
* Corresponding author.

1944-3994/1944-3986 © 2018 Desalination Publications. All rights reserved.

Desalination and Water Treatment 
www.deswater.com

doi: 10.5004/dwt.2018.21646

104 (2018) 273–285
February

Stochastic optimization of water pipes for optimal replacement strategy

Hwisu Shin, Jeewon Seo, Kibum Kim, Jayong Koo*
Department of Environmental Engineering, University of Seoul, Seoulsiripdaero 163, Dongdaemun-gu, Seoul 02504,  
Korea, Tel. +82-2-6490-2866; Fax: +82-2-6490-2859; email: jykoo@uos.ac.kr (J. Koo)

Received 27 August 2017; Accepted 28 October 2017

a b s t r a c t
In a pipeline system, aging of the pipeline due to a variety of internal and external factors reduces its 
functionality as a water supply system and increases the risk of pipe failure. Failure of aging pipelines 
leads to greater social and economic damage, thus through proper repair and replacement, the pipe-
line systems must be managed to ensure safe water quality and structural performance. In this study, 
the authors propose a methodology for estimating the replacement time to minimize the life-cycle 
cost of the pipeline systems. It is assumed that failures in the pipeline system are classified into break 
and destruction. The occurrence probabilities of break and destruction in a pipeline were estimated 
using the competing deterioration hazard model. The time to break and destruction are explained by 
using the exponential hazard model and Weibull hazard model, respectively. The optimal replacement 
strategies are estimated using life-cycle cost approach. In order to evaluate the applicability of the 
proposed methodology in this study, an empirical analysis was carried out with the actual data of the 
pipeline system of S city, Korea.
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1. Introduction 

Pipelines deteriorate with the lapse of time after instal-
lation; along with deterioration, leakage occurs due to 
cracking or break and eventually, the pipeline can also be 
completely destroyed. Because pipe failures, break, and 
destruction cause enormous social and economic damage, 
system managers repair the damaged pipe and replace the 
aging pipeline before it is completely destroyed. However, 
because frequent rehabilitation of aging pipeline increases 
maintenance cost, an optimal rehabilitation strategy is 
required to minimize life-cycle cost (LCC), which is a sum-
mation of the total social cost and rehabilitation cost. In this 
study, we predict the probability of occurrence of break and 
destruction in a pipeline, and develop an optimal replace-
ment strategy model considering need-based repairs of 
breaks and replacements of destroyed pipes during the life 
time of the pipeline.

Predicting the deterioration of a pipeline system and the 
optimal maintenance strategy based on LCC analysis are nec-
essary for pipeline system management. Until now, several 
studies on the optimal maintenance strategy in pipeline sys-
tems have been reported. Shamir and Howard [1] estimated 
the optimal replacement time, which minimizes the sum of 
the repair cost and replacement cost. The repair cost was cal-
culated based on pipe break rate. Following this study, many 
studies have been carried out based on similar approaches 
(e.g., Walski and Pelliccia [2], Kleiner et al. [3,4], Kleiner and 
Rajani [5]). Gustafson and Clancy [6] estimated the break 
order for optimal replacement time which minimizes the eco-
nomic loss with a Monte Carlo simulation. Kleiner [7] fore-
casted the pipe deterioration using a semi-Markov model and 
estimated the optimal schedule of inspection and renewal of 
a large infrastructure asset that minimizes the sum of cost of 
intervention, inspection, and failure. Luong and Fujiwara [8] 
proposed an optimal repair strategy which determines the 
priority of repair that maximize net benefit between repair 
cost and water saving due to repair in the limited budget. 
Mailhot et al. [9] explained the time to failure between pipe 
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breaks by a hazard function and defined an optimal replace-
ment criterion involving hazard functions. Minimizing the 
cost function with conditional probabilities to estimate the 
expected future costs leads to the replacement criterion. 
Tanaka et al. [10] proposed a mathematical model to estimate 
optimal renewal time based on the Weibull hazard function 
and least LCC estimation approach.

These previous studies predict deterioration using a model 
but without classifying the failure types, and determine an 
optimal rehabilitation timing. However, in real pipeline sys-
tems, diverse types of pipe failures can occur because a pipe-
line system consists of many components and pipe deteriora-
tion can proceed by various factors. Establishing an optimal 
strategy based on pipe failure types is the building block of 
asset management for a pipeline system. The maintenance 
strategies of aging pipeline depend on the deterioration type 
and level of pipeline condition. Therefore, in this study, the 
authors briefly classify the pipe failure type due to deterio-
ration into destruction, which requires replacement, break, 
and repair; these types are assumed to be in competition and 
the probability of occurrence of each failure type is estimated 
using a competing deterioration hazard model. In addition, the 
optimal replacement interval is determined through optimal 
replacement model. The optimal replacement model demon-
strates how to determine an optimal replacement interval for 
the pipeline with least LCC approach. Moreover, the expected 
repair cost for pipe breaks occurring during the life cycle of the 
pipeline was formulated with a great deal of mathematical and 
 stochastic method. The Weibull deterioration hazard model 
and exponential hazard model are used to address the time to 
destruction and break of each pipeline, and the model takes into 
account the nature of the competition between several types 
of failure by using a competing deterioration hazard model. 
The competing deterioration hazard model is estimated by a 
Bayesian technique based on the Metropolis–Hasting method 
(M–H method), and a Markov chain Monte Carlo method for 
obtaining a sequence of random samples from a probability 
distribution for which direct sampling is difficult. The optimal 
maintenance model proposed in this study builds on a recur-
sive structure, which was proposed by Tamura and Kobayashi 
[11] and estimated through the least LCC approach.

2. Preassumptions of the model

In this study, we estimate the optimal renewal interval 
which minimizes the expected LCC in the infinite time base. 
The maintenance scheme of aging pipelines is set as that 
whenever pipe break is detected, the damaged pipeline will 
be repaired, or if destruction is detected, the destroyed pipe-
line will be immediately replaced. In addition, an aging pipe-
line which has completed a certain operating time is replaced 
proactively regardless of whether complete failure occurs. In 
a pipeline system, we classify the state of a pipeline as being 
one of the three distinct levels of deterioration, denoted as 
Ei (i = 0, 1, 2). Level E0 reflects the pipe is in healthy condi-
tion. Level E1 denotes a state in which leakage due to break 
is found and immediate repairs are required. Level E2 reflects 
that a pipeline has lost its function of water supply because 
of complete failure. Thus, whenever the condition level E2 is 
detected, the damaged pipeline will be immediately replaced 
by a new one. The repairs for breaks are not regarded as a 

structural reinforcement of whole pipeline; it is assumed that 
the repairs are applied to the damaged part. In addition, the 
breaks may not occur even once or may occur many times 
during the life time of a pipeline.

3. Pipeline deterioration model

3.1. Modeling strategy

What is important for the maintenance of the infrastructure 
is to predict the procedure of the deterioration. This plays an 
important role in estimating the expected social cost and reha-
bilitation costs over the life cycle of the infrastructure [12]. For 
this purpose, it is necessary to predict the probability of pipe 
failure on the basis of available data [13]. In this study, to pre-
dict the deterioration of pipe failure types which are in com-
petition, a competing deterioration hazard model [14] is used. 

Pipe failures, break, and destruction depend largely on 
the duration of use of the pipeline, and the hazard function 
should therefore consider the elapsed time. In this study, the 
times to break and destruction are used as random variables 
described by probability density functions and explained 
by using the exponential hazard model and Weibull hazard 
model, respectively. The probability density functions corre-
spond to the probability of occurrence of break and destruc-
tion. The exponential hazard model and Weibull hazard 
model, which are suitable for addressing this process, are 
applied with the assumption that the probability of pipe break 
and destruction increases with time, respectively, as follows: 

λ τ γb b( ) =  (1)

λ τ γ τd d
mm( ) = −1  (2)

where m is the acceleration parameter that represents the 
time dependency of the hazard function and γj (j = b, d) is 
the parameter expressing the arrival rate of pipe failure, 
break, and destruction. It is assumed that γj depends on the 
characteristics of the pipeline, and that it can be expressed as 
follows:

γ j = ( )exp 'xi jββ  (3)

where xi = ( , , )x xi i
k1

  is the characteristic vector that rep-
resents the observed value for pipeline i and ββj = ( , , )β βj j

k1
  

represents the unknown parameter vectors. In addition, k is 
total number of covariates and the apostrophe (‘) denotes 
transposition. By using the exponential hazard model and 
Weibull hazard model, the probability-density function f j( )τ  
and survival function Fj( )τ  can be expressed as shown in 
Table 1.

3.2. Competing deterioration hazard model

As long as a pipeline is in operation, there is a chance 
of a pipe failure, break, or destruction. However, it is diffi-
cult to distinguish between break and destruction in actual 
pipe accident cases. Therefore, in this study, it is assumed 
that the accident that the repair is performed is break, and 
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the accident in which the replacement is performed is the 
destruction in the recorded pipeline accident history data. 

For a single pipe, the time point of pipe installation is 
denoted by t0, the time point of the nth break is denoted by 
tb,n, (n = 0, 1,…N) and the point time of the pipe destruction 
is denoted by td. Assuming that the accident history infor-
mation of the pipeline is completely observed, the data on 
the break and destruction of the pipeline can be expressed as 
shown in Fig. 1. We define Ts as the time at the starting of the 
recording period and Te as the end of the recording period.

Based on competing risk theory, because pipe replace-
ment due to destruction blocks the occurrence of break, a 
pipe destruction can be regarded as a competing event of 
break. Considering this competition, the conditional proba-
bility that the observed information, n(n = 0, 1,…N) breaks 
and destruction, occurs in pipeline i can be represented by 
the following equation: 
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where the εi and ωi are dummy variables. The εi receives 
a value of 1 when pipe failure was encountered and 0 oth-
erwise. In addition, the reported pipe failure type can be 
represented by the dummy variable ωi. This variable is 0 
when pipe destruction has occurred and 1 otherwise. And, 
tb,0 is equal to t0. Here, we define the unknown parameter 

vector for the competing deterioration hazard model as 
θθ ββ ββ ββ ββ= =( , ), ( ( , ))m b d . Pipe failure of each of the I pipelines 
is supposed to be mutually independent of the other parts of 
the pipeline systems. If the observed information of pipeline i 
is ξξi i i b n

i
d
i

it t= ( , , , , ),ω ε x , the simultaneous probability density 
of the pipe deterioration can therefore be expressed by the 
following likelihood function:

L t ti i b n
i

d
i

i

I

θ ξ ω ε( ) = ( )
=

∏ , , , |, xi ,,θθ
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 (5)

where ξ represents ξξ ξξ ξξ= ( , , )1  n . The unknown parameter 
θ of the proposed model is estimated using the Bayesian 
estimation method based on the Metropolis–Hastings algo-
rithm. It is assumed that the prior probability density func-
tion of unknown parameter, m and β follow a gamma dis-
tribution ( m  g( , )m k0 0 ) and a conjugate multidimensional 
normal distribution ( ββ µµ ΣΣNK o o( , ) ), respectively. With this 
assumption, the probability density function can be further 
expressed as follows:

f m k
m
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where Γ( )m0  denotes the gamma function and µµo   and ΣΣo  
represent the prior expectation vector and the prior variance–
covariance matrix of NK o o( , )µµ ΣΣ , respectively. According to 

Table 1
Equations of probability density, survival, and hazard functions of the exponential and Weibull deterioration models

Probability density function Survival function Hazard function

Exponential fb b b( ) exp( )τ γ γ τ= − Fb b( ) exp( )τ γ τ= − λ τ γb b( ) =

Weibull f md d
m

d
m( ) exp( )τ γ τ γ τ= −−1

Fd d
m( ) exp( )τ γ τ= − λ τ γ τd d

mm( ) = −1

Fig. 1. Pipe failure information of completely observed data scheme.
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Bayesian theory, the posterior probability density can be 
expressed as:

π ξ ξ µ( | ) ( | ) ( | , ) ( | , )θθ θθ ββ∞ ∑L f m m k g o o0 0  (8)

The M–H method is used to carry out sampling from an 
empirical distribution that is similar to posterior distribu-
tion π( | )θθ ξξ  and accordingly obtains samples from the orig-
inal distribution [15]. In addition, a random walk is used to 
improve the sampling efficiency.

4. Optimal replacement model

With the estimated occurrence probability of each 
pipe failure type over time, the optimal replacement 
model is established by considering expected social cost 
and maintenance cost. The occurrence of a pipe failure 
j j b break d destruction( ( ), ( ))=  causes social cost which is 

denoted by Cj and is assumed to be a constant value. When 
the predetermined time interval of replacement is set by z, 
the expected social cost of failure type j is followed in the 
probabilistic manner via the probability density function 
f tj( ) , as presented in Table 1. Thus, the discounting pres-

ent value of expected social cost ECj(z)  calculated during 
replacement period [ , )0 z  can be expressed by the integral 
form as follows:

EC C f t t dtj j j

z
(z) ( )exp= −( )∫0 ρ  (9)

where the coefficient ρ is an instantaneous discounted rate of 
money over time. 

Meanwhile, the cost of pipe replacement activities 
is denoted by Rd and assumed to be a constant value. It is 
assumed that a replacement is carried out in case of the 
occurrence of a pipe destruction during [ , )0 z  or when the 
age of pipeline reaches time z. The expected replacement 
cost follows the probabilistic manner via probability density 
function f td( )  and the survival probability function F td( )  
(Table 1), when pipe age reaches z. Thus, the present dis-
counted cost of the expected replacement cost for the next 
predetermined replacement time EM(z)  can be expressed as 
follows:

EM R f t t dt R F z td d

z

d d(z) ( )exp ( )exp= −( ) + −( )∫0 ρ ρ  (10)

The cost of repair activities for pipe break is denoted by 
Rb and assumed to be a constant value. The repair scheme 
for break is on a need basis; in other words, it is assumed 
that when a break occurs, it will be repaired. Suppose that 
the repair for break is carried out in the arbitrary time y. The 
present discounted cost of the accumulated expected cost 
due to pipe break (social and repair cost) from time y to z is 
denoted by L(y) as shown in Fig. 2. If we consider the possi-
bility of occurrence of next other breaks until time z, when 
the next repair time is denoted as y + t, the L(y) can be calcu-
lated by considering L(y + t) caused by next repair as follows: 

L y C R L y t f t t dtb b b

y
( : ) ( ) ( )exp( )τ ρ

τ
= + + +{ } −

−

∫0  (11)

where τ is a stochastic variable of replacement time  
( 0 ≤ ≤ ≤y zτ ).

Integral Eq. (11) can be rearranged as follows through 
a complex solving process which is further explained in 
Appendix A.

L y
c R

eb b b y( : )
( ) ( )τ

γ
ρ

ρ τ=
+

− 
−1  (12)

Consequently, the present discounted cost of the accumu-
lated expected cost due to pipe break from buried time t = 0 
to stochastic replacement time τ is denoted as L( )τ  and can 
be calculated in the following form:

L L
c R

eb b b( ) ( : )
( )

τ τ
γ

ρ
ρτ= =

+
+ 0 1  (13)

Under the strategy of proactive pipeline replacement in 
the time interval z, it is assumed that whenever a pipe failure 
j is detected, it will be repaired or replaced immediately. The 
expected LCC after the next replacement time is estimated as 
the net present value of social costs and rehabilitation (repair 
and replacement) costs. 

As the social costs and rehabilitation costs are a constant 
value, the expected LCC takes equal value for every replace-
ment time. In order words, the expected LCC estimated at the 
next replacement time is equal to the expected LCC estimated 
at the present replacement. The expected LCC denoted as 
LCC z( : )0  can be regulated through the regression estima-
tion expressed as follows: 

LCC z L C R LCC z f d

L z R
d d d

z

d

( : ) ( ) ( : ) ( )exp( )

( )

0 0
0

= + + +{ } −

+ +

∫ 



τ τ ρτ τ

++{ } −LCC z F z zd( : ) ( )exp( )0  ρ (14)

Fig. 2. The accumulated expected cost due to pipe break from time y to z, L(y).



277H. Shin et al. / Desalination and Water Treatment 104 (2018) 273–285

The following two functions Λd z( ) and Γd z( ) are defined 
as:

Λd dz F z z( ) ( )exp( )= − ρ  (15)
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With the functions Λd z( )  and Γd z( ) , the integral equa-
tion part about L( )τ  can be simply rearranged as follows:

L f d
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z z z

d
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Substituting Eqs. (15)–(17) into Eq. (14), the following 
explicit expression for the expected LCC is obtained:

LCC
C R z z L z I z

t dt
d d d d d d

d

z( : z)
( ) ( ) ( ( ) ) ( )

( )
0

0

=
+( ) + ⋅ + +

∫
Γ Ω Γ Λ

Λ



ρ
 (18)

Therefore, the optimal replacement model can be formu-
lated as follows:

Φ( ) min ( : z)0 0= { }
z
LCC  (19)

where the optimal value function Φ( )0  is denoted as the 
minimum expected LCC estimated at the initial time.

5. Empirical study

5.1. Overview of the empirical study

In order to evaluate the applicability of the proposed 
model in this study, the authors carried out an empirical 
analysis with the actual data of the water distribution system 
of S city in South Korea. The total length of the distributing 
pipeline with a diameter of 80 mm or more is approximately 
1,000 km. The entire distribution pipeline system is com-
posed of a variety of pipe types, cast iron pipe (CIP), ductile 

cast iron pipe (DCIP), polyethylene (PE) pipe, polyvinyl chlo-
ride (PVC) pipe, steel pipe (SP), and so on. In this study, we 
focus on the CIP and DCIP to obtain a statistically signifi-
cant number of data sets. In Korea, the CIP was used mainly 
as a distributing pipe until the 1990s, and since then, DCIP 
has been mainly used. Actually, in S city, now, about 90% of 
the water distributing pipes are DCIP and CIP. In addition, 
the CIP is not being used since 2003 in S city. Table 2 pres-
ents the basic information of the pipe types used in this study.

In this empirical study, we estimate the optimal replace-
ment interval of CIP and DCIP using the optimal replace-
ment model and compared the economic efficiency of the 
two pipe types. To determine optimal rehabilitation strategy, 
we should consider not only replacement and repair costs of 
pipeline but also the costs of damage caused by pipe failure. 
The social cost C, rehabilitation cost R, and discounted rate 
ρ play a major role in establishing the optimal replacement 
strategy in least LCC analysis. The unit cost of pipe replace-
ment is the construction cost required to replace 1 m length 
of pipe. Table 3 provides the standard construction cost of 
pipe replacement presented by K-water [16]. Because repair 
costs for breaks are greatly influenced by location, repair 
method, and so on, it is difficult to generalize. Therefore, in 
this study, it is assumed that the repair cost is proportional to 
the pipe replacement cost. The social cost is the cost of traffic 
disruption and damage to third parties due to pipe failure. 
The social costs of break and destruction are calculated by 
multiplying the repair and replacement costs by the indirect 
cost factor (ICF). The ICF is assigned to each pipe based on 
the overlying land use [13]. The discount rate is used by aver-
age real discount rate (3.87%) which was calculated by mea-
suring the inflation rate and the interest rate on commercial 
banks of Korea from 1996 to 2016. In this study, the sensitiv-
ity of the optimal replacement model to repair cost, discount 
rate and social cost assumptions is analyzed.

5.2. Estimation results from pipe deterioration model

The Weibull hazard model used for the Bayesian estima-
tion is specified as follows:

Break: λ β β βb i b b i b it x x i I( ) = + + =exp( ) ( , , )0 1 1 2 2 1  (20)

Destruction: 
   λ β β βd i d d i d i i

mt x x m t i I( ) = + + ⋅ =−exp( ) ( , , )0 1 1 2 2
1 1  (21)

Table 2
Basic information of target pipes

Features Value
Material Ductile cast iron Cast iron

Years laid (average age) From 1957 to 2010 (13 years) From 1944 to 2003 (27 years)
Diameter (mm) 80~900 80–800
Number of pipes 26,577 4,057
Total length (km) 848.1 72.1
Number of failures 1,405 Break 833 403 Break 297

Destruction 572 Destruction 106
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The unknown parameter β j0  is a constant term, and β j1  
and β j2  represent the pipe diameter and pipe length, respec-
tively. In this study, other characteristic variables that reflect 
the influence of outer and inner rust, soil unit weight, top 
traffic volume, and so on were neglected, because data were 
unavailable. The unknown parameters can be expressed as 
follows:

θθ = ( , , , , , , )β β β β β βb b b d d d m0 1 2 0 1 2  (22)

To carry out the M–H method, the number of iterations 
required to reach a steady state was set by N = 10 000,  and 
the number of iterations for parameter sampling was set by 
N = 20 000, . The 10,000 burn-in samples were omitted and 
the remaining 10,000 parameter samples were used to con-
duct the estimation.

Table 4 shows the results of estimations by the M–H 
method. The estimated values are the sample average of 
parameters, and the values in parentheses refer to 95% credi-
ble intervals. Because all the 95% confidence intervals do not 
contain zero, the estimated results will be significant at the 
5% level [17]. The absolute value of the Geweke test statistics 
are all less than 1.96, so the convergent hypothesis cannot be 
dismissed at a significance level of 5%. As shown in Table 4, 
the parameters corresponding to the diameter were obtained 
as negative and the parameters corresponding to the pipe 
length as positive values in both CIP and DCIP. It means that 
small pipe diameter pipes have a higher risk of pipe failure 
compare with large diameter pipes and long pipes have a 
higher risk of pipe failure compare with short pipes. These 
results are in agreement with previous studies. With the 

estimation results for the competing deterioration hazard 
model, it is possible to formulate the probability density for 
each type of pipe failure, break, or destruction.

Figs. 3 and 4 show the cumulative failure probability of 
the CIP and DCIP types to destruction and break, respec-
tively. The cumulative failure probability curves of the 
Bayesian estimates and the 95% credible intervals are shown 
in these figures. The failure probabilities for both break and 
destruction increase over time. In this study, the time to break 
and destruction are described by exponential distribution 
and Weibull distribution, respectively. The cumulative dis-
tribution curves shown in Figs. 3 and 4 are obtained from 
the integration of the probability density function, and equal 
to the difference between 1 and the survival probability. As 
can be inferred from these figures, break shows higher failure 
probability than destruction in both pipe materials. In addi-
tion, we could confirm that the failure probabilities of break 
and destruction in CIP increase more rapidly than those in 
DCIP over time. 

5.3. Optimal replacement interval and expected life cycle cost

Estimation for optimal replacement interval and expected 
LCC are carried out in the second phase after estimating the 
competing deterioration hazard model. The occurrence prob-
ability of pipe break and destruction are predicted, and the 
least LCC analysis is subsequently conducted on the basis 
of a maintenance strategy that repairs of breaks and pipe 
replacements due to destruction are carried out as needed. 
In addition, an aging pipeline which has completed a certain 
operating time is replaced proactively regardless of whether 
pipe destruction occurs. Minimization problem to seek for 

Table 3
The unit cost of pipe replacement (K-water [16])

Diameter (mm) Replacement cost ($/m) Diameter (mm) Replacement cost ($/m)

Below 300 315 600 590
300 335 700 716
350 360 800 926
400 399 900 1,094
450 446 1,000 1,317
500 493 1,200 1,818

Table 4
Results of estimation of parameters for the competing deterioration hazard model

CIP DCIP
Estimated value Geweke statistics Estimated value Geweke statistics

βb0 –3.789 (–4.157, –3.368) 0.057 –4.201 (–4.647, –3.862) 0.069
βb1 –1.393 (–2.103, –0.917) 0.0448 –1.068 (–1.542, –0.554) 0.021
βb2 2.041 (1.362, 2.808) 0.130 2.325 (1.807, 2.851) 0.224
βd0 –10.917 (–11.217, –10.593) 0.061 –11.177 (–11.431, –10.832) 0.116
βd1 –2.527 (–2.906, –2.094) 0.067 –2.501 (–3.106, –2.014) 0.007
βd2 3.299 (2.786, 3.814) 0.169 3.243 (2.712, 3.726) 0.074
m 2.610 (2.490, 2.754) 0.078 2.524 (2.441, 2.580) 0.011

Notes: Values in parenthesis show 95% credible intervals.
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Fig. 3. Cumulative failure probability in DCIP: break and destruction.

Fig. 4. Cumulative failure probability in CIP: break and destruction.

the optimal replacement timing z is empirically analyzed 
using Eq. (19). 

In this study, it is assumed that the repair cost of the pipe 
break is proportional to the pipe replacement cost and that 
the social cost due to pipe failure depends on the overlying 
land use. Figs. 5 and 6 show the sensitivity of the model to 
repair cost, discount rate, and social cost assumptions. Fig. 5 
shows the change of optimal replacement interval according 
to the change of ratio of unit repair cost to unit replacement 

cost (Rb/Rd) of DCIP (diameter: 800 mm and length: 1 m). As 
can be seen from Fig. 5, the optimal replacement interval is 
shorter as the repair cost increases. This is because it is more 
economical to perform the replacement than to repeat the 
repair with high repair costs. 

Since interest rates and inflation rates are not constant 
every year, the discount rate also fluctuates. Therefore, the 
change in the optimal replacement interval due to the change 
in the discount rate is shown in Fig. 5. As shown in this 
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Fig. 5. Optimal replacement interval according to Rb/Rd for different values of the discount rate ρ.

Fig. 6. Optimal replacement interval according to the change of social cost due to pipe break.

figure, the optimal replacement interval increases as the dis-
count rate decreases. 

Pipe failure causes direct costs from repair or replace-
ment, as well as indirect costs (social costs) such as traffic dis-
ruption and damage to third parties. In this study, the social 
cost of break and destruction was calculated by multiply-
ing the repair cost and replacement cost by the indirect cost 
index, respectively. The social cost of pipe failure depends 
on the type of land in which the pipe is buried. Fig. 6 shows 

the change of optimal replacement interval according to the 
change of social cost due to pipe break. As can be seen in 
Fig. 6, the larger the indirect cost index (i.e., the higher the 
social cost), the shorter the pipe replacement interval. In 
other words, because the social cost caused by repeated pipe 
breaks is large, it is economical to carry out pipe replacement 
early.

Figs. 7 and 8 show the change of LCC by the diameter 
according to the replacement interval of the unit length DCIP 
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and CIP, based on the optimum replacement model. Here, 
the ICF for social cost calculation is assumed to be 3. In addi-
tion, the discount rate and Rb/Rd are assumed to be 3.87% and 
0.3, respectively.The expected failure costs tend to increase 
over time due to the increase in failure probability. On the 
other hand, the expected maintenance costs tend to decrease 
with time due to discounting. Thus, the total expected LCC 
forms a convex curve over time as shown in Figs. 7 and 8. 

As shown in Figs. 7 and 8, pipes of larger diameters 
have a high LCC and a long optimal replacement interval 
z. This is because larger pipes show low failure probability 
and are more expensive to replace and repair. In addition, 

on comparing Figs. 7 and 8, it is possible to verify that DCIP 
shows a low LCC for the same diameter as the CIP and the 
optimal replacement interval of DCIP is longer than CIP. The 
results of least life cycle analysis for each pipe diameter and 
material are presented in Table 5. From the results, we can 
confirm that the DCIP is more economical than CIP.

6. Conclusions

Pipe failures cause social and economic loses as well 
as inconvenience to consumers. Pipeline systems are 
 underground, and it is difficult to inspect and monitor 

Fig. 7. Expected life cycle cost comparison of pipe diameter: DCIP.

Fig. 8. Expected life cycle cost comparison of pipe diameter: CIP.



H. Shin et al. / Desalination and Water Treatment 104 (2018) 273–285282

pipe condition. Thus, in many cases, the maintenance of 
pipeline systems depends on a manager’s empirical judg-
ment. Therefore, it is required to predict pipe deterioration 
by accumulated inspection data and to establish optimal 
maintenance strategy which minimizes expected LCC. In 
real pipeline systems, there are various types of failure and 
maintenance strategies depending on the failure type. In this 
study, pipe failure is briefly classified into destruction, which 
requires replacement, and break, which requires repair. The 
deterioration procedures of destruction and break are fore-
casted by using a competing deterioration hazard model. In 
addition, we proposed an optimal replacement model which 
minimizes expected LCC that considers repair of breaks and 
pipeline replacement during life time of pipeline.

The empirical application of the proposed model was 
carried out on a real pipeline system in S city in Korea. The 
occurrence probabilities of break and destruction in CIP and 
DCIP were estimated using competing deterioration hazard 
model. From the estimation results, we could confirm that 
break shows higher occurrence probability than destruction 
in both pipe materials. In addition, break and destruction 
in CIP occur at a higher rate than those in DCIP over time. 
With these estimation results of competing deterioration haz-
ard model, the optimal replacement interval and expected 
LCC can be calculated using optimal replacement model. 
However, considering that the optimal replacement model 
depends largely on the accuracy of the deterioration predic-
tion, competing deterioration hazard model established in 
this study needs to be further advanced considering the envi-
ronment and operational factors that affect the deterioration 
of the pipeline.

The sensitivity of the optimal replacement model to repair 
cost, discount rate, and social cost assumptions is analyzed. 
It was confirm that as the ratio of unit repair cost to unit 
replacement cost decreases, the optimal replacement interval 
increases. This suggests that the improvement of pipe repair 
techniques such as non-excavation repair methods can make 
the pipe longer to use as the repair cost is lowered. In addi-
tion, it was confirmed that the higher increase social costs of 
pipe break reduced the optimal replacement interval. This 
indicates that in areas such as commercial areas and major 
roads where social costs are high due to pipe break, the 
replacement interval needs to be shorter than other areas in 
view of the risk of pipe break.

In the empirical study, we could obtain the optimal LCC and 
optimal replacement interval of each pipe type and diameter 
using optimal replacement model. The results demonstrated 

that the DCIP is more a beneficial type of pipe than CIP in 
asset management of the pipeline system. However, it is con-
sidered that these results can be reliably secured if the exact 
unit repair cost, social cost, and appropriate discount rate con-
sidering discount rate change are properly calculated.

Although in-depth analysis is required, this study suc-
cessfully explains how to determine the optimal replacement 
strategy for the pipeline. Moreover, it is noteworthy that 
mathematical and stochastic expressions of expected repair 
costs for breaks occurring during the life cycle of the pipeline. 
From the application view point, we believe that our model 
could be extended to other components of infrastructure and 
would contribute to advancing asset management. 

Our proposed model has not discussed the following 
points, which are considered for a future extension of our 
study:

• It is required to establish optimal replacement strategy 
which considers pipe material and diameter change. 
Furthermore, the optimal strategy has to not only be 
economical but also has to meet hydraulic condition of 
pipeline.

• Water supply is performed with not a single pipe but 
pipe networks. Because the budget for pipeline system 
management is limited, it is necessary to determine the 
pipe replacement priority. In addition, the replacement 
priority strategy has to consider the significance of pipe 
and network properties.
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Appendix A

The steps for solving the integral Eq. (11) are described 
here.

Let, z t+ = τ  then, dt d= τ  and t z= −τ . (A1)

The Eq. (11) can be arranged as follows:

L z c R L z t t t dt

c R L

b b b b

T z

b b

( ) ( ) exp( ) exp( )

(

= + + +{ } ⋅ − ⋅ −

= − + +

−

∫ γ γ ρ

τ

0

)) exp( ( )) exp( ( )){ } ⋅ − −  ⋅ −∫
d
d

z z dbT

z

τ
γ τ ρ τ τ

 (A2)

Let µ( ) ( )z c R L zb b= + + , µ τ τ( ) ( )= + +c R Lb b  and 

K z d
d

z zb( , ) exp( ( )) exp( ( ))τ
τ

γ τ ρ τ= − −  ⋅ −  as a kernel func-

tion. Then, the µ  ( )z  can be expressed as follows:

µ µ τ τ τ µ τ τ τ( ) ( ) ( , ) ( ) ( , )z c R k z d c R k z db b T

z

b b

T z
= + − = + + −



∫ ∫ ∫0 0

 (A3)

Let, g z c R k z db b

T
( ) ( ) ( , )= + + ∫ µ τ τ τ

0
 then, µ( )z   can be 

 simplified as follows:

µ µ τ τ τ( ) ( ) ( ) ( , )z g z k z d
z

= − ∫0  (A4)

Because k z( , )τ  has the form k z( )− τ , the integral form 
can be transformed by the convolution of µ τ( )  and k z( ) .

µ τ τ τ µ τ τ τ µ( ) ( , ) ( ) ( ) ( ) ( )k z d k z d z k z
z z

0 0∫ ∫= − = ×  (A5)

Thus, µ( )z   can be expressed as follows:

µ µ( ) ( ) ( ) ( )z g z z k z= − ×  (A6)

On taking the Laplace transform of Eq. (A6), the follow-
ing expression can be obtained: 

La z La g z z k z
La g z
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Since, µ( ) ( )z c R L zb b= + +
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Bromwich integral (A8)

where g s La g z( ) ( )=    and k s La k z( ) ( )=   .

Here, the g z( )  and k z( )  are represented again as follows:
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With Laplace transform, k s( )  can be expressed as follows:
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s
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From the definition of Laplace transform, the condition 
s b> +γ ρ  is satisfied, and hence Eq. (A9) can be arranged as 
follows:
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Meanwhile, g s( )  can be expressed as follows:
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Interchanging the integration order d dzτ  to dzdτ ,  
Eq. (A11) can be arranged as follows:
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Because g c R c R L e db b b b b

T
b( ) ( ( )) ( )0

0
= + + + + − +∫ τ γ ττ γ ρ ,  

Eq. (A12) can be arranged as follows:
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Therefore, with Eqs. (A10) and (A13), 
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Since, µ µ τ τ τ( ) ( ) ( ) ( ) ( )z c R L z g z k z db b

z
= + + = − −∫0  the 

 following condition is satisfied. 

µ( ) ( ) ( )0 0 0 0= + + = −c R L gb b
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Substituting Eq. (A15) in Eq. (A14), the following result 
is obtained.
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Let, h s La g z e
La k z

sz

( ) ( ( ))
( ( ))

=
+1

 and let, h s e
c R

s
sz b b

c Rb b b

1( )
( )

=
+ +











+γ
ρ , 

 h s e
L

s
sz

c Rb b b

2

0
( )

( ) ( )

=
−

−













+γ
ρ

ρ
.

Since, 
h s h s h s h s h s h s( ) ( ) ( ), ( )) ( )) ( ))= + ∑ = ∑ + ∑1 2 1 2Res( Res( Res(

∑ = + +
+

Res( ( ))
( )

h s c R
c R

b b
b b b

1

γ
ρ

 (A17a)

∑ = −( )+Res(h s e Lz c Rb b b
2 0( )) ( ) ( )ρ γ

ρ
 (A17b)

Eq. (A8) can be arranged by Jordan’s lemma:
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Here, since, L T
c R

e L eb b b T T( )
( )

( ) ( )= =
+

− +0 1 0
γ

ρ
ρ ρ  the 

L( )0  can be obtained by:

L
c R

eb b b T( )
( )

( )0 1=
+

− −γ
ρ

ρ  (A19)

Therefore, substituting Eq. (A19) in Eq. (A18), we get 
L z( )  as follows:
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