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a b s t r a c t

Artificial intelligence based data driven models are useful tools in approximating density dependent 
coupled flow and salt transport processes in coastal aquifer systems. These emulators often serve as com-
putationally efficient substitutes of rigorous numerical simulation models within a linked simulation-op-
timization (S/O) methodology. In this study, fuzzy c-means clustering based fuzzy inference systems 
(FIS) and adaptive network based fuzzy inference systems (ANFIS) are proposed to approximate the 
physical processes of an illustrative coastal aquifer system. FIS and ANFIS based models are also utilized 
to identify the most influential input variables in predicting salinity concentrations at three monitoring 
locations (C1, C2, and C3). Solution results obtained are compared with those obtained using a genetic 
programming (GP) based modelling approach. Performance evaluation results show that the developed 
FIS and ANFIS models perform equally well on training and testing datasets. It is also demonstrated that 
performances of both the FIS and ANFIS models are better than that of GP based models. Root mean 
square error (RMSE) and mean absolute percentage relative error (MAPRE) values obtained by using GP 
are larger than those obtained by both ANFIS and FIS models. The maximum prediction errors of GP rep-
resented by RMSE and MAPRE at the three monitoring locations are 22.43 mg/l and 2.84% respectively. 
On the other hand, GP results in lowest values of correlation coefficient (0.96) and Nash–Sutcliffe effi-
ciency coefficient (0.91). FIS model outperforms both ANFIS and GP models in terms of a more detailed 
comparison criteria, including computation time and model complexity. FIS requires only 0.65 min for 
training in order to predict salinity concentrations at all three locations C1, C2, and C3. For the similar 
purpose, ANFIS and GP require 17.35 min and 276.5 min, respectively. Therefore, FIS model can be suc-
cessfully applied as a computationally efficient substitute of complex numerical simulation models for 
predicting coupled flow and salt transport processes. Such applications can be very useful in developing 
a computationally feasible linked S/O methodology for regional scale management of saltwater intrusion 
in coastal aquifers. Results of the management model using the best performing global FIS model indi-
cates that FIS model provides acceptable, accurate, and reliable groundwater extraction patterns to limit 
the saltwater concentrations within the pre-specified maximum allowable limits. 
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1. Introduction

Coastal regions experience excessive withdrawal of 
fresh groundwater supplies due to increased human settle-

ments and economic developments. This overexploitation 
of groundwater resources to satisfy domestic and indus-
trial demands causes saltwater intrusion and degradation 
of groundwater quality in coastal aquifers [1]. Therefore, 
optimal use of groundwater resources in these areas is of 
great importance to ensure adequate supply of freshwater 
to different sectors. An important prerequisite for optimal 
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management of coastal aquifers is to identify reliable and 
appropriate models to simulate physical processes of a 
coastal aquifer system. Mathematical models have been 
used to understand complex and highly non-linear physi-
cal processes of coastal aquifers [2]. These physically based 
models involve simulation of complex physical systems 
using simulation models requiring large number of calibra-
tion data pairs, as well as expertise and experience of the 
modelers. On the other hand, data driven models are able to 
provide approximate prediction of saltwater intrusion pro-
cesses with acceptable prediction accuracies. Although data 
driven models do not provide useful information about the 
physical processes involved in modelling [3,4], such mod-
els can replace numerical simulation models for predicting 
saltwater concentrations in coastal aquifers [2,5].

Typically, simulation of coupled flow and salt trans-
port processes in coastal aquifers using simulation mod-
els is time consuming and computationally intensive [2,6]. 
This is especially true for a linked simulation-optimization 
(S/O) problem where simulation models are called by the 
optimization algorithm several thousand times to obtain an 
optimal or near optimal management strategy as solution. 
Therefore, this methodology demands computationally 
efficient approximate models to accurately predict saltwa-
ter concentration at different monitoring locations (MLs)
[5]. Sufficiently accurate and computationally efficient data 
driven models are suitable for this purpose [6]. Previous lit-
erature reveals the use of approximate models to achieve 
computational efficiency in linked S/O models [6–11]. 

Fuzzy Inference System (FIS) based on fuzzy set theory 
has received considerable attention in the recent years. FIS 
is recognized as a successful computing framework due to 
its applicability in multi-dimensional fields [12]. FIS is capa-
ble of capturing non-linear relationships between input and 
response variables, and is an effective tool to model non-lin-
ear processes [13,14]. The most widely used FISs in different 
applications are Mamdani FIS, Sugeno FIS, and Tsukamoto 
FIS. They differ in the way they use consequent parts of 
their fuzzy rules, and the way they accomplish the aggre-
gation and defuzzification steps. The Sugeno fuzzy model 
[15], also known as Takagi-Sugeno-Kang model, is espe-
cially suited for modelling non-linear systems by interpo-
lating between multiple linear models. Despite the potential 
capability of emulating complex and non-linear systems, 
the application of FIS to approximate physical processes 
of coastal aquifer systems is quite limited. Recently, Roy 
and Datta [9] proposed a FIS model to approximate density 
dependent coupled flow and salt transport processes in a 
multi-layered coastal aquifer system. The authors recom-
mend FIS to be an accurate and reliable prediction tool to 
approximate coupled flow and salt transport processes. The 
present study intends to utilize FIS model as a computa-
tionally efficient substitute of the complex numerical simu-
lation model within a linked S/O methodology to develop 
saltwater intrusion management model.

Adaptive network based fuzzy inference systems 
(ANFIS), proposed by Jang [16] is a multi-layer adaptive 
network based FIS that integrates the merits of both neu-
ral networks and fuzzy logic approaches. It incorporates the 
basic advantages of Artificial Neural Network (ANN) such 
as massive parallelism, robustness, and learning in data-
rich environments [17]. A large number of studies utilized 

ANFIS in groundwater modelling applications, for example, 
in predicting groundwater level [18], characterizing ground-
water quality parameters [19], forecasting river flow [20], 
assessing groundwater quality [19], spatial distribution of 
groundwater quality [21], predicting water quality index 
[22], estimating groundwater level [23], predicting daily 
discharge responses of a large karstic aquifer [24] and pre-
dicting electrical conductivity of groundwater [25] etc. The 
present study considers saltwater concentration in mg/l 
as a measure of saltwater intrusion in coastal aquifers. An 
ensemble of ANFIS models was proposed by Roy and Datta 
[26] to approximate coupled flow and salt transport pro-
cesses in a multi-layered coastal aquifer system. However, 
prediction capability of a single ANFIS model has not been 
utilized so far to predict saltwater concentrations at speci-
fied MLs within coastal aquifers with transient pumping 
stress applied to the aquifer. Our study compares the per-
formances of genetic programming (GP), FIS, and ANFIS 
in predicting coupled flow and salt transport processes in 
a coastal aquifer system. In addition, a saltwater intrusion 
management model is also developed by utilizing the best 
performing model among GP, FIS, and ANFIS models.

However, one of the major challenges of using fuzzy 
logic based prediction-modelling approach is to manage 
large-dimensional input datasets, in particular to handle 
large number of spatially and temporally varying ground-
water extraction patterns for saltwater intrusion manage-
ment in coastal aquifers. In such situations, reducing the 
dimensionality of the input space by using fuzzy c-mean 
clustering algorithm (FCM) [27] provides a reasonable prac-
tical solution. FCM is used to compress the entire input space 
into a number of identical clusters. This clustering technique 
significantly reduces the number of fuzzy if-then rules and 
the number of modifiable parameters (linear and non-lin-
ear) of the generated FIS. Roy and Datta [9] utilized the FCM 
algorithm to divide the 80-input variables decision space into 
few identical clusters for using as inputs to the FIS based pre-
diction model. The present study utilizes FCM technique to 
reduce the dimensionality of the input space for developing 
the single global FIS model and the ANFIS models.

GPmodels are based on Darwinian principle of natural 
selection. GPs are genetic algorithm based computer pro-
grams evolved to solve a particular task [28]. GPs perform 
this specific task in the form of simple regression models. 
GP was utilized as a data driven model in few recent stud-
ies [2,29–32]. Some other uses of GP include predicting run 
off and river stage [33–35]. GP was also employed to predict 
salinity concentrations at specified MLs in coastal aquifers 
[2,32] as a computationally efficient substitute of numerical 
simulation models. Sreekanth and Datta [2] compared two 
linked S/O models based on ANN and GP surrogate mod-
els in determining the optimal groundwater extraction rates 
for an illustrative coastal aquifer. They observed the rela-
tive superiority of GP over ANN based surrogate models. 
In another study, Sreekanth and Datta [32] compared the 
performance of GP and Modular Neural Network (MNN) 
based surrogate models for an illustrative study area. The 
authors observed lesser uncertainty in prediction of GP 
models compared to MNN models as the number of param-
eters used in GP is much smaller than that in MNN models. 

In this study, two fuzzy logic based data driven mod-
els, FIS and ANFIS are developed using the data from an 
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illustrative coastal aquifer system utilized in Sreekanth 
and Datta [2]. Prediction capability of these two models 
is compared with the GP models developed in Sreekanth 
and Datta [2]. ANN is not used for comparison in this study 
because Sreekanth and Datta [2] have already discussed 
the relative superiority of GP over ANN. The compari-
son is performed by evaluating the errors in prediction, 
and time required to train the models. Finally, a saltwater 
intrusion management model is developed by utilizing a 
linked S/O approach in which the best performing saltwa-
ter intrusion prediction model is used to replace the com-
putationally intensive numerical simulation model within 
the optimization framework. Properly learned and verified 
prediction model is then linked externally to a Controlled 
Elitist Multi-objective Genetic Algorithm (CEMGA) [36] to 
develop saltwater intrusion management model that pre-
scribes optimal extraction patterns of coastal groundwater 
resources. The proposed methodology with two conflicting 
management objectives integrates prediction model and 
CEMGA within a general framework of linked S/O based 
optimal management strategy development. Evaluation 
of the proposed approach is demonstrated by means of an 
illustrative coastal aquifer system.

2. Methodology

Methodology involves solution of a numerical simu-
lation model, use of three trained data driven models to 
approximate the coupled flow and salt transport processes, 
and a saltwater intrusion management model to prescribe 
optimal groundwater extraction patterns. To maintain 
consistency in comparison, the input-output patterns gen-
erated using numerical simulation model, FEMWATER in 
Sreekanth and Datta [2] are used in this study for training 
of the models.

2.1. Numerical simulation model

FEMWATER [37], a three dimensional (3D) finite ele-
ment based coupled flow and salt transport numerical sim-
ulation model is used to generate the required input-output 
patterns to obtain training and testing datasets for devel-
oping the data driven models. Thirty three input variables, 
representing combined groundwater extraction from a set 
of 8 production and 3 barrier extraction wells, and for 3 time 
steps are generated using Latin Hypercube Sampling [38]. 
Variables 1–8, 12–19, and 23–30 represents pumping from 
8 production wells during the first, second, and third time 
steps, respectively. In addition, variables 9–11, 20–22, and 
31–33 denotes pumping from the 3 barrier extraction wells 
during the first, second, and third time steps, respectively. 
These input pumping values are fed to the simulation model 
to simulate the physical processes in the aquifer. Initial con-
dition refers to the initial groundwater heads and the salin-
ity concentrations of the aquifer water before starting of the 
simulation. These initial conditions are based on an approx-
imate steady state condition of the aquifer obtained by run-
ning the simulation model in transition mode for a long 
time horizon. Boundary conditions (e.g. seaside boundary 
with assigned salinity concentrations, aquifer recharge 
etc.) remained constant during this transient simulation. 

After obtaining a nearly steady state condition, saltwater 
concentrations at different MLs are obtained through sim-
ulating the aquifer processes by using spatially and tem-
porally varying groundwater extraction values differed in 
different simulations. Steady state groundwater head and 
salinity concentrations serve as initial conditions to this 
transient simulation. Boundary conditions as well as the 
aquifer properties including hydraulic conductivity values 
remained constant while transient groundwater extraction 
values varied in subsequent simulations. One set of pump-
ing from different locations and for different time steps, and 
the corresponding output concentration constitute one set 
of input-output pairs. A number of such patterns are used 
to train and test the proposed models. The governing 3D 
density reliant combined flow and salt transport equations 
can be expressed by the following sets of equations [37]:
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where F stands for storage coefficient, h represents pressure 
head, t indicates time, K symbolizes hydraulic conductivity 
tensor, z is the potential head, q represents either a source or 
a sink, r indicates the water density at chemical concentra-
tion C, ρo symbolizes referenced water density at zero chem-
ical concentration, ρ* represents density of injection fluid or 
that of the withdrawn water, θ is moisture content, α′ and 
β′ indicates respectively modified compressibility of water 
and the medium, n represents porosity of the medium, and 
S stands for saturation.

Hydraulic conductivity tensor, K can be expressed as
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in which µ stands for waters’ dynamic viscosity at chem-
ical concentration C, µo represents the reference dynamic 
viscosity at zero chemical concentration, ks is saturated 
permeability tensor, kr is relative permeability or relative 
hydraulic conductivity, Kso stands for referenced saturated 
conductivity tensor.
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where ρb symbolizes bulk density of medium, C stands 
for material concentration in aqueous phase, S is mate-
rial concentration in adsorbed phase, t is the time, V rep-
resents groundwater velocity, ∇ stands for del operator, D 
indicates Dispersion coefficient tensor, l denotes the decay 
constant, M = qCm is the artificial mass rate, q is the source 
rate of water, Cm is the material concentration in the source, 
Kw is the first order biodegradation rate constant through 
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dissolved phase, Ks is the first order biodegradation rate 
through adsorbed phase, Kd is the distribution coefficient. 

The dispersion coefficient tensor D in Eq. (4) is written as

θ δ θτδD a V a a
VV
V

aT L T m= + −( ) + � (5)

where V  is the magnitude of V, d the Kronecker delta ten-
sor, aT is lateral dispersivity, aL is longitudinal dispersivity, 
am is the molecular diffusion coefficient, and τ is tortuosity.

2.2. Data driven models

Data driven models based on FIS and ANFIS are trained 
and tested using the same input-output patterns used to 
train GP models in Sreekanth and Datta [2]. This facilitates 
the comparison with the performance of GP based models as 
reported in Sreekanth and Datta [2]. According to Sreekanth 
and Datta [2], a total of 230 data pairs are sufficient to train 
the developed GP models without model overfitting. There-
fore, for comparison purpose, FIS and ANFIS models are 
also trained using the same 230 data pairs, and with the 
same compartmentalization of the datasets into training 
(75%) and testing (25%). Similar to GP approach used in 
Sreekanth and Datta [2], three ANFIS models are developed 
to predict salinity concentrations at three MLs. Moreover, 
number of variables used by Sreekanth and Datta [2] is 33, 
which is too many for ANFIS structure development. To 
overcome this problem, FCM algorithm is used to compress 
the datasets into identical clusters. This clustering technique 
reduces the number of linear and non-linear parameters of 
the developed FIS structures, and suppresses the number of 
rules in developing initial FIS structures. These initial FIS 
structures are then used to develop ANFIS models. On the 
other hand, a single global FIS structure is developed,which 
is able to predict salinity concentrations at three MLs at a 
time. In addition, the same set of training and testing data 
pairs are used for training and validation of all ANFISs and 
the global FIS model.

Partitioning of the input space for FIS and ANFIS  
model development

Partitioning can be accomplished by using grid parti-
tion, tree partition, scatter partition, or by implementing 
clustering algorithms such as sub-clustering or FCM algo-
rithm [12]. Clustering approach is applied for both effective 
partition of the input space and for reducing the number 
of rules. Subtractive clustering technique is used as a fast, 
one-pass algorithm for estimating the number of clusters 
and the cluster centres for a set of data [39]. FCM, on the 
other hand, is one of the most popular and widely used 
clustering algorithm [27]. In the present study, input space 
is partitioned using FCM algorithm to build the antecedent 
parts of fuzzy rules and to develop Sugeno-type FIS struc-
tures. FCM performs clustering by minimizing the follow-
ing objective function:
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where, Om = function to be minimized, m = fuzzy partition 
matrix exponent, K = sample index, N = number of clusters, 
αi = ith data point, cj = center of the jth cluster, µij= member-
ship degree of αi in the jth cluster.

2.2.1. C-means clustering based FIS

FIS is a well-known computing framework successfully 
applied to a wide variety of fields, and is named differently 
by different researchers due to its multi-dimensional appli-
cation fields [12]. Fig.1 illustrates block diagram of a three 
inputs, one output, and four rules FIS.

A rule base, a database, and a reasoning mechanism 
constitute the basic structure of FISs. Rule base consists of 
fuzzy if-then rules, database determines the membership 
functions (MF) used in fuzzy rules, and reasoning mech-
anism accomplishes the inference process [12]. The inputs 
to a basic FIS can either be crisp or fuzzy whereas the out-
puts from the FIS are fuzzy sets. Therefore, an additional 
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defuzzification step is required for defuzzifying the output. 
The role of the defuzzification block is to transform an out-
put fuzzy set to a crisp single value (Fig. 1). 

FIS is applied to implement non-linear mapping of input 
and output spaces by utilizing a number of fuzzy if-then 
rules. The antecedent part of any rule specifies a fuzzy region 
within the input space whereas the output space of the fuzzy 
region is specified by consequent part of the fuzzy rules. A 
typical FIS for the illustrative saltwater intrusion problem 
[2] can be represented by the flow chart shown in Fig. 2.

A Sugeno-type FIS, also known as Takagi-Sugeno-Kang 
model introduced in 1985 [15] is developed and utilized in 
the present study. The input and output MFs of the pro-
posed FIS are Gaussian and linear, respectively. A Gauss-
ian MF is determined by two parameters {c, σ}. It can be 
expressed mathematically as [12]
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where c represents the center of MF, and s is the width of 
MF. As an example, a Gaussian MF with c = 25 and s = 10 
is shown in Fig. 3.

2.2.2. ANFIS

ANFIS [16] is a multi-layer adaptive network based 
FIS that integrates the merits of both the neural networks 
and fuzzy logic approaches. ANFIS structures can be con-
structed using the principle of Sugeno, Mamdani, or Tsu-
kamoto FIS. Despite having a simple architecture, Sugeno 

ANFIS provides better learning capabilities compared to 
other types of ANFIS structures [12]. Therefore, in the pres-
ent study, a first order Sugeno-type FIS is adopted for devel-
oping the ANFIS model structures.

For a first-order Sugeno FIS with two inputs, a and b, 
and one output g, the simplest form of the fuzzy if-then rule 
set can be expressed as

Rule 1: If a is A1 and b is B1, then γ1 = a1a + b1b + c1�  (8)

Rule 2: If a is A2 and b is B2, then γ2 = a1a + b2b + c2�  (9)

The resulting ANFIS structure consists of five layers, 
namely a fuzzy layer, a product layer, a normalized layer, 
a defuzzification layer, and a total output layer as shown 
in Fig. 4. The detailed description of each of these layers is 
stated (page-670) in Jang [16], and is not repeated here.

2.2.3. GP

GP is a search methodology that applies genetic algo-
rithm to computer programming [28]. GP can be utilized 
to obtain the best-fit computer programs that provide the 
desired output from a set of input variables. GP is analo-
gous to genetic algorithm in the sense that it starts with an 
initial population that compounds the randomly generated 
chromosomes [31]. A detailed description of GP along with a 
parse-tree structure can be found in Sreekanth and Datta [2].

2.3. Management model

A saltwater intrusion management model that pre-
scribes optimal groundwater extraction patterns at a coastal 
aquifer is developed through a linked S/O approach. 
CEMGA [36] is used to search for the optimal groundwa-
ter extraction strategies, while maintaining the maximum 
allowable saltwater concentration limits at the specified 
MLs. Two conflicting objectives of groundwater extraction 
strategy are considered in this study. The first objective 
ensures the maximum withdrawal of groundwater for ben-
eficial purposes. The second objective minimizes the water 
extraction from barrier pumping wells to control saltwater 
intrusion by establishing a hydraulic head barrier near the 
coastal boundary. The multi-objective management model 
provides a tradeoff between these conflicting objectives in 
terms of a Pareto optimal front, which consists of several 
non-dominated feasible alternative groundwater extraction 
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strategies that meet the pre-specified allowable saltwater 
concentration limits at specified MLs.

Mathematical formulation for the proposed saltwater 
intrusion management methodology is expressed by the 
following equations
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t

t

T

r

R

: ( )1
11

=
==
∑∑ � (10)

Minimize f Q QBW BW k
t

t

T

k

K

: ( )2
11

=
==
∑∑ � (11)

Subject to

C Q Qi PW BW= ξ( , ) � (12)

C Ci i≤ ∀max � (13)

Q Q QPW PW r
t

PWmin max≤ ≤ � (14)

Q Q QBW BW k
t

BWmin max≤ ≤ � (15)

where QPW r
t represents water extraction from the rth pump-

ing well throughout tth time phase; QBW k
t  stands for water 

extraction from kth barrier extraction well throughout tth 
time phase; Ci symbolizes saltwater concentrations at ith 
monitoring locations at the closure of the management 
period; x() denotes the density reliant coupled flow and 
salt transport simulation model, and constraint (Eq. (12)) 
indicates linking of the simulation model within the opti-
mization framework; constraint (Eq. (13)) specifies the 
maximum allowable salt concentration at specified mon-
itoring locations; Eqs. (14) and (15) provide the lower 
and upper limits on the water extraction rate from the 
pumping wells and barrier extraction wells, respectively; 
subscripts PW and BW stands for production bores and 
barrier extraction wells, respectively; R, K, and T stands 
for the entire pumping wells, barrier extraction wells, and 
time periods, respectively. The first objective of maximiza-
tion of groundwater extraction from the pumping wells for 
beneficial use is represented by Eq. (10), and the second 
objective of minimizing the water extraction from barrier 
pumping wells is given by Eq. (11).

2.4. Optimization algorithm

A population based search algorithm, CEMGA [36] is 
utilized for optimization. This algorithm demonstrated 
better convergence for a number of complex optimization 
problems [36]. The key feature of CEMGA lies in its abil-
ity to prefer individuals, who despite having low fitness 
values, help increasing the diversity of the population. 
The diversity of the population is preserved by regulat-
ing the populations’ elite members during the progress of 
the algorithm, making the new population more diverse. 
More specifically, this regulated elitist tactic allows a par-
ticular fraction of the population (dominated populations) 
to be part of the current preeminent non-dominated solu-
tions. This inclusion of a particular portion of the dom-

inated solutions in the non-dominated solutions greatly 
reduces the effect of elitism. ‘Pareto Fraction’ and ‘Dis-
tance Function’ are the two parameters that control the 
extent of elitism. The first parameter restricts the number 
of individuals (elite members) on Pareto front, whereas 
the second one is intended to preserve the diversity on the 
Pareto front by giving preference to individuals who are 
reasonably far-off on the front [36].

2.5. Performance evaluation criteria

Following statistical indices were used to compare per-
formances of the proposed data driven models.
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Coefficient of correlation (R)
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where, Cn
O = observed concentration of saltwater, Cn

P = 

predicted saltwater concentration, CO = mean of observed 
saltwater concentration, CP  = mean of predicted saltwater 
concentration, and N = number of data points.

2.6. Relative importance of input variables

Relative importance of individual input variables in 
determining the input-output mapping is computed for 
both FIS and ANFIS models. Results obtained are compared 
with those obtained by using GP models [2]. For GP mod-
els, Sreekanth and Datta [2] used impact factors to evalu-
ate the relative importance of individual input variables. In 
Discipulus software [40], impact factor refers to the percent 
of times a variable is used in the best 30 models developed 
by GP. It is expressed in a 0–1 scale, where 0 indicates no 
contribution of an input variable whereas 1 indicates full 
contribution.

For FIS and ANFIS models, stepwise approach [41] is 
utilized to evaluate the relative importance of input vari-
ables. Steps followed byPerendeci et al. [41] are used in this 
study. In this approach, separate FIS structures are gener-
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ated using FCM algorithm by sequentially dropping one 
of the variables from the variable matrix of total variables. 
Model performance for each individual case is compared 
with the case where all variables are used to generate the 
FIS structure. Similar technique is used for ANFIS models. 
RMSE criterion is utilized to evaluate the relative impor-
tance of input variables in the present study. Mohammadi 
et al. [42] mentioned that training RMSE is an appropri-
ate indicator for determining the relative importance of 
input variables. On the other hand, Perendeci et al. [41] 
used testing RMSE in determining the influence of input 
variables in ANFIS model development. We realize that 
RMSE obtained in the testing phase is a relevant statistical 
index to determine variable importance. Therefore, testing 
RMSE values are used to determine the relative contribu-
tion of input variables in developing the FIS and ANFIS 
model structures.

Impact factor between 0 and 1 scale for FIS and ANFIS 
models is calculated using the following two equations

Ai = {RMSE (Xidropped) – RMSE (all variables)} 
        /RMSE (all variables)�  (20)

Impact factor for Xi = Ai/max (Ai).�  (21)

where Xi represents input variables.

2.7. Selection of optimum number of clusters for FIS and ANFIS

Selecting optimum number of clusters is a crucial aspect 
of the FIS model development using FCM algorithm or, any 
other clustering algorithm. The number of clusters deter-
mines the number of rules and level of complexity of the 
developed FIS structure. Although a model with simple 
architecture is always preferable in terms of input variables 
[42], the model should also represent the complexity of the 
problem itself. Optimal number of clusters for ANFIS and 
FIS are selected by conducting several trials and observing 
RMSE values between actual and predicted saltwater con-
centrations in the testing dataset. Number of clusters that 
minimizes the RMSE value is used to develop the FIS and 
ANFIS based data driven models. 

3. Application of the proposed methodology using  
an illustrative study area

3.1. Study area and aquifer properties

This study uses a small illustrative coastal aquifer sys-
tem of 2.52 km2 aerial extent, and an aquifer thickness of 
60 m [2]. The aquifer system with finite element meshes, 
and location of different production and barrier pumping 
wells with MLs is illustrated in Fig. 5. The seaside bound-
ary (2.04 km long) is assumed to have a constant head 
of 0.0 m and a constant concentration of 35 kg/m3. The 
other two sides of the model domain (total length = 4.85 
km) and the bottom of the aquifer are considered as no 
flow boundaries. The average thickness of the aquifer is 
60 m, which is vertically discretized into 3 layers of 20 m 
each. However, the aquifer properties are the same at all 
of these 3 layers. These sizes of the triangular finite ele-
ments are decided based on the mesh dependency test. 
Element sizes smaller than 150 m induce an additional 
computational burden but did not achieve any further 
improvement in terms of computational efficiency and 
accuracy. Therefore, the entire model domain is divided 
into triangular finite elements of 150 m size. A finer ele-
ment size of 60 m is used near the production and barrier 
extraction wells. Abstraction of water is carried out from 
8 production wells placed inside the model domain for 
beneficial purposes, and 3 barrier extraction wells placed 
near the coastline to hydraulically control saltwater intru-
sion. Barrier extraction wells are placed near the coastline 
to create a hydraulic barrier along the coastline. When 
water is pumped out of the barrier extraction wells, a 
gradient is created that is filled in by the adjacent fresh-
water due to the natural gradation of freshwater towards 
the ocean, thereby preventing saltwater to enter into the 
aquifer. Aquifer recharge of 0.2 m/year is assumed to 
be uniformly distributed over the entire model domain. 
Therefore, it is unlikely that the aquifer gets filled with 
saltwater within a simulation period more than 3 years. 
Moreover, the illustrative aquifer including the initial 
and boundary conditions are chosen carefully to avoid 
trivial scenarios. Aquifer parameters used in the simula-
tion is provided in Table 1 [2].

 

BW1 

BW2 

BW3 

C1 

C2

C3 

PW1 

PW2 

PW3

PW4

PW5

PW6

PW7

PW8

Area: 2.52 km 2 
PW1 – PW8: Production Wells 
BW1 – BW3: Barrier Pumping Wells 
C1 – C3: Monitoring Locations 

60 m 

Fig. 5. Three-dimensional view of the study area with finite 
elements and location of different production and barrier wells.

Table 1
Aquifer properties

Parameters Assigned values

Hydraulic conductivity in x-direction, 
m/d

25

Hydraulic conductivity in y-direction, 
m/d

25

Hydraulic conductivity in z-direction, 
m/d

0.25

Molecular diffusion coefficient, m2/d 0.69

Lateral dispersivity, m 35
Longitudinal dispersivity, m 80
Density reference ratio 0.025
Soil porosity 0.2
Aquifer recharge, m/y 0.2
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Total numbers of pumping wells considered in this study 
are 11 (8 production wells + 3 barrier extraction wells), and 
the simulation is performed over a period of 3 years. The 
simulation is performed in the transient mode in which total 
simulation period of 3 years is divided into 219 uniform time 
steps of 5 days each. Trials are conducted using four time 
steps of 1 day, 3 days, 5 days, and 15 days. Simulation time 
step of 5 days is selected by considering a trade-off between 
computational time requirement and accuracy of the simu-
lation. The management period of 3 years is divided into 3 
uniform time steps of one year each. Abstraction of water 
in this 1-year time step is assumed constant. Therefore, the 
study considers 33 pumping variables (11 pumping loca-
tions × 3 time steps) that are fed to the models as inputs. 
The lower and upper bounds of pumping values for these 
variables are set as 0 and 1300 m3/d, respectively. Salinity 
concentrations are monitored at the end of the simulation 
period at three potential MLs.

3.2. Results and discussion

3.2.1. Architecture of FIS, ANFIS, and GP based models

A single global FIS structure (Fig. 6a) is developed to 
predict saltwater concentration at three MLs. However, 
due to the incapability of ANFIS to handle more than 
one output variable, three individual model structures 
for ANFIS (Figs. 6b, c, d) are developed to predict salt-
water concentrations at individual MLs. For GP models, 
Sreekanth and Datta [2] also developed three individ-
ual model to predict salinity levels at three individual 
locations. Further details of the GP model architecture 
can be found in Sreekanth and Datta [2]. In the present 
study, training of ANFIS is carried out using the hybrid 
algorithm that combines least-squares estimation and 
back-propagation algorithm.

The input MFs used to develop the single global FIS, 
and initial FISs for ANFIS training are presented in Fig. 7. 

(d) 

(a) 
(b) 

(c) 

Fig. 6. Architecture of developed models (a) single global FIS, (b) ANFIS for predicting salinity at location C1, (c) ANFIS for predict-
ing salinity at location C2, (d) ANFIS for predicting salinity at location C3.
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Number of clusters for the developed Sugeno-type FIS 
are selected based on several trials while keeping the other 
parameters of the FIS constant. For this dataset and the num-
ber of variables, five clusters are found appropriate without 
model overfitting. Therefore, a total number of 165 (33 input 
variables × 5 clusters) Gaussian input MFs and 15 (3 outputs 
× 5 clusters) linear output MFs are considered in the study. 

To develop ANFIS models, three initial FIS structures is 
fed to the network structure, and trained using the hybrid 
algorithm. Parameters used for developing the initial FIS are 
same as parameters used to develop the global FIS except 
that the initial FIS for ANFIS training necessarily have single 

output variable. The initial FIS used five (1 output × 5 clus-
ters) output MFs whereas the number of input MFs remained 
same as the global FIS. Unlike the FIS models, each devel-
oped ANFIS is able to predict salinity concentrations only at 
a single ML. Therefore, three ANFIS models are developed 
to predict saltwater concentrations at different MLs. FIS and 
ANFIS models are developed using commands and func-
tions of MATLAB and fuzzy logic toolbox of MATLAB [43].

Three individual GP models are also developed to pre-
dict salinity concentrations at 3 MLs, i.e., unlike the single 
global FIS model an individual GP model must be devel-
oped at every single ML. The parameters used to develop 
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Fig. 7. Input membership functions used to develop initial FIS (a) input 1 location C1, (b) input 1 location C2, (c) input 1 location C3, 
(d) input 33 location C1, (e) input 33 location C2, and (f) input 33 location C3.
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GP models are selected by conducting several trials using 
different combinations of the parameters. Based on the tri-
als, all GP models are developed by using a population size 
of 500, mutation frequency of 95, and cross over frequency 
of 50. The functional set consists of a set of arithmetic oper-
ations (addition, multiplication, and subtraction) as well as 
the comparison and data transfer operators. In addition, all 
developed GP models uses a terminal set size of 30 to pre-
vent model overfitting. 

3.2.2. Optimum number of clusters for FIS and ANFIS

The optimal number of clusters is determined by 
observing the RMSE values of the training and testing data 
set between the actual and predicted concentrations at three 
MLs separately. Fig. 8 shows the variation in RMSE val-
ues between the training and testing data sets against the 
number of clusters. A point in the graph is selected where 
the difference between training and testing RMSE values 
are minimum, and where testing RMSE values are close 

to training RMSE values. Considering the complexity and 
accuracy of the model, five clusters are chosen as adequate 
for all MLs. In order to ensure a fair comparison, the speci-
fied number of clusters and the architecture of all ANFISs, 
and the single global FIS model are kept same. 

3.2.3. Numerically simulated versus predicted saltwater 
concentrations 

Performance of the developed FIS and ANFIS models 
are evaluated by comparing the numerically simulated 
and predicted saltwater concentration values in the testing 
period for all MLs. Figs. 9–11 illustrate numerically simu-
lated vs. predicted concentrations and scatter plots of the 
testing datasets for both models at all three MLs. 

As seen from Fig. 9, at ML C1, the performance of both 
ANFIS models and global FIS model is similar. This is also 
evident from the scatter plot diagrams, where R value 
obtained for both models are the same (0.99081). This indi-
cates that additional training step required by ANFIS mod-
els is unable to improve the prediction capability at least for 
this illustrative study area. 

At ML C2 (Fig. 10), performance of the global FIS pre-
dicting salinity concentrations at three MLs together is 
slightly better than that of the ANFIS models. It is also seen 
from the fit line equation of the actual vs predicted concen-
trations that the global FIS model produces higher R value 
(0.98013) than the more complex ANFIS model (R value = 
0.98011). Fig. 11 also demonstrates the superiority of the 
global FIS model based on R criteria. The R value is higher 
in FIS (0.98222) than in ANFIS (0.97616). 

3.2.4. Performance evaluation based on statistical indices 
and computational time

Comparison of FIS, ANFIS, and GP based data driven 
models is performed by using some statistical indices that 
calculates error between the numerically simulated and 
predicted saltwater concentration values. The computa-
tional times required to train the models using a standard 
PC (Intel (R) Core (TM) i7-4790 CPU@3.60GHz 3.60GHz, 
16.0 GB RAM) are noted. These prediction models are 
developed, trained, and validated by using the same data 
used to train GP based surrogate models in Sreekanth and 
Datta [2]. The time required is based on a desktop computer 
with processor configuration mentioned above (Table 2).

Table 3 gives an overview of computational time 
required for different processes in the developmental phase 
of both global FIS and ANFIS models. The computational 
time required for training and testing of the global FIS is 
only 0.65 min (Table 3). In addition to time saving, the global 
FIS has additional advantage of handling multiple outputs, 
thereby avoiding the need to develop multiple models for 
multiple output problems. Therefore, the developed global 
FIS can be a good candidate for use in a linked S/O method-
ology for deriving optimal groundwater pumping strategy 
in coastal aquifer systems.

ANFIS models are suitable for single output problems, 
and multiple ANFISs are required for multiple output prob-
lems. The computational time for training and testing of 
ANFIS structures at MLs C1, C2, and C3 are 6.56, 5.38, and 
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Fig. 8. Number of clusters vs RMSE values for prediction of sa-
linity at (a) location C1, (b) location C2, (c) location C3.
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Fig. 9. Numerically simulated and predicted salinity at location C1 in the testing data set (a) FEMWATER simulated vs ANFIS pre-
dictions, (b) regression plot of (a), (c) FEMWATER simulated vs FIS predictions, (d) regression plot of (c). The dotted line indicates 
perfect fit in which the predicted response, Y equals the numerically simulated target, T. Actual concentration refers to numerically 
simulated saltwater concentration values.
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Fig. 10. Numerically simulated and predicted salinity at location C2 in the testing data set (a) FEMWATER simulated vs ANFIS pre-
dictions, (b) regression plot of (a), (c) FEMWATER simulated vs FIS predictions, (d) regression plot of (c). The dotted line indicates 
perfect fit in which the predicted response, Y equals the numerically simulated target, T. Actual concentration refers to numerically 
simulated saltwater concentration values.

5.41 min, respectively. Time required for the entire problem 
is 17.35 min which is very large compared to time required 
by the global FIS model (0.65 min) (Table 2). GP models pro-
posed by Sreekanth and Datta [2] are also unable to handle 
multiple outputs, and as such multiple GP models need to 
be developed for multiple output problems. Same PC con-
figuration as in case of FIS and ANFIS models development 
is used to develop three GP models at three MLs. The corre-
sponding time required (Table 2) is much higher than that 
required by FIS and ANFIS at all MLs. 

R values between numerically simulated and predicted 
saltwater concentrations by GP, FIS, and ANFIS models are 
presented in Table 4. At all MLs, R values of testing data-

sets are slightly higher than those of training datasets. This 
indicates that both FIS and ANFIS models are trained with-
out model overfitting. Moreover, R values for both FIS and 
ANFIS models are almost similar which indicates that addi-
tional training step to obtain ANFIS models from initial FIS 
models makes the generated models more complicated but 
does not improve the prediction capability significantly. On 
the other hand, GP produces lower values of R compared 
to both ANFIS and global FIS models at MLs C1 and C2. 
At C3, GP produced slightly higher testing R value. This 
means that the learning and prediction capability of both 
FIS and ANFIS models are better compared to that for GP 
models at least for this example problem.
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Model performance is also judged using RMSE crite-
ria. RMSE provides a good measure of prediction capa-
bility because it incorporates both the variance and bias 
of the prediction error. Therefore, RMSE criteria provide 
an indication of how well the model fits the test data. 

The minimum difference in values between training and 
testing RMSE gives an indirect indication that the model 
learned from the training dataset without overfitting [42]. 
RMSE values obtained for training and testing datasets by 
using GP, ANFIS, and FIS based prediction models at three 
MLs are presented in Table 5. It can be seen from Table 5 
that FIS model outperforms ANFIS model at location C3 
based on training and testing RMSE values. At C3, ANFIS 
gives a testing RMSE value slightly higher than the train-
ing RMSE value. However, this small deviation does not 
indicate model overfitting. Overall, performance of both 
FIS and ANFIS models are satisfactory based on RMSE val-
ues. GP results in higher RMSE values for the training and 
testing periods at all MLs except that in the testing phase 
at C3, at which the RMSE value is lower than RMSE val-
ues produced by both ANFIS and FIS models. However, 
the downside of using RMSE is that it gives more weights 
to the outlying observations. Therefore, MAPRE and NS 
criteria are also used to evaluate prediction performance of 
the developed models. 

MAPRE provides information on the distribution of 
errors, and is a measure of testing robustness of the devel-
oped model [20]. The MAPRE index also provides an 
indication on whether a model tends to overestimate or 
underestimate [20]. In general, MAPRE values of training 
and testing datasets at all MLs are very small (less than 3%) 
as seen in Table 6. Therefore, the developed FIS and ANFIS 
models seem to perform well in terms of relative error. At 
locations C1 and C2, both FIS and ANFIS models result in 
almost the same MAPRE values. For training dataset at C3, 
ANFIS results in smaller MAPRE (1.55%) value than FIS 
(MAPRE value = 1.71%). On the other hand, FIS results in 
smaller MAPRE value (2.13%) compared to ANFIS (MAPRE 
value = 2.59%) for testing dataset at C3. GP produced larger 
errors in terms of MAPRE criteria at C1 on both training 
and testing periods, and training phase at C2. The testing 
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Fig. 11. Numerically simulated and predicted salinity at location C3 in the testing data set (a) FEMWATER simulated vs ANFIS pre-
dictions, (b) regression plot of (a), (c) FEMWATER simulated vs FIS predictions, (d) regression plot of (c). The dotted line indicates 
perfect fit in which the predicted response, Y equals the numerically simulated target, T. Actual concentration refers to numerically 
simulated saltwater concentration values.

Table 2
Training time requirement (min)

Model C1 C2 C3

GP 58.8 90.65 127.05
ANFIS 6.56 5.38 5.41
FIS 0.65 (for C1, C2, and C3)

*Values obtained by using data taken from Sreekanth and Datta [2], 
M. L. = monitoring locations

Table 3
Individual time breakdown for ANFIS and FIS training

Processes ANFIS FIS

C1 C2 C3 C1, C2, and C3

Main 132.96 108.14 108.90 13.46
ANFIS 92.27 91.32 91.11 –
ANFISMex 92.23 91.32 91.09 –
Uiwait 34.48 13.97 15.03 11.19
Inputdlg 27.13 12.53 13.87 11.38
Questdlg 8.88 2.05 1.73 –
Plotting of results 5.79 3.18 3.15 3.08
Total, s 393.73 322.51 324.89 39.11
Total, min 6.56 5.38 5.41 0.65
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period at C2, and both training and testing periods at C3, 
GP produced slightly smaller MARPE values.

Models are also evaluated based on NS criteria. A NS 
value of 1 indicates that the performance of the model is 
100% perfect, however, in practical situations, NS values of  
around 0.8 is generally sufficient to evaluate the accuracy of 
a model [44]. NS values for both training and testing data-
sets obtained for all the developed models are greater than 
0.8 (Table 7), which suggests that the developed FIS and 

ANFIS models can produce acceptable results. Although 
NS values for both FIS and ANFIS are similar, the global 
FIS results in higher NS value (0.95) for testing dataset at 
C3, compared to NS value (0.93) produced by the ANFIS 
model. In most of the cases, GP resulted in lower values 
of NS compared to both the global FIS and ANFIS models.

From the preceding discussion, it is clear that perfor-
mance of the developed FIS and ANFIS models are similar 
based on the R, RMSE, MAPRE, and NS criteria; and both of 

Table 4
R values between numerically simulated and predicted saltwater concentrations using GP, ANFIS, and FIS during training and 
testing periods

M. L. C1 C2 C3

Dataset Training Testing Training Testing Training Testing
GP 0.97 0.98 0.96 0.98 0.97 0.99
ANFIS 0.98 0.99 0.98 0.99 0.97 0.97
FIS 0.98 0.99 0.98 0.98 0.97 0.98

*Values obtained by using data taken from Sreekanth and Datta [2], M. L. = monitoring locations

Table 5
RMSE values in mg/l between numerically simulated and predicted saltwater concentrations using GP, ANFIS, and FIS during 
training and testing periods

M. L. C1 C2 C3

Dataset Training Testing Training Testing Training Testing
GP 18.65 17.16 15.51 12.00 22.43 12.80
ANFIS 14.46 11.55 10.92 11.21 20.63 21.33
FIS 14.46 11.55 10.91 11.21 20.93 18.29

* Values obtained from data taken from Sreekanth and Datta [2], M. L. = monitoring locations

Table 6
MAPRE values between numerically simulated and predicted saltwater concentrations using GP, ANFIS, and FIS during training 
and testing periods

M. L. C1 C2 C3

Dataset Training Testing Training Testing Training Testing
GP 2.84 2.68 1.76 1.44 1.49 1.46
ANFIS 1.95 1.86 1.29 1.48 1.55 2.59
FIS 1.95 1.87 1.29 1.48 1.71 2.13

* Values obtained by using data taken from Sreekanth and Datta [2], M. L. = monitoring locations

Table 7
NS values between numerically simulated and predicted saltwater concentrations using GP, ANFIS, and FIS during the training 
and testing periods

M. L. C1 C2 C3

Dataset Training Testing Training Testing Training Testing
GP 0.94 0.96 0.91 0.95 0.94 0.98
ANFIS 0.96 0.98 0.95 0.95 0.95 0.93
FIS 0.96 0.98 0.95 0.95 0.95 0.95

* Values obtained by using data taken from Sreekanth and Datta [2], M. L. = monitoring locations
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these models perform better than GP models based on these 
performance measures. The most important criterion for 
any data driven model is the computational time required 
for training and testing. This criterion makes global FIS 
the best model among the data driven models used in this 
study for comparison.

3.2.5. Relative importance of input variables 

The relative influence of input variables in determin-
ing the output are calculated for both FIS and ANFIS mod-
els, and compared with the impact factor of the GP model 
proposed in Sreekanth and Datta [2]. Comparison of the 
relative contribution of input variables for both GP, FIS, 
and ANFIS models are presented in Fig. 12. According to 
Sreekanth and Datta [2], GP is parsimonious in selecting 
the input variables at specific locations. On the other hand, 
FIS and ANFIS models can be directly used to select the 
most influential input variables and combination of import-
ant variables in determining the output [41,42,45]. Present 
study utilizes sequential dropping of input variables to cal-
culate the relative importance of input variables by utilizing 
the stepwise approach described in section 2.6.

The global FIS has additional benefit of predicting the 
salinity concentrations at multiple locations while parsi-
moniously selecting the most relevant input variables. On 
the other hand, ANFIS models are also capable of selecting 
the most relevant input variables, which are particularly 
important for predicting concentrations at individual MLs. 

It is seen from Fig. 12a that for predicting salinity con-
centration at C1, fifteen out of 33 variables are identified to 
have a 0 impact factor by both GP and FIS whereas ANFIS 
found 13 variables having no significant influence on pre-
diction. However, at this ML, the most influential variable 
identified by both GP, FIS, and ANFIS is variable 9 (pump-
ing from BW1 at time step 1). Variables 6 (pumping from 
PW6 at time step 1), 17 (pumping from PW6 at time step 2), 
and 20 (pumping from BW1 at time step 2) also have strong 
influence as identified by both models. 

Fig. 12b shows that GP uses 14 variables in determin-
ing salinity concentrations at C2; 19 variables have 0 impact 
factor. Both FIS and ANFIS models are a bit less parsimoni-
ous in selecting input variables at this location: a total num-
ber of 16 and 18 variables at this location have very little 
or no influence identified by ANFIS and FIS, respectively. 
Variable 10 (pumping from BW2 at time step 1) is found 
most influential at this location because this variable has an 
impact factor of 1 as specified by all the models. 

The relative contribution of input variables in deter-
mining the salinity concentrations at C3 is illustrated in Fig. 
12c. At this location, GP did not use 11 variables in reaching 
the conclusion whereas the numbers of variables that have 
no influence are 11 and 13 identified by ANFIS and FIS, 
respectively. Both GP and FIS identified variable number 
21 (pumping from BW2 at time step 2) as most influential 
while ANFIS found variable 7 (pumping from PW7 at time 
step 1) as most relevant. 

3.3. Management model performance

Prediction accuracy and feasibility of incorporation of 
any surrogate model within a linked S/O methodology 

determines the robustness of the approach. Proposed FCM 
based FIS and ANFIS models as well as the GP based predic-
tion models are good candidates for replacing and approx-
imating numerical simulation models within a linked 
S/O approach to determine Pareto optimal groundwater 
extraction policies. Present study proposes a saltwater 
intrusion management model by utilizing the best per-
forming FIS based prediction model. The single global FIS 
based surrogate model predicting saltwater concentration 
values at pre-defined MLs is linked to the CEMGA based 
optimization algorithm. The global FIS model is exter-
nally linked as binding constraint within the optimization 
framework in order to ensure that the assigned maximum 
allowable salt concentration limits for the specified MLs are 
not exceeded. The optimal parameter values for the opti-
mization algorithm are chosen by conducting several trials 
using different combinations of these parameters. Based on 
this trial, a population size of 2000, crossover fraction of 0.9, 
mutation probability of 0.1, and migration fraction of 0.2 
with an interval of 20 in the forward direction are selected. 
The function and constraint tolerances are set to 1e-05 and 
1e-03, respectively. A Pareto front population fraction of 0.7 
is chosen to allow 1400 (2000 × 0.7) non-dominated feasi-
ble optimal solutions in the Pareto front. The optimization 
algorithm needs to evaluate 7,896,000 (3948 generations 
× 2000 populations) groundwater extraction patterns to 
arrive optimal solution.

The saltwater intrusion management model in the 
present study considers two conflicting objectives of the 
groundwater extraction strategy. These are maximizing 
water extraction from 8 potential production wells for ben-
eficial purposes and minimizing water abstraction from 
3 barrier extraction wells. The role of barrier extraction 
wells is to produce suitable hydraulic gradient along the 
seaward boundary to control salinity intrusion. The opti-
mization model considers 33 input variables relating to 
pumping of water from 11 locations for 3 time steps, and 
3 output variables that correspond to saltwater concentra-
tion at specified MLs at the completion of the management 
time horizon of 3 years. The optimization model provides 
optimal solution in the form of a Pareto optimal front that 
represents the non-dominated tradeoff between these two 
conflicting objectives. The Pareto optimal front presented 
in Fig. 13 provides several sets of optimal groundwater 
extraction values obtained while ensuring that the max-
imum permissible saltwater concentrations at specified 
MLs are not exceeded. 

It is observed from Fig. 13 that increasing the rate of 
extraction from production wells requires an additional 
amount of water withdrawal from the barrier extraction 
wells. Water extracted from barrier extraction wells gen-
erally cannot be used for beneficial purposes due to high 
salinity contents. Therefore, managers can choose the rate 
of barrier well pumping based on the demand for benefi-
cial water use, while keeping the pre-set maximum allow-
able saltwater concentrations at certain MLs in mind. These 
Pareto optimal solutions show the conflicting nature of the 
two objectives, a necessary condition for a multiple objec-
tive optimal management.

The validity of the proposed coastal aquifer manage-
ment model is evaluated by observing the actual violation 
of any one of the constraints within the optimization model. 
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Fig. 12. Impact of individual input variables on salinity prediction using GP, ANFIS, and FIS models at (a) location C1, (b) location 
C2, (c) location C3.
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It is noted that the saltwater concentrations obtained from 
the optimization model solution (determined by the global 
FIS model within the optimization framework) are smaller 
than the pre-specified maximum allowable saltwater con-
centrations at all MLs. This implies that all the imposed 
constraints are satisfied, and no constraint violation occurs 
during the search process. Moreover, obtained saltwa-
ter concentrations are very close to the prescribed values, 
which indicate that the optimization model converges to 
the upper limit of the saltwater concentration constraints. 
Ten solutions are selected randomly from different regions 
of the Pareto front to check the constraint satisfaction and 
constraint violations. This is shown in Table 8. It is observed 
from Table 8 that FIS predicted saltwater concentration 
values within the optimization model is very close to the 
pre-assigned saltwater concentration limits at different 
MLs. Therefore, the limited performance evaluation of the 
proposed FIS-CEMGA based saltwater intrusion manage-
ment methodology demonstrate its potential applicability 
to prescribe accurate Pareto optimal solutions for optimal 
groundwater extraction from a set of beneficial pumping 
wells and barrier extraction wells in a coastal aquifer.

4. Conclusions

Two fuzzy logic based data driven modelling 
approaches, FIS and ANFIS to approximately predict salin-
ity concentration at specified MLs of an illustrative coastal 
aquifer system is developed, and compared with the results 
obtained using GP based modelling approach. Comparison 
of FIS and ANFIS model performances demonstrates that 
the prediction capability of these models do not vary signifi-
cantly. However, in terms of computation time and degree 
of model complexity, FIS performs comparatively better 
than ANFIS does. When compared to GP, performances of 
both FIS and ANFIS are better in terms of R values at all 
specified MLs. A comparison between training and testing 
time required by the models indicate that global FIS model 
is computationally more efficient compared to both ANFIS 
and GP models. GP models are a simple explicit mathemat-
ical formulation [46] that are intended to develop simpler 
models, which are simple regression models [2]. On the 
other hand, fuzzy logic based FIS and ANFIS models incor-
porate elements of the human reasoning process in map-
ping input-output patterns of a complex system. Therefore, 
FIS and ANFIS based models may be more suited to repre-
sent complex systems. 

Time required for training and validation is much 
smaller for FIS compared to both ANFIS and GP models. 
In addition, FIS has additional advantage of predicting 
salinity concentrations at multiple MLs. Overall, the results 
presented in this study indicate that FIS model seems to be 
superior to both ANFIS and GP models in predicting salin-
ity intrusion in coastal aquifers. In addition, as the compu-
tational time is relatively very small, FIS model can be an 
ideal candidate for integration in a linked S/O technique 
to develop sustainable regional scale optimal groundwater 
extraction strategies in coastal aquifers. A coastal aquifer 
management model is developed and solved to demonstrate 
the feasibility of incorporating the proposed FIS based sur-
rogate model to a CEMGA based optimization algorithm 
within a linked S/O methodology in order to determine 
Pareto optimal strategies for groundwater abstraction. Eval-
uation results indicate that extraction of water according 
to the prescribed management strategy successfully limits 
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Fig. 13. Pareto optimal front of the developed saltwater intru-
sion management model.

Table 8
Constraint satisfaction within the management model in reaching the global Pareto optimal solution

Solution 
number

C1 ≤ 500 mg/l C2 ≤ 600 mg/l C3 ≤ 600 mg/l

FIS, mg/l Diff. % Diff. FIS, mg/l Diff. % Diff. FIS, mg/l Diff. % Diff.

1 499.81 0.19 0.04 587.09 12.91 2.15 599.96 0.04 0.01
2 499.81 0.19 0.04 587.19 12.81 2.14 599.84 0.16 0.03
3 499.89 0.11 0.02 585.50 14.50 2.42 599.86 0.14 0.02
4 499.91 0.09 0.02 585.06 14.94 2.49 599.85 0.15 0.03
5 499.85 0.15 0.03 587.38 12.62 2.10 599.96 0.04 0.01
6 499.94 0.06 0.01 587.46 12.54 2.09 599.98 0.02 0.00
7 499.86 0.14 0.03 586.21 13.79 2.30 599.95 0.05 0.01
8 499.92 0.08 0.02 587.59 12.41 2.07 599.92 0.08 0.01
9 499.84 0.16 0.03 587.36 12.64 2.11 599.97 0.03 0.01
10 499.89 0.11 0.02 586.80 13.20 2.20 599.97 0.03 0.00

*FIS = FIS output within the optimization model, Diff. = Difference between imposed constraint and the FIS output
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the salt concentrations at MLs to pre-specified limits. The 
results demonstrate the potential applicability of the global 
FIS model as computationally efficient substitute of numer-
ical simulation model within a coupled S/O approach for 
obtaining saltwater intrusion management strategy for a 
coastal aquifer system.

Although the results presented here are limited in 
scope, the evaluation results point towards the suitability 
and choice of different data driven models. This study may 
help in identifying the most suitable model for modelling 
saltwater intrusion problems in coastal aquifers. These 
evaluation results may also provide more generalized 
guidance for selection of appropriate models. However, 
more rigorous application of these artificial intelligence 
techniques needs to be evaluated in a real-world problem 
setting. 
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