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a b s t r a c t
This research adopts two methods of multivariate statistical analysis (MSA), principal component 
analysis (PCA) and cluster analysis (CA), to analyze the water quality parameters (WQPs) monitoring 
results for evaluating the dominant factors on the rivers water quality and the areas which should be 
protected carefully. The combination of PCA and CA provides a better technique to classify the water 
quality control zones. Although PCA is an effective tool to categorize the monitoring stations, it cannot 
conduct complex dimensional classification on all of the monitoring stations and parameters; whereas, 
CA can help to determine the correlations between different monitoring stations via the WQPs moni-
toring results and then provides a more reasonable classification numbers for further watershed man-
agement. In this research, 23 monitoring stations were classified into four water quality control zones 
by using PCA and CA methods. The results from PCA in various water quality control zones indicate 
that the amounts of total coliform (TC) can lead to various correlation with various WQPs based on 
the characteristics of regions and pollutant sources. By applying CA to further classify the WQPs of 
the monitoring station for midstream of Nanshi River, analysis of variance (ANOVA) tests found only 
the mean values of monitoring WQPs indices for TC and dissolved oxygen (DO) have significant 
differences. In terms of the water quality in this area, the wastewater from hot springs usages might 
cause 17% of the midstream of Nanshi River monitoring stations (Cluster A) to rise their TC values and 
slightly decrease both DO and pH values. In this region, TC is the WQPs indicator with the highest 
impact resulted from hot spring wastewater. Additionally, by applying PCA and CA, the correlation 
of WQPs and the effects that hot spring wastewater have on water quality can be further investigated.
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1. Introduction

The variables which affect river basin water quality are 
complex and diverse. Therefore, reducing the number of vari-
ables and finding the key variables are not only cost-effective, 
but also it can provide understanding of the characteristics 
of water pollution patterns and even effective strategies for 
water quality management. Water quality of river basin is 

the integrated result of sources, hydraulic factors, geochem-
istry and other complicated environmental variables. Due to 
its complexity and diversification, it is not easy to use one 
single variable to analyze the correlation or characteristics 
of water quality parameters (WQPs). Multivariate statistical 
analysis (MSA) is a quantitative analysis method suitable for 
analyzing more than two variables. It is often used to sim-
plify variables, to establish cause–effect relationships and to 
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understand the correlation between each other. It is a suit-
able statistical tool for simplifying variables which affect the 
water quality of river basins effectively.

The application of principal component analysis (PCA) 
in the field of environmental management or environmen-
tal pollution is comprehensive, particularly environmental 
problems related to air and water. The PCA manner was 
widely employed to simplify the number of complicated 
variables [1–3], to analyze the correlation between pollutant 
concentrations and physical parameters [4,5], to identify the 
cause–effect relationships between pollutants and sources 
[6,7] and to assess the validity and concentration trends of 
monitoring data [8,9]. Eder et al. [10] stressed three main 
advantages of applying PCA for spatial delineation: (1) 
providing spatial delineation with statistical and physical 
significance; (2) understanding the distribution and charac-
teristics of pollutant concentrations in the sub-regions; and 
(3) providing the common characteristics of most monitoring 
stations, overcoming the bottleneck of being able to interpret 
single monitoring station. In terms of air pollution, Eder [11] 
and Eder et al. [12] adopted PCA to analyze the concentra-
tion of sulfuric acid (40 stations) and hourly ozone values 
(77 stations), and results classified seven and six sub-regions 
with the interpreted concentration variation of up to 74% 
and 64%, respectively. Vardoulakis and Pavlos [13] applied 
PCA and regression analysis to quantify the contribution of 
non-combustion sources to background concentrations of 
PM10; whereas, in terms of water pollution, Koklu et al. [14] 
employed PCA technique to evaluate high–low flow peri-
ods correlations of WQPs and extract dominant factors in 
assessing variations of river water quality. Olsen et al. [15] 
found that PCA was the most frequently used MSA method 
for assessing variations of water quality in river basins. 
Researchers often use PCA to identify and describe spa-
tial patterns of water quality, using geochemical processes, 
hydraulic programs and locations of sources of pollution to 
interpret the spatial features of water quality. Olsen et al. [15] 
also reviewed the application of PCA to assess variations of 
water quality in river basins and the results indicated that 
the application of PCA had no consistent procedures, but 
dependent on the variables of sampling design, data quality, 
types of WQPs, data pre-processing techniques, interpreta-
tion procedures and other related factors. 

Regarding case studies that applied cluster analysis (CA) 
manner in the field of water pollution, Zhou et al. [16] analyzed 
14 WQPs (2000–2004) from 27 monitoring stations on the East 
Coast of Hong Kong, and the WQPs data were classified into 
two clusters based on the degree of pollution (June–September 
as one, and the rest as the other) with CA method. Yang et al. 
[17] utilized various multivariate statistical methods includ-
ing CA, discriminant analysis (DA), factor analysis (FA) and 
PCA were used to explain spatial and temporal patterns of 
surface water pollution in Lake Dianchi during the period of 
2003–2007. Shrestha and Kazama [18] also applied four MSA 
methods to study the data of 12 WQPs from 13 monitoring 
stations in Fuij River Basin over the period of 1995–2002, and 
the results indicate that CA can help to categorize the data into 
three clusters according to the levels of pollution, namely, low-, 
medium- and high-level of pollution. By interpreting these 
three clusters via FA and PCA approaches, highest correlation 
of the polluted sources and the aforementioned three types of 

water quality pollution can be identified. Zhang et al. [19] used 
fuzzy membership analysis and MSA manners to classify and 
assess the water quality monitoring results of water quality for 
groundwater and surface water in Songnen Plain, China. The 
PCA and hierarchical cluster analysis (HCA) are both used to 
classify the different levels of water quality into four princi-
pal components and three clusters, respectively. Juahir et al. 
[20] utilized four MSA methods, hierarchical agglomerative 
cluster analysis (HACA), PCA, FA and DA, to investigate spa-
tial variations of the most significant water quality variables 
and to determine the polluted sources and formed three spa-
tial clusters with the HACA technique. Razmkhah et al. [21] 
applied PCA and CA to analyze 18 WQPs from 18 monitoring 
stations in order to study the effects of anthropogenic pollu-
tion on the water quality of Jajrood River in Iran, and found 
that PCA is suitable for explaining spatiotemporal variation 
of pollution concentration and CA is suitable for providing 
the classification and interpretation of clusters. Astel et al. [22] 
analyzed a large number of chemical WQPs by using PCA, CA 
and self-organizing maps (SOM) and found SOM clustering 
allows simultaneous observation of both spatial and tempo-
ral variations in river water quality. Three different patterns 
of monitoring sites were conditionally named as “tributary”, 
“urban” and “background.”

Taipei Water Resources Designated Area is the first 
protected area for water resources enacted by the Urban 
Planning Law in Taiwan. The catchment area is 717 km2. 
The water quality management within this area will affect 
the safety and cleanness of water sources as well as water 
quality of upstream catchment area of Qingtan Weir, Xindian 
River, which directly affects the quality of drinking water 
supply system in Taipei area. Therefore, the identification 
of polluted sources, land use and water quality protection 
and management appear to be particularly important. The 
purposes of this research are to (1) identify possible polluted 
sources and analyze the variation of WQPs from water qual-
ity monitoring stations by applying PCA and CA manners, 
(2) understand the potential extent of influence by specific 
polluted sources on water quality with PCA and CA man-
ners, (3) effectively and objectively demarcate water quality 
control zones and execute strategies for water quality man-
agement and (4) interpret the variation of WQPs that led to 
serious pollution by applying CA manner and analysis of 
variance (ANOVA) tests.

2. Materials and methods

The scope of Taipei Water Resources Designated Area 
(Fig. 1) encompasses three river streams: the tributaries of 
Xindian River (monitoring stations C1–C5), Nanshi River 
(monitoring stations B1–B6) and Beishi River (monitoring 
stations A1–A12). In total, there are 23 stations that routinely 
monitor the water quality of the rivers, with the following 12 
WQPs being monitored monthly: water temperature (°C), pH, 
dissolved oxygen (DO), biochemical oxygen demand (BOD), 
suspended solids (SS), coliform (CFU/100 mL), ammonia 
nitrogen (NH3–N), chemical oxygen demand (COD), conduc-
tivity (μS/cm), total phosphorus (TP), turbidity (NTU) and 
total organic carbon. The data taken for this analysis is the 
monthly monitoring data from 1987 to 2012, and the last four 
WQPs have only been monitored since 2008.
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Water quality index (WQI) use seven WQPs from 
WQPs as references, including pH, DO, BOD, SS, coliform 
(Most probable number (MPN)/100 mL), NH3–N and TP. The 
weight of each parameter is based on Delphi experts’ weigh-
ing [23]. According to the historical results of water quality, the 
first four dominant water quality indicators with high viola-
tion rates are: TP, the coliform (CFU/100 mL), SS and BOD. This 
research first performed the PCA and CA manners to analyze 
spatiotemporal patters of potential sources for the four domi-
nant water quality indicators, and proposed the spatial delin-
eation of water quality control zones. Second, the locations and 
pollution patterns of potential sources were identified with the 
results of PCA and CA approaches. Third, this research con-
ducted the PCA manner to analyze the variation and features 
of concentration levels of water quality indicators in different 
water quality control zones. Finally, this research selected the 
water quality control zone with the most serious total coliform 
(TC) values and analyzed the variations and high levels of 
water quality indicators with CA approach and ANOVA tests. 

2.1. Principal component analysis

Researches [24,25] have indicated that unrotated PCA is 
the best method to obtain the initial conditions. The advan-
tage of unrotated PCA method is to replace the original com-
plex variables with a few key linear combinations. However, 
despite that unrotated PCA can simplify the dimensions of 
complex variables; it may not be able to reasonably explain 
the physical phenomena. Unrotated PCA maximizes correla-
tion coefficient sums of root mean square (RMS); whereas, 
Varimax [26,27] maximizes the variance of squared correla-
tion coefficients in rotated principal components (RPCs). 

If the first-order moment is maximized, causing the correla-
tion coefficients between unrotated principal components 
and measurable variables to form poor distribution and the 
correlation coefficients having no significant differences, the 
differences between unrotated principal components will 
thus be difficult to identify. This further makes it difficult to 
explain about the relation between variables and unrotated 
principal components, and interpret the physical meanings 
of unrotated principal components; whereas, if the sec-
ond-order moment is maximized, the correlation coefficients 
between RPCs and measurable variables will then form wide 
distribution. Therefore, among any of the RPCs, few mea-
surable variables have high factor loadings with most of 
them being zero, which makes it easy to explain correlation 
between measurable variables and the RPCs.

The time series values of pollutant concentration could 
first be normalized (Eq. (1)).

z
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ik i

i

=
− µ

	 (1)

where Zik represents the kth time series and score Z from 
monitoring station i; Cik stands for the kth time series concen-
tration value from monitoring station i; µi stands for the mean 
value of concentration from monitoring station i; and Si rep-
resents the standard deviation of monitoring station i. Eq. (2) 
demonstrates the relation between the RPCs and score Z:

z L Pik j
n

ij jk= ∑ =1 	 (2) 

where Lij represents the factor loadings of the jth RPCs from 
monitoring station i; and Pjk represents the kth observation of 
the jth RPC.

Fig. 1. Locations of monitoring stations. Monitoring stations over Xindian River (C1–C5); Nanshi River (B1–B6) and Beishi River 
(A1–A12).
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2.2. Cluster analysis

CA is one of the MSA methods. Its purpose is to classify 
the variables with the minimal variance into groups, namely, 
to divide similar variance or observed data into same clus-
ters. The process of HCA is to: (1) define the similarity, (2) 
select the linking method and (3) determine the number of 
clusters. The difference between the variables can be quan-
tified by defining the similarity. Before defining the simi-
larity, the data must be standardized (based on the mean 
value and standard deviation of each monitoring station). 
Subsequently, the Euclidean distance between each cluster 
shall be calculated, assuming that there are n monitoring sta-
tions and the Euclidean distance will form a distance matrix, 
n × n, as Eq. (3):
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After selecting the appropriate distance, the appropriate 
linking method must be chosen for the variable linking. The 
purpose of the link is to cluster all the monitoring stations, 
starting from linking two monitoring stations and ultimately 
having all monitoring stations form groups. After the distance 
matrix is formed, Ward’s method is used for choosing the 
preferentially connected monitoring stations. The merging 
principle of Ward’s method is that the RMS and acquisition 
from all monitoring stations first merge with the monitoring 
station with minimal variance. The following monitoring 
station will then be merged after the new cluster is formed. 
As the differences of mean values between the clusters may 
not be significant, the remaining question then becomes how 
to determine the number of major clusters. Stooksbury and 
Michaels [28] indicated that pesudo-F, pesudo-t2, correlation 
coefficient and total root mean squared variation [29] can be 
useful methods to determine the number of clusters. Among 
which, pesudo-F is the ratio of the total cluster variation to 
the variation within the cluster; and pesudo-t2 is the ratio of 
the RMS of the two clusters to the sum of the RMS of one 
cluster. Both correlation coefficient and the sum of total RMS 
use clusters with large gradients as the number of clusters. 
In the study, the sum of total RMS is used as the index to 
determine the number of clusters. The sum of total RMS is 
defined as Eq. (4):

TRMSD = −∑ ( )x xi l
l

2 	 (4)

TRMSD represents the sum of total RMS; xi represents 
the value of concentration from any monitoring station; xl 
represents the mean value of the first cluster. For instance, if 
two monitoring stations are linked into one cluster, the mean 
value of the cluster will be the mean value of concentration 
of the two monitoring stations. Consequently, the total RMS 
will change as well. The number of clusters can be deter-
mined once the sum of total RMS and number of clusters in 
the CA process are plotted into graphs.

3. Results and discussion

3.1. Geographical zoning of water quality control zones

The geographical zoning of water quality control areas 
provides the competent authority with consistent manage-
ment of the areas with similar characteristics of polluted 
sources and concentration trends of distinct pollutants. 
Among the water quality monitoring data of the study area, 
TP, coliform, SS and BOD have surpassed the standards 
of water quality management in this area. Therefore, this 
research sequentially takes the four WQPs and follows the 
sequence of monitoring stations as well as the date of mon-
itoring, applying PCA and CA methods to conduct various 
data analyses. The objective is to build references for the spa-
tial delineation of the water quality control areas.

3.1.1. Results of principal component analysis

From the water quality monitoring item, coliform, in 
the results of PCA (Table 1), the eigenvalue of the first seven 
RPCs of coliform are found higher than 1 (dominant princi-
pal components) with explained TC concentration variation 
of 76.6%. The factor loadings between RPC and physical 
parameters are favorable in further identifying the charac-
teristics of different RPCs. Fig. 2 demonstrates the distribu-
tion of the factor loadings from different RPC of the WQP, 
coliform. The results of Fig. 2 indicate that the first RPC rep-
resent the six monitoring stations in the midstream of the 
Beishi River as the cluster is formed due to high factor load-
ings (explained variation of 16.5%); the second RPC princi-
pal component stands for Nanshi River and the monitoring 

Table 1
Eigenvalues and explained variances of rotated components for four water quality indicators

Rotated 
components

TC BOD SS TP
λ σ (%) λ σ (%) λ σ (%) λ σ (%)

1 3.8 16.5 4.2 18.4 8.6 37.2 6.6 28.5
2 3.0 13.1 3.5 15.1 3.5 15.0 6.2 26.9
3 2.8 12.1 2.7 11.7 2.4 10.6 3.7 16.2
4 2.7 11.7 2.6 11.1 1.6 6.7 3.2 13.8
5 2.4 10.6 2.0 8.5 1.5 6.3 2.0 8.7
6 1.5 6.5 1.9 8.0 1.4 5.9 – –
7 1.4 6.0 – – – – – –
Sum (%) 76.6 72.8 81.7 94.0

λ: eigenvalues, σ: explained variances (%).
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stations of Xindian River (explained variation of 13.1%), with 
the high factor loadings being concentrated at monitoring 
station B6; the third RPC represents the pollution formed in 
the hot spring area (explained variation of 12.1%), with high 
factor loadings being concentrated at monitoring stations B2, 
B3, B4, B5, etc., in the hot spring area; whereas, the fourth 
RPC represents sporadic monitoring stations with low pollu-
tion (explained variation of 11.7%).

Fig. 3 displays the intensity distribution of the factor 
loadings from various RPCs of WQP, BOD. The PCA results 
of BOD showed that the eigenvalues of the first six RPCs 
were higher than 1 with explained concentration variation 
of 72.8%. The first RPC represents the formation of group in 
the midstream of Beishi River (explained variation of 18.4%), 
with the high factor loadings being concentrated at monitor-
ing station A2 and A5; the second RPC represents the moni-
toring station at Nanshi River (explained variation of 15.1%), 
with the high factor loadings being concentrated at monitor-
ing station B2; the third RPC represents the pollution formed 
at the upstream of Xindian River and the downstream of 
Beishi River (explained variation of 11.7%), with high factor 
loadings being concentrated at monitoring station C2, C4, A6 
and A12; the fourth RPC represents the low pollution of the 
sporadic monitoring stations (explained variation of 11.1%), 
with the high factor loadings being scattered at monitoring 
stations A10 and C1.

Fig. 4 shows the intensity distribution of the factor load-
ings from various RPCs of WQP, SS. The PCA results of SS 
indicated that the eigenvalues of the first six RPCs were 
higher than 1 with explained concentration variation of 
81.7%. The first RPC represents high values at the Xindian 
River monitoring stations (explained variation of 37.2%); the 
second RPC represents the midstream of the Beishi River 

(explained variation of 15.0%); the third RPC represents spo-
radic pollution (explained variation of 10.6%), with the high 
factor loadings being concentrated at monitoring station A6 
and A12; and the fourth RPC represents sporadic pollution 
(explained variation of 6.7%), with the high factor loadings 
being scattered at monitoring station A11 and C2.

Fig. 5 displays the intensity distribution of the factor load-
ings from PRCs of WQP, TP. The PCA results of TP indicated 
that the eigenvalues of the first five RPCs were higher than 
1 with explained concentration variation of 94.0%. The first 
RPC representative is located at monitoring stations at Nanshi 
River and Xindian River (explained variation of 28.5%), with 
the high factor loadings being concentrated in monitoring sta-
tion B6; the second RPC represents the sporadic pollution at 
the monitoring stations (explained variation of 26.9%), with 
the high factor loadings being concentrated in monitoring 
station A3; the third RPC represents the sporadic pollution 
at monitoring stations (explained concentration variation of 
16.2%); and the fourth RPC represents the monitoring station 
at the midstream of Beidhi River (explained concentration 
variation of 13.8%), with the high factor loadings being con-
centrated in monitoring station A8 and A9.

Overall, the results of PCA specify that the trend of con-
centration variation of coliform, BOD and TP remains con-
sistent; whereas, the PCA results of SS appear inconsistence 
with the three pollutants mentioned above. Moreover, the 
monitoring stations of Nanshi River (B2, B3, B4 and B5) are 
simultaneously divided as the third RPC of coliform, the sec-
ond RPC of BOD and the first RPC of TP, with all high factor 
loadings. In addition, all of the four monitoring stations are 
located in the dense area of hot spring hotels (Fig. 6). This 
further explains that the distribution of hot spring hotels is 
related to the WQPs, TC, BOD and TP, and that the WQP, SS, 

Fig. 2. Factor loading contours of rotated principal components for total coliform.
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is mostly related to riverbank construction, rainfall or other 
artificial disturbances.

PCA method can effectively identify the characteristics 
and provide spatial delineation of water quality monitoring 

stations, namely that factor loadings of RPCs can pinpoint 
the group of monitoring stations with consistent concentra-
tion; however, PCA cannot be applied to divide all the moni-
toring stations into groups with low number of classification 

Fig. 3. Factor loading contours of rotated principal components for BOD.

Fig. 4. Factor loading contours of rotated principal components for SS.
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when it comes to more complicated influential factors or 
pollutants with higher amount of key principal components. 
This makes it difficult to carry out spatial delineation for 
some monitoring stations in this research.

3.1.2. Cluster analysis 

Several advantages of classifying monitoring stations 
by applying CA can be found: (1) providing an objective 
number of classifications; (2) dividing and classifying all 

Fig. 5. Factor loading contours of rotated principal components for total phosphorus.

Fig. 6. Locations of hot spring inns and hotels (yellow dots) and monitoring stations (red dots).
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monitoring stations based on the correlation of WQPs over 
monitoring stations (correlation among the WQPs’ concen-
trations of each station); and (3) dividing monitoring stations 
with lower consistency of WQPs’ concentrations.

In fact, correlations of WQPs can be divided into several 
principal components by applying PCA. The more princi-
pal components are applied, the greater the variation can be 
explained; however, the number of principal components 
cannot be identified appropriately under this condition. 
According to the CA method applied in this research, the 
relation between the number of clusters and the explained 
variation of total RMS can be obtained (Fig. 7). Fig. 7 reveals 

that when the number of cluster increased from 4 to 5, the 
explained variation of total RMS of coliform reduced from 
38.0% to 29.0%; BOD from 50.8% to 41.7%; SS from 9.1% to 
3.4%; TP from 5.0% to 3.3%. For SS and TP, when the number 
of cluster increased from 4 to 5, the explained variation of 
total RMS can be increased less than 5%; therefore, the num-
ber of clusters suggested in this research is 4.

After analyzing the water quality data by apply-
ing CA, it was found that there are mainly two clusters 
of monitoring stations with consistent trends of WQPs’ 
concentrations (small variation). The first cluster consists 
of the six monitoring stations at the midstream of Beishi 
River (A2, A4, A5, A6, A7 and A12). The trends of the con-
centration of coliform, BOD, SS and TP all appear to be 
consistent (Fig. 8). The second cluster includes the four 
monitoring stations at the downstream of the hot spring 
area (B2, B3, B4 and B5). Among which the concentration 
variation of the three WQPs, coliform, SS and TP, showed a 
consistent trend. As for the remaining monitoring stations, 
there is no common consistency observed in the concentra-
tion of the pollutants.

3.1.3. Comparison of spatial delineation by MSA

According to the results of PCA, the first two principal 
components of SS and TP explained the concentration varia-
tion to be 52% and 55%, respectively, which were the WQPs 
with lower degree of variation. However, the first two prin-
cipal components of coliform and BOD explained 29% and 
33% of concentration variation, respectively. By comparing 
the abovementioned WQPs via MSA, it can be discovered 
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Fig. 7. Relationship between numbers of clusters and TRMSD.

Fig. 8. Classification result for four water quality indicators with cluster analysis (the number over monitoring stations demonstrated 
the classification results, for example, 1 presented the first cluster and 2 presented the second cluster).
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that the 23 stations are divided into four water quality control 
zones based on the trends of water quality variation, which 
are: (A) the midstream of Nanshi River (B2, B3, B4 and B5), 
where it is an intense area full of hot spring hotels. The main 
sources of this region include hot spring wastewater, domes-
tic sewage and recreational activities; (B) the downstream 
of Nanshi River and Xindian River (monitoring station B6, 
C1, C2, C3, C4 and C5). For this area, there are many rec-
reational water and fishing activities close to the city, and 
there are quite a number of recreational facilities along the 
river. The main sources are family sewage and recreational 
activities; (C) the midstream and downstream of Beishi River 
(monitoring station A1–A8, A11 and A12). The main sources 
of this region include recreational activities, wastewater from 
animal husbandry (deer farm) and agricultural wastewater 
(tea plantation); (D) the remaining sporadic monitoring sta-
tions (monitoring station A9, A10 and B1). This area consists 
of mainly ecological conservation area and primitive forest 
area. Only a few people are active and there is no particular 
source of pollution. Most of the WQPs of the monitoring sta-
tion are far below the water quality standard.

According to the results of PCA, the midstream of 
Nanshi River (monitoring station B2, B3, B4 and B5) ranks to 
the third RPC for coliform, the second RPC for BOD and the 
first RPC for TP; whereas, the results of CA indicate that the 
area ranks to the third cluster for coliform and third cluster 
for TP. As the abovementioned four monitoring stations all 
are located in an area where hot spring hotels are densely sit-
uated, the results of PCA and CA specify that the wastewater 
from hot spring may affect WQPs, TC, BOD and TP. The main 
influential pollutant is TC, affecting areas where the above-
mentioned four monitoring stations at Nanshi River cover. 
The extent to which the WQPs are affected requires further 
investigation by conducting descriptive statistics, ANOVA 
test, PCA and CA.

3.2. Variation and characteristics of pollutant concentration in 
different water quality control zones

This research takes coliform as the research subject in 
order to understand the variation of respective pollutant 
concentration in the water quality control area. The analyses 

include descriptive statistics, ANOVA, PCA and CA. The 
results of CA and PCA have classified 23 monitoring stations 
into four water quality control zones, A, B, C and D. The 
mean values of WQPs of each water quality control zone and 
the results of ANOVA test (Table 2) reveal that there are sig-
nificant differences among the 10 WQPs except for the tem-
perature. In the downstream of Nanshi River and Xindian 
River basin (Cluster B), the highest WQPs are identified to 
be TC (2,532), BOD (0.96 mg/L), turbidity (16.22), NH3–N 
(0.059 mg/L), TP (0.106 mg/L) and SS (10.88 mg/L). As for the 
monitoring station at the midstream of Nanshi River (Cluster 
A), all the mean values of WQPs were not significantly higher 
than that of the other three clusters. This signifies that the 
water quality did not deteriorate as it was not affected by 
the hot spring wastewater. Regarding the extent to which 
the monitoring stations in Cluster A were affected by the hot 
spring wastewater, it requires further ANOVA verification. 
In the midstream and downstream of Beishi River (Cluster 
C), the trend of WQIs did not remain consistent and the 
water quality of the sporadic monitoring stations (Cluster D) 
turned out to be the cleanest among the four areas.

Taking the concentrations of all pollutants in each clus-
ter as samples and comparing the differences of four water 
control areas by PCA, it can be observed that the results of 
different clusters imply that the correlation between TC and 
other pollutants appears to be inconsistent (Table 3). The 
factors may be due to the differences in the sources of pol-
lution in the four water quality control areas. The results of 
non-cluster showed the following explained variation for 
each parameter: SS and turbidity (19.6%), TC and NH3–N 
(16.7%), BOD and COD (16%), and DO and temperature 
(16%). Therefore, the non-clustered TC and NH3–N have a 
consistent concentration trend; whereas, the results from 
the monitoring stations at midstream of Nanshi River 
(Cluster A) displayed the following explained variation for 
each parameter: SS and turbidity (20.7%), DO and tempera-
ture (16.8%), BOD and COD (15.7%), NH3–N and pH (13.8%) 
and TC (11.7 %). The TC of the midstream of Nanshi River 
(Cluster A) is not consistent with other WQIs. The results 
from the monitoring stations at downstream Nanshi River 
and Xindian River (Cluster B) showed that SS and turbid-
ity (19.7%), TC and NH3–N (18.0%), BOD and COD (16.3%), 

Table 2
Mean values of water quality parameters for four water quality control zones

Item/categories No. p Value Cluster A Cluster B Cluster C Cluster D

Count 4,521 565 1,883 209 1,864
Percentage (%) 100.0 17.2 36.9 4.6 41.2
TC, NIEA E202.54B 2,516 0.000 1,792 2,532 1,760 1,067
DO, NIEA W422.52B 8.14 0.000 8.38 8.29 7.62 8.35
BOD, NIEA 510.55B 0.77 0.000 0.70 0.96 0.94 0.74
COD, NIEA 515.54A 3.15 0.000 2.83 3.36 3.83 2.91
pH, NIEA W424.52A 7.66 0.000 7.67 7.51 7.52 7.58
Temperature, NIEA W217.51A 21.77 0.099 21.24 22.15 22.74 22.10
Turbidity, NIEA W219.52C 11.88 0.000 16.01 16.22 3.20 3.02
NH3–N, NIEA W448.51B 0.031 0.000 0.027 0.059 0.037 0.032
TP, NIEA W427.53B 0.076 0.000 0.037 0.106 0.029 0.065
SS, NIEA W210.57A 7.72 0.000 7.49 10.88 3.93 2.91
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DO and temperature (15.9%) and pH (11.8%). TC and NH3–N 
in the monitoring stations (Cluster B) have a consistent con-
centration trend. 

The results from monitoring stations at midstream and 
downstream of Beishi River (Cluster C) displayed the follow-
ing explained variation: TC, BOD and COD (30.3%), SS and 

Table 3
Eigenvalues and explained variances of rotated components for four water quality control zones

Clusters Item MV FL Eigenvalues EV (%)

NO SS Turbidity 0.94 1.76 19.6
SS 0.92

TC and NH3–N MPN 0.86 1.50 16.7
NH3–N 0.85

BOD and COD BOD 0.81 1.44 16.0
COD 0.85

DO and temperature Temperature 0.80 1.44 16.0
DO –0.88

pH pH 0.97 1.06 11.7
Cluster A SS Turbidity 0.94 1.86 20.7

SS 0.93
DO and temperature Temperature 0.87 1.52 16.8

DO –0.78
BOD and COD BOD 0.78 1.37 15.7

COD 0.81
NH3–N and pH pH 0.71 1.24 13.8

NH3–N 0.85
TC MPN 0.94 1.05 11.7

Cluster B SS Turbidity 0.94 1.77 19.7
SS 0.93

TC and NH3–N MPN 0.88 1.62 18.0
NH3–N 0.88

BOD and COD BOD 0.83 1.47 16.3
COD 0.83

DO and temperature Temperature 0.79 1.49 15.9
DO –0.88

pH pH 0.97 1.06 11.8
Cluster C TC and BOD and COD MPN 0.77 2.73 30.3

BOD 0.86
COD 0.92

SS Turbidity 0.88 1.63 18.1
SS 0.65

Temperature and pH Temperature 0.86 1.25 13.9
pH –0.67

DO DO –0.90 1.14 12.7
NH3–N NH3–N 0.95 1.12 12.4

Cluster D SS Turbidity 0.86 1.54 17.1
SS 0.79

DO DO –0.86 1.51 16.8
Temperature 0.82

BOD and COD BOD 0.79 1.43 15.9
COD 0.83

pH and NH3–N pH 0.80 1.18 13.1
NH3–N 0.63

TC MPN 0.96 1.06 11.8

EV: explained variance (%), FL:  factor loadings, and MV: measurable variables.
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turbidity (18.1%), pH and temperature (13.9%), DO (12.7%) 
and NH3–N (12.4%). TC, COD and BOD in the midstream 
and downstream of the Beishi River (Cluster C) have a con-
sistent concentration trend. The results from sporadic moni-
toring stations (Cluster D) showed the explained variation as 
the following: SS and turbidity (17.1%), DO and temperature 
(16.8%), BOD and COD (15.9%), NH3–N and pH (13.41%) 
and TC (11.8%). The TC of the sporadic monitoring stations 
(Cluster D) appears to be inconsistent with other WQPs. The 
abovementioned results of PCA indicate that there was no 
consistent concentration trend of TC and other WQPs in the 
midstream monitoring stations of Nanshi River (Cluster A) 
and sporadic monitoring stations (Cluster D). However, the 
concentration trend of TC concentration NH3–N in the 
downstream of Nanshi River and the monitoring stations 
at Xindian River (Cluster B) appeared to be consistent. The 
variation trend of TC, COD, BOD WQIs in the midstream 
and downstream of the North Potential Creek (Cluster C) is 
consistent.

The monitoring stations at the midstream of Nanshi 
River have the consistent concentration variation trend. The 
samples can be divided effectively into three groups with 
different TC concentrations via CA; whereas, via ANOVA, 
it can be observed that only the concentration of TC and DO 
has significant differences (Table 4). The remaining WQIs 
did not have significant differences. Hence, for the monitor-
ing stations at the midstream of Nanshi River (Cluster A), 
the cluster with highest TC concentration (Cluster AF) (TC 
mean 9,033, occupancy rate 17.0%) had the lowest DO mean 
(7.91 mg/L) and pH (7.64), and the highest mean temperature 
(22.1°C) and NH3–N (0.036 mg/L). The area around Cluster A 
is a hot spring area. The local hot spring is a carbonate spring 
with weak alkaline. The water temperature of the source 
of Wulai spring is 74°C and the pH value is approximately 
7.65. Thus, the wastewater from hot springs could possibly 
lead to the results of highest TC, lower DO and pH in the 
samples of Cluster AF; the Cluster AE with lowest TC con-
centration (mean 541, occupancy rate 58.8%) turned out to 
have the highest DO (8.25 mg/L) and the lowest COD mean 
(3.08 mg/L). The water quality of Cluster AE did not appear to 

be significantly affected by the hot spring wastewater. As for 
the TC intermediate concentration Cluster AG (mean 2,733, 
occupancy rate 23.2%), the water quality showed an inconsis-
tent trend and did not appear to be affected by the hot spring 
wastewater. From the above analysis, the hot spring waste-
water may lead to 17% of the monitoring stations at Cluster 
A to increase TC values and slightly decrease DO and pH 
values. The results imply that the hot spring wastewater in 
Wulai area will affect the water quality of the midstream of 
Nanshi River (Cluster A) with the most highly affected WQP 
being TC.

4. Conclusions and suggestions

This research applies multivariate analysis (MA) to 
analyze the spatiotemporal variation and characteristics of 
WQPs of water quality monitoring stations at river basins, 
and simultaneously analyze the division and WQPs of water 
quality control areas. The study has demonstrated that MA 
can effectively help to analyze the variations and the geo-
graphical features of WQPs at these water quality monitoring 
stations. The results point out that only single MA method 
cannot provide reference for the classification of water qual-
ity monitoring stations. It is necessary to combine CA and 
PCA in order to provide a better reference for classification. 
The PCA and CA manners can effectively classify the mon-
itoring stations into four water quality control areas. The 
results of PCA from different water quality control areas 
indicated that the concentration of TC can have different 
correlations with different pollutants due to the characteris-
tics of geographical and sources. The CA was used to clas-
sify the WQPs at the midstream of Nanshi River and it was 
found that only mean values of TC and DO had significant 
differences. For the water quality of this area, wastewater of 
hot springs could cause 17% (Cluster A) of the monitoring 
stations at midstream of Nanshi River to increase TC while 
decreasing DO and pH slightly. The WQP that was affected 
mostly by wastewater of hot springs was TC.
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