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ab s t r ac t
The use of magnetic nanoparticles for cleaning potable water from heavy metals is a novel technique. 
Suitable magnetic fields are imposed in order to separate magnetic nanoparticles from the water main 
stream. A numerical methodology that combines computational fluid dynamics and evolution strategy 
techniques for the optimum magnetic navigation of particles in water is presented here. The method 
is based on an iterative algorithm that aims to minimize the deviation of particles from a desired tra-
jectory by continuously adjusting a gradient magnetic field in an appropriate way. For the evaluation 
of the performance of this computational method, several series of simulations are performed with 
different number of adjustments of the magnetic field gradient. Using the above-mentioned method, 
it is found that the increase of the number of adjustments of the magnetic field gradient results in the 
decrease of the particles’ deviation from the desired trajectory. Finally, the percentage of particles that 
are following the desired trajectory increases as the concentration of the simulated particles increases.
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1. Introduction

Increasing pollution of groundwater and surface water 
from a wide variety of industrial, municipal and agricul-
tural sources has provoked serious water quality problems 
in these water resources, resulting in a reduction of the sup-
ply of freshwater for human use [1]. Although the nature of 
pollution problems may vary, some typical reasons are due 
to inadequate sanitation, algal blooms, detergents, fertilizers, 
pesticides, chemicals, potentially toxic metals, salinity caused 
by widespread and inefficient irrigation, and high sediment 
loads resulting from upstream soil erosion [2]. Thus, water 
scarcity is being recognized as a present and future threat 
to human activity and as a consequence, water purification 

technologies are gaining major worldwide attention [3]. In 
this perspective, biochemical or biotechnological nanotech-
nology has been identified as a promising technology that 
could play important roles in resolving potable water prob-
lems, involving water purification and quality [4].

Treatment and remediation of water contaminated with 
hazardous substances may be one of the most significant 
environmental applications of nanoparticles technology. 
Among the nanosized materials, iron oxides play a major role 
in many areas of chemistry, physics and materials science. 
In particular, magnetic iron oxides (Fe3O4) and magnetite 
(ϒ-Fe3O4) have been investigated intensively for environ-
mental applications [5–8]. Facilitated separation from water 
by magnetic forces is the most attractive asset of magnetic 
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nanoparticles. Moreover, low toxicity, price and high surface 
to volume ratio, which is associated to their ability to adsorb 
pollutants on their surface, are additional advantages of 
iron oxide nanoparticles [9–14]. These surface chemicals can 
present enhanced capacity for heavy metals uptake in water 
treatment procedures. Using paramagnetic core materials, 
nanoparticles magnetic response is maximized, since they 
form chains under the influence of constant magnetic fields. 
The size of aggregates and their navigation into the desired 
areas is very important and depends on various parameters 
[15,16].

In this study, a computational platform for the calcula-
tion of the optimum gradient magnetic field for the separa-
tion of magnetic nanoparticles from clean water is presented 
in a purification process. Consequently, the computational 
platform is used in order to optimize the efficiency in the 
navigation process. In Section 2, the numerical methodology 
for the water flow and particles’ motion and the simulation 
details are described. In Section 3, results and discussions are 
presented for the influence of different number of magnetic 
field gradient adjustments and number of particles inserted 
into the flow. Finally, conclusions are presented in Section 4.

2. Numerical model

2.1. Governing equations

The water flows in the channels of the Y-shaped (2D) 
microfluidic device with a rectangular cross-section and is 
expected to be laminar and steady-state. The incompressible 
Navier–Stokes equations are solved for the Eulerian frame 
together with a model for the discrete motion of particles in 
a Lagrangian frame. The laminar governing equations of the 
fluid phase are given as following:
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where t is the time, u and p are the fluid velocity and pres-
sure, respectively, and ρ and μ are its density and viscosity, 
respectively.

The equations of every particle single motion in the dis-
crete phase are based on the Newton law and may read as 
follows:
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where the index i stands for the ith-particle with diameter 
di,ui and ωi are its transversal and rotational velocities, 
respectively, and mi  is its mass. The mass moment of inertia 

matrix is Ii , the terms 
∂
∂
ui
t  and 

∂
∂
ωωi
t  correspond to the linear 

and angular accelerations, respectively. Fmag,i  is the total mag-
netic force, and Fnc,i  and Ftc,i  are the normal and tangential 

contact forces, respectively. Fdrag,i  stands for the hydrody-
namic drag force, Fgrav,i  is the total force due to buoyancy, 
Mdrag,i  and Mcon,i  are the drag and contact moments, respec-

tively, and finally, Tmag,i  is the torque due to the magnetic 
field at the position of particle i. 

The OpenFoam platform was used for the calculation 
of the flow field and the uncoupled equations of particles’ 
motion [17]. Details of the numerical models, forces and 
moments terms used on particles are given in [18,19].

For the evaluation of the potential of the computational 
model a Y-shaped geometry is studied here, as depicted in 
Fig. 1(a). The angle between the two outlet branches is kept 
fixed to 60°and the overall length of the simulated channel 
is 36 mm. The computational grid for the geometry studied 
here is composed by 12,000 triangles with sufficient resolu-
tion of boundary layers is shown in Fig. 1(b). For the steady-
state motion of the water, a constant pressure drop between 
the inlet and the outlets is imposed. As a result of the constant 
pressure drop, water flow with mean inlet velocity 12.2 mm/s 
is developed. In addition, no slip boundary conditions are 
applied at the solid walls.

The following numerical solution procedure is followed. 
In a first place, the calculation of the flow field is achieved by 
using the pressure implicit with splitting of operator method. 
When the flow and pressure fields are determined, the dis-
crete motion of particles is evaluated by solving Eqs. (3) and 
(4) along the trajectory of each particle according to the dis-
crete element method (DEM) [19]. The covariance matrix 
adaptation (CMA) evolution strategy algorithm [20] is used 
frequently to modify the magnitude of the gradient magnetic 
field. The equations are solved in time with the Euler time 
marching method. Representative duration of the numerical 
simulations from the present numerical models for 8 and 18 
variations of the gradient magnetic field is 156 and 408 h of 
CPU time, respectively.

2.2. CMA algorithm to determine the most appropriate magnetic 
gradients

The CMA evolution strategy algorithm [20] is used to 
navigate the particles into a desired path through successive 

(a)

(b)

Fig. 1. (a) Channel geometry and boundary conditions. The 
width of the outlets is the same as the width of the inlet, and 
equal to d = 2.25 mm. (b) Schematic representation of the grid 
distribution for the channel with the same width between inlet 
and outlets.
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variations of the magnetic gradient magnitude and sign. The 
CMA algorithm conducts an iterative principal components 
analysis of successful search steps, while retaining all princi-
pal axes. In addition, two paths of the time evolution of the 
mean distribution are recorded, called search or evolution 
paths, respectively. These paths include significant informa-
tion about the correlation between consecutive steps. 

In particular a gradient magnetic field is selected by 
sampling a multi-variate normal distribution. The basic 
equation for sampling the gradient magnetic fields, for gen-
eration number g = 0,1,2, ... is xk

g g g gN m C( ) ( ) ( ) ( )( ,( ) )+1 2
 σ  for 

k = 1, ...., λ, where   indicates the same distribution on the 
left and the right side, xk

g n( )+ ∈1
 , kth offspring (search point) 

form generation g + 1, m( )g n∈ , mean value of the search 
distribution at generation g, σ ( )g ∈ + , overall standard 
deviation, step size, at generation g, C( )g n n∈ ×

 , covariance 
matrix at generation g, and λ ≥ 2, population size, sample 
size, number of offspring.

The method intends to minimize the particles’ position 
deviation from a desired trajectory. The trajectory in all pres-
ent simulations is predefined in the computational platform 
by a 10 degree polynomial. In this way, the gradient magnetic 
field is temporarily adjusted as described in the following 
section so as the particles’ distances from the desired trajec-
tory is minimized.

2.3. Optimum driving process

Initially, the steady-state water flow in the microchan-
nel, Fig. 1(a), is achieved by suitably solving Eqs. (1) and (2). 
Water loaded with particles enters the channel from the left 
and splits into the two outlet branches at the right side of the 
domain.

Once the flow and the pressure fields are found, the dis-
crete phase simulation starts with combination of the DEM 
and the CMA methods. The CMA provides DEM with ran-
dom values of a gradient magnetic field in the beginning. 
The DEM method evolves all particles’ positions for some 
time and the distance between the particles and the desired 
trajectory is checked. The CMA works in order to minimize 
this distance and then provides a new value of the gradient 
magnetic field, as is shown in Fig. 2. In this way, the appro-
priate values of the gradient magnetic field are found for the 

particles’ navigation into the targeted areas, as is depicted in 
Fig. 3, for the case of 8 adjustments. If all particles are in the 
desired trajectory, the simulation ends.

Different quantities of particles with hydrodynamic 
diameter equal to 1 μm are simulated. The study covers 
the range from 10 to 1,000 particles in order to examine the 
influence of the particle’s number in the navigation. Initially, 
all particles enter the channel from random positions of the 
inlet. The simulations are performed under a uniform trans-
verse magnetic field B0 = 1T and the performance of the CMA 
method is studied for gradient magnetic field adjustments in 
the range of ±500 mT/m.

3. Results

Series of simulations are performed with different num-
bers of gradient magnetic field adjustments in order to evalu-
ate the effect of the number of adjustments in the navigation 
for magnetic particles. Four scenarios of different number of 
adjustments of the magnetic field gradient are selected and 
the particles’ centre distance from the desired trajectory is 

Fig. 2. Desired trajectory (Green) and positions of particles in each time step obtained by application of gradients presented in Fig. 3.

Fig. 3. Predicted magnitudes of CMA of the gradient magnetic 
field (case of 8 magnetic gradient adjustments) for the navigation 
of particles in Fig. 2.
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measured just at the moment before particles exit the domain 
and an average over all particles is performed. This distance 
is representative of how close the particles are to the desired 
trajectory. As we can see in Fig. 4, the increase of the num-
ber of the magnetic gradient adjustments, results in better 
driving of the particles close to the desired trajectory. The 
observed decrease of the particles’ distance in relation to the 
desired trajectory seems to present a non-linear behaviour as 
a function of the number of adjustments of the magnetic field 
gradient.

On the same figure we can see that the number of par-
ticles influences the deviation of the particles from the 
desired trajectory. As we can see for a few particles, that is, 
only 10 particles, the increase of frequency of the magnetic 
gradient adjustments plays almost insignificant role. This is 
coherent with previous findings [18] and it is connected to 
the magnetic moment of particles. As the number of parti-
cles increases, aggregations under constant magnetic fields 
are easier to form and thus particles can be navigated eas-
ier by gradient magnetic fields. As a consequence, when 
we have only 10 particles, it is more difficult to move them 
along the desired trajectory than in the case of 1,000 particles. 
Moreover, we can see in Fig. 4 that the CMA algorithm can 
navigate almost with the same deviation from the trajectory 
all particles when their number is above 200. 

The increasing number of adjustments of the gradient 
magnetic field during the flow of the particles from the inlet 
to the outlet, not only decreases the particles’ distance from 
the desired trajectory but also it seems to affect the distri-
bution of particles in the channel around the desired trajec-
tory. As we can see in representative results in Fig. 5(a) with 
8 adjustments we have the particles distributed around the 
desired trajectory with larger distances from it compared 
with the case of 18 adjustments (Fig. 5(b)). For 8 adjustments 
(Fig. 5(a)), single particles and aggregations can be found 
almost everywhere near the outlet of the channel. In the case 
of 18 adjustments, however, a single chain that consists of 
almost all particles and only a few single particles are found 
close to the selected trajectory near the outlet of the channel 

(Fig. 5(b)). Thus, the present navigation algorithm appears 
to be very efficient as the number of adjustments of the mag-
netic field gradient increases.

A more quantitative result is given in Fig. 6 where the 
percentage of particles that can be found within a distance ±di 
around the selected location of the desired trajectory is plot-
ted against the frequency of magnetic gradient adjustments. 
An almost linear increase of the particles number is found 
with the increase of magnetic field gradient adjustments 
(above 8). Moreover, as particles number increases, more 
particles can be found near the desired trajectory, due to the 
increasing concentration of particles inside the channels. As 
a consequence, the percentage of particles that is located 
within a distance ±di around the desired trajectory is expected 
to be large enough, since in a real life scale device billions of 
particles will be used. 

Fig. 4. Mean particles distance from the desired trajectory for dif-
ferent number of particles under the influence of different num-
ber of magnetic gradient adjustments.

Fig. 6. Percentage of particles on the desired trajectory against 
the frequency of the magnetic gradient adjustments.

(a)

(b)

Fig. 5. Particles distribution snapshots near outlet for (a) 8 adjust-
ments of the magnetic gradient and (b) 18 adjustments of the 
magnetic gradient. Outer lines (in black) represent boundaries 
(walls), while the middle line (in green) the desired trajectory.
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As the number of magnetic gradient adjustments 
increases (as time passes) the driving of the particles becomes 
easier in the water, and the range of values of absolute mag-
nitude of the magnetic field gradient is reduced as it can be 
seen in Fig. 7. We can clearly see therein that in the case of 
6 adjustments a range of ±500 mT/m is applied while it is less 
than the half, that is, ±200  mT/m when 18 adjustments are 
used. The range of the magnetic field gradient that is used 

by the method, in the cases with 8 and 12 adjustments is ±450 
and ±400 mT/m, respectively. Thus, by increasing the number 
of adjustments of the magnetic field gradient the correspond-
ing applied range of gradients is significantly reduced (about 
250% in the case of 18 adjustments in comparison with the 
case of 6 adjustments) and thus less resources are needed for 
the navigation.

In the case of 6 adjustments, the magnetic gradients that 
are evaluated by the method are in the positive range for the 
first second of the simulation, in contrast with the cases of 8, 
12 and 18 adjustments. This occurs due to the frequency of the 
imposed magnetic gradients and the positions of the parti-
cles, since these adjustments are applied in different times. In 
each scenario, the particles are located in different positions 
inside the channel for the first enforcement of the gradient 
magnetic field, as is depicted in Fig. 8. As it is observed in the 
scenario with 6 magnetic gradient adjustments, the particles 
have advanced nearly up to the middle of the main branch’s 
length when the first application of the magnetic field gra-
dient nearly takes place. As a result, the magnetic gradient 
that is evaluated in order to drive the particles closer to the 
desired trajectory is the highest one among the cases that are 
simulated. As we can see in Figs. 8(b) and (c), the particles, in 
the rest of the scenarios, are located closer to the inlet and are 
less spread thus are easier to manipulate. In the cases with 8 
adjustments or more, the frequency of the adjustments seems 
to be enough for a completely different profile of the gradient 
magnetic adjustments, as is depicted in Fig. 7. The increase of 
the adjustments leads to lower ranges of the gradient mag-
netic field since after each adjustment the particles are closer 

(a)

(b)

(c)

(d)

Fig. 8. Snapshot of the positions of particles just before the enforcement of the gradient magnetic field for different scenarios;  
(a) 6 magnetic gradient adjustments, 0.3 s (b) 8 magnetic gradient adjustments, 0.2 s (c) 12 magnetic gradient adjustments, 0.15 s and 
(d) 18 magnetic gradient variations, 0.1 s (only the entrance of the particles is presented).

Fig. 7. Magnetic gradient magnitude distribution over time for 
different variations. Splines interpolation is selected for the con-
tinuous lines.
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to the desired trajectory. The frequency of the magnetic gra-
dient adjustments is the most significant parameter for an 
increased efficiency of the driving process as is depicted in 
Fig. 9.

As the magnetic gradient adjustments are increased, the 
efficiency of the CMA algorithm navigation of particles in the 
right outlet channel is getting higher as is depicted in Fig. 9. 
For 6 magnetic gradient adjustments only 75% of the sim-
ulated particles are following the desired trajectory, while 
for 18 magnetic gradient adjustments this efficiency can 
reach over 90%. Increase in the navigation efficiency is also 
recorded as the number of particles increases as commented 
also in the results of Fig. 6. It is also observed that for each 
number of simulated particles a plateau on the efficiency of 
the navigation is reached as the number of magnetic gradient 
adjustments increases. This is connected with the aggrega-
tion process, where slow single particles are trapped close 
to the walls, cannot attract other particles in order to make 
aggregations and cannot follow the vast majority of particles 
in the navigation process. 

4. Conclusions

In this work, a computational method for the estimation 
of the optimum values of the magnetic field gradient for the 
navigation of a certain amount of magnetic nanoparticles in 
a water flow along a desired trajectory is presented. Different 
simulations were conducted in order to evaluate the per-
formance of the proposed methods as a function of several 
parameters. Parameters include the number of adjustments of 
the magnetic field gradient, the magnitude of the employed 
magnetic field gradient and the number of nanoparticles 
inserted into the flow.

The computational method that is presented can achieve 
efficiency above 90% in magnetic navigation of a certain 
amount of particles through a desired path. The increase of 
the magnetic field gradient adjustments results in a decrease 
of the particles’ distance from the desired trajectory. In 
addition, an increased number of magnetic field gradient 

adjustments results in a reduced magnitude of the magnetic 
field gradient that has to be applied in order to drive the par-
ticles. The computational method can be used with optimum 
efficiency in terms of driving of the particles in small tubes 
and has the potential to estimate the appropriate deviation 
of the magnetic field during the particles’ navigation into 
micromixers. 

The developed method can be employed for the particles’ 
removal from potable water. Moreover, it can optimize the 
particles’ driving and evaluates the optimum range values 
of the gradient magnetic field. As a result, the particles do 
not remain stuck in the walls of the channels. This leads to 
the optimization of the cleaning water efficiency, as all the 
particles can be re-used. Using the above mentioned method, 
the sizing of water treatment systems can be easily calculated 
in order to minimize the operating cost. Finally, the efficient 
operation of the method contributes to minimizing of health 
problems that occurred due to the existence of heavy metals 
on the potable water. 
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