuron to ith input neuron, and 
kth output neuron to jth hidden neuron, respectively.  

The output neuron form of the input layer is:

D Isi si=  i = 1,2,3,….,B �  (1)

D f w Dji sii

I
=

=∑( )
1

, i = 1, 2, 3, …,R� (2)

The output layer neuron is: 

D f w Dsk kj sjj

R
= ( )=∑ 0

 , k = 1, 2, 3, …,N  � (3)

There are plenty of Feed-forward Back-propagation 
Neural Network (FBNN) transfer function in the back prop-
agation unit. The following transfer function selected prin-
ciples used as a monotonous non-decreasing, differentiable 
and continuous function. In this work, the most universal 
binary logistic sigmoid transfer function is used and it is 
written as following: 

f x
e x

( ) =
+ −

1

1
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The concentration of metals, adsorbent dosage, pH, and 
contact time are the input variables used in the ANN model 
are shown in Table 1.

The efficiency of adsorbent is the desired from the out-
put of the network. Two hundred and thirteen experimental 
data are prepared in lab scale and used for the modeling. 
The used data are separated into two sets training set and 
testing set, (88%) of the data are used for the training and 
(12%) are used for the testing. There are two types of learn-
ing methods, the supervised and unsupervised methods, in 
this study the supervised technique has been used. 

The predicted results are compared with the experimen-
tal used data by using the mean square error to calculate the 
occurred error between the predicted data and the desired 
data. The maximum value of mean square error limited 
based on the user desire, if the value is not in the limit pre-
scribed, then its back propagation the output to the input, 
and the weight is adjusted until the iteration number meet 
the prescribed limit. The mean square error Es is defined as:

E Q Ds si sii

n
= −( )=∑ 1

21

2

� (5)

where Qsi is the desired value, and Dsi is the is the predicted 
output. 

The mean square error value is supervised at the train-
ing stage. At the initial training phase, the value of the error 
is usually decreased, the training error start to rise when 
the overfitting start to happen. The training stop when the 
error of training begins to increase and the minimum value 
of weight at training are returned.  

3.1. Model evaluation indicators 

Different indicators will be used to evaluate the ANN 
model, by using the actual and predicted results, to exam-
ine the accuracy of ANN model. The behaviour of ANN 
model carried out by employing various indicators such as 
the relative root mean square error (RRMSE), mean square 
error (MSE), root mean square error (RMSE), mean absolute 
percentage error (MAPE) and relative error (RE). The for-
mulas of the maintained indicators are as follows: 
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where Df(t) = the simulated value; Da(t) = the actual value.
Generally, RRMSE, MSE, RMSE, MAPE and RE indica-

tors were selected to evaluate the performance of models, all 

Table 1
The range of input and output parameters 

Parameters Minimum Maximum

Adsorbent dosage (mg) 20 40
Initial concentration of As3+ (mg/L) 1 5
pH 3 8
Contact time (min) 1 310
Uptake capacity (mg/g) (output) 0 3.82
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the indicators are based on the obtained result by compar-
ing the evaluated error of the actual and simulated results. 
The model with smallest error considered as the best model. 

4. Result and dissection 

4.1. Hybrid material characterization 

The Raman spectroscopy has the capability to indicate 
the functionalization degree for the Carbon materials, by 
comparing the intensity of D band (ID) with the G band 
(IG), ID/IG [36]. In this work, the ID/IG for the P-CNTs found 
1.11, by adding the KMNO4 the ID/IG ratio reached to 1.16. 
Afterward, with functionalization by m-DES, the surface 
deformation of CNTs has been increased by bring in a new 
functional group in sp3 directions, resulting in the develop-
ment of the ID/IG ratio of the mK-CNTs to 1.22. These results 
were in agreement with the FT-IR analysis where the func-
tionalization with KMnO4 increased the hydrophilicity of 
the CNTs surface by introducing O-H functional groups. By 
contrast, the m-DES increased the hydrophilicity of the sur-
face where the O-H presence was completely disappeared. 
In addition, the PO–3 presence at wave number range of 450–
500 cm–1. The absolute zeta potential was increased signifi-
cantly after the functionalization m-DES where its reached 
39.78 mV. It is well known that the surface area of an adsor-
bent is of high influence on the adsorption efficiency, herein 
the surface area was increased after each functionalization 
step. The surface area of P-CNTs, K-CNTs, mK-CNTs was 
123.5, 158.9 and 205.5 respectively [37]. 

4.2. Influence of pH 

The pH of solution is a function of the arsenic ions 
removal, in order to study the pH influence, the pH values 
were varied in this study in the range of 3.0–8.0 with fixing 
all the involved parameters in the experimental work. Two 
initial concentrations of arsenic 1 mg/L and 3 mg/L were 
used in order to examine the effect of pH with different 
initial concentration. The relationship between the pH and 
the adsorption efficiency can be clarified by the mecha-
nism of the electrostatic attraction between the arsenic spe-
cies and the negative charged adsorbents. The adsorbents 
are highly protonated at lower pH value thus, will result 
in a high attraction electrostatic, which lead to a higher 
attraction between the negatively adsorbent charged and 
anion resulting in a higher adsorption capacity. Whereby, 
at higher value of pH the adsorbent capacity is decreas-
ing. The process might happen due to, the ionization of 
adsorbent acidic or repulsive force might happen between 
the arsenic ions and the adsorbent negatively charged. The 
ANN technique is used for the modeling and prediction of 
the obtained data from the experimental work, the predic-
tion results shows a good agreement with the experimen-
tal result trend. The ANN outputs and the experimental 
results as the function of pH versus the uptake capacity 
are presented in Fig. 2 A, B.

4.3. Effect of adsorbent dosage 

Adsorbent dose is one of the important factors involved 
in the adsorption process, the adsorbent dose effect on the 

As3+ removal is examined at pH 5.0, with 1 mg/L and 3 mg/
LAs3+ initial concentration by keeping the other involved 
factors as constant. The As3+ removal capacity is decreased 
from 2.164 mg/m to 1.883 mg/g by increasing the adsor-
bent dosage from 20 mg to 30 mg and 1.883 mg/g to 1.761 
mg/g by increasing the adsorbent dosage from 30 mg to 
40 mg at initial concentration of 3 mg/L. While at initial 
concentration of 1 mg/L, the uptake capacity decreased 
from 2.164 mg/g to 1.315 mg/g with increasing the adsor-
bent dosage from 20 mg to 30 mg, whereby, increasing the 
adsorbent dosage from 30 mg to 40 mg the uptake capacity 
decreased from 1.315 mg/g to 1.264 mg/g. The decreasing 
in the uptake capacity with increasing in the adsorbent 
dosage might be attributed with increasing the adsorbent 
surface area following in an increase of more active sites 
[38,39]. The obtained data from the experimental work are 
trained and predicted by using the ANN modeling tech-
niques. The ANN model prediction found satisfactory for 
the experimental data observation. The experimental and 
predicted output of the ANN are presented in Fig. 3 A, B. 

4.4. Effect of initial concentration 

The effect of the initial concentration on the adsorption 
capacity is studied by varying the arsenic initial concentra-
tion from (1–5 mg/l), the initial concentration effect studied 
at 3 and 5 pH, all the other involved parameters are fixed, 
contact time 120 min and adsorbent dosage 30 mg. At pH 3, 

(A)

(B)

Fig. 2. ANN and experimental outputs as pH function (a) at 1 
mg/L initial concentration, (b) at 3 mg/L initial concentration.
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the initial arsenic concentration increased from 1 to 3 mg/l 
and the uptake capacity increased from 1.29 to 2.08 mg/g 
respectively, whereas, with increasing the initial concentra-
tion from 3 to 5 mg/l the uptake capacity increased from 
2.08 to 3.66 mg/g. Whereby, at pH 5, there uptake capac-
ity increases from 2.25 to 3.35 mg/g when increasing the 
initial concentration from 1 to 3 mg/g respectively. While, 
with increasing the initial concentration from 3 to 5 mg/l 
the uptake capacity increased from 3.35 to 3.75 mg/g respec-
tively. This might be attributed due to the increase in the 
driving force of the mass transfer which led to an increase 
in the uptake capacity of As3+ ions from water solution. At 
low concentration, the As3+ ions interact at the adsorbent 
active site whereas, at higher As3+ concentration, the adsor-
bent active site will be saturated and the removal percentage 
will be lower [40]. The obtained data from the experimental 
work are trained and predicted by using the ANN modeling 
techniques. The ANN model prediction found satisfactory 
for the experimental data observation. The experimental 
and predicted output of the ANN are presented in Fig. 4 a, b.

4.5. Adsorption kinetics study

The adsorption kinetic study is an important study as 
it gives a significant information about the mechanism and 
pathway of the adsorption reactions, also can provide an 

information about the solute removal rate [41]. In this work, 
three kinetic models were used namely pseudo-first-order, 
pseudo-second-order and intraparticle diffusion model to 
investigate the mechanism and rate of the adsorption pro-
cess. The kinetic study performed with 1 mg/L initial con-
centration, 30 mg adsorbent dosage and 180 rpm agitation 
speed, with, 5 and 8 pH. The equilibrium time of the exper-
iment was after 240 min. The coefficients of correlation (R2) 
values were used as the conformity indicator between the 
experiment and the predicted by each kinetic model.  

The ANN technique is used for the modeling and predic-
tion of the obtained data from the experimental work, the three 
kinetics models used for the experimental data also applied 
on the ANN outputs. The pseudo-second order describe the 
adsorption kinetics of this study comparing to the intraparticle 
diffusion and pseudo-first order models. The pseudo-second 
order R2 at pH 5 is 0.9972 for the experiment data and 0.9973 for 
the ANN outputs whereby, for pH 8 the R2 of the pseudo-sec-
ond order was 0.9939 for the experimental data and 0.9962 for 
the ANN outputs the R2 for all the three kinetics models used 
are summarised in Table 2. The ANN model shows a good 
agreement with the experimental work, the experiment and 
ANN results are presented in Fig. 5.

4.6. Arsenic removal prediction 

The artificial neural network back-propagation 
(ANN-BP) was used for the prediction of arsenic removal 

(A)

(B)

Fig. 3. Experimental and ANN output as the function of adsor-
bent dosage (a) at 1 mg/L initial concentration, (b) at 3 mg/L 
initial concentration.

(A)

Fig. 4. Experimental and ANN output as the function of initial 
concentration (a) at pH 3 (b) at pH 5.
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efficiency by using the functionalized carbon nanotube 
(CNTs) material. The parameters used in this study are 
arsenic concentration (1 mg/l, 3 mg/l and 5 mg/l), pH 
(3–8), adsorbent dosage (20–40 mg) and contact time until 
the equilibrium of reaction. Two hundred and thirteen (213) 
combinations were prepared in lab scale and divided into 
two sets training and testing set, one hundred eighty-eight 
(188) data were used for the training and twenty-five (25) 
data were used for the testing. The MATLAB R2014a pro-
gramme was used in this study. The optimum hidden lay-
ers used for the model creation are two hidden layers with 
10 neurons in each hidden layer with one input layer and 
one output layer. The (trainbr) was selected to update the 
bias and weight value correspond to the momentum and 
the tangent sigmoid transfer function (tansig) was selected 
as transfer function for the network. The nodes number at 
the hidden layer were selected by training and testing the 

network with different neuron number and checking the 
value of the mean square error (MSE) of the testing set. The 
network performance is depending on the net input, weight 
of (trainbr) and tangent sigmoid transfer function (tansig). 
The minimum value of mean square error (MSE) achieved 
is (1.54 10–4) at the testing phase, with correlation coefficient 
(R2) of (0.9968), which shows a good agreement between 
the actual and the predicted data, the correlation coefficient 
plot for the testing set is presented in Fig. 6. Different indi-
cators were used to evaluate the created model such as rel-
ative root mean square error (RRMSE), root mean square 
error (RMSE), mean square error (MSE) and mean absolute 
percentage error (MAPE), the results of all the used indica-
tors are presented in Table 3.The relative error is one of the 
error indicators in the modeling prediction it compares the 
actual values to predicted values Fig. 7 shows the relative 
error percentage of the model, the maximum error value for 
the FFNN model is 5.97%. The best prediction performance 
is depending on the neural network training. This study is 
meant to get the mathematical approach benefit at the real-
time experiment. The ANN model`s development is becom-

(A)

(B)

Fig. 5. Experimental and ANN output pseudo-second-order ad-
sorption kinetics at different pH value.

Table 2
Adsorption kinetics and correlation coefficient

PH C0 

mg/L
Pseudo-first-order 
ln(qe – qt) vs time (t)

Pseudo-second-order 
(t/qt vs t)

Intraparticle
(qt vs t0.5)

Experimental 
 R2

ANN outputR2 Experimental 
R2

ANN output 
R2

Experimental 
R2

ANN output 
R2

5 1 0.831 0.8225 0.9972 0.9973 0.901 0.919
8 1 0.919 0.926 0.9917 0.9904 0.89 0.8731

Fig. 6. Correlation coefficient of actual and predicted arsenic re-
moval (testing data). 

Table 3
Evaluation indicators

Evaluation indicators FFNN

MSE 1.54 10–4

RMSE 1.24 10–2

RRMSE 2.16 10–2

MAPE 1.71
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ing the issues and challenges of the real-time experiment. 
This work currently under development phase to obtain a 
better feedback from the neural network in the hazardous 
ions removal. 

5. Conclusion 

In this work, a novel adsorbent was developed by 
using two DESs systems for the CNTs functionaliza-
tion. The adsorbent was characterized by using zeta 
potential, Raman spectroscopy and FTIR. The adsor-
bent surface area increased after the functionalization 
by mK-CNTs.  The experimental work has been carried 
out for the removal of arsenic from water solution. The 
new adsorbent found as an effective material for arsenic 
removal from water. Three kinetics models were used 
in this study which are Pseudo-first-order, Pseudo-sec-
ond-order and the Intraparticle with different values of 
pH, the pseudo-second order describe the adsorption 
kinetics of this study. The ANN technique was used 
successfully for the prediction of arsenic removal from 
water by using m-DES functionalized-CNTs (mK-CNTs). 
A three layers’ neural network designed for the predic-
tion of arsenic removal capacity from water, the feed-for-
ward back-propagation algorithm was used in this study. 
Various indicators were used to evaluate the accuracy of 
ANN model such as (RRMSE, MSE, RMSE, MAPE and 
RE). The ANN output showed a good agreement with the 
experimental data, the best correlation coefficient R2 is 
(0.9968) at the testing phase. This study conclude that the 
ANN system is able to predict the adsorption capacity of 
arsenic from water.  
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