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a b s t r a c t
In recent years, several drinking water pollution accidents that severely affected social stability and 
security have occurred. A pollution accident can be effectively prevented by deploying sensors in 
urban water supply pipes to monitor water quality in real time. However, it is a challenge to back cal-
culate a pollution source from information detected by a water quality sensor. In this paper, character-
istics of pollution source positioning are analyzed in detail; pollution source positioning is converted 
into an expensive optimization problem to find a solution. Additionally, based on the characteristics 
of the water supply network, a Gaussian agent model is created for each node in the supply network. 
A Gaussian agent model-based expensive optimization algorithm is proposed to solve the pollution 
source positioning problem in a water supply network. To verify the effectiveness of the proposed 
method, data from a water supply network are used for a lab simulation; the predicted results prove 
the effectiveness and efficiency of the proposed algorithm.
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1. Introduction

In many practical engineering optimization problems, the 
objective function cannot be clearly expressed; therefore, the 
optimization model is rather complex. Simulation and evalu-
ation of these problems require simulation software, which is 
time consuming. Because each calculation is time consuming 
and has a high economic cost, this type of problem is called 
an expensive optimization problem.

In recent years, a number of unexpected water pollution 
accidents in China have occurred. Some of these unexpected 
drinking water pollution accidents as well as malicious 
attacks on the water supply networks have caused significant 
economic loss and severe social impacts in China. To prevent 
a severe water pollution-induced disaster and a loss of drink-
ing water, a safety real-time monitoring system should be 
deployed in urban water supply networks. In this system, 

water quality sensors are deployed at critical nodes or water 
sources for real-time monitoring. However, when pollution 
emerges, it is a challenge to identify characteristics of the pol-
lution source via information collected by water quality sen-
sors to predict the pollutant location, injection time, duration 
and amount.

Recently, numerous researchers have attempted to con-
vert the pollution source positioning problem to an optimiza-
tion problem using the simulation–optimization model. For 
example, Ostfeld et al. [1] matched a pollution accident in a 
random pollution matrix using the pollutant state measured 
by a water quality sensor and performed a reverse search 
for the pollution source location and the injection amount. 
Guan et al. [2] proposed a simulation–optimization method, 
which continuously read the sensor data to optimize the fore-
cast, corrected the pollution source, and finally identified the 
pollution source and pollutant discharge history, to solve a 
non-linear pollution source positioning problem. Preis and 
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Ostfeld [3] proposed a solution for the pollution source posi-
tioning problem using a genetic algorithm and analyzed the 
sensitivity of the sensor. Zechman and Ranjithan [4] proposed 
an evolutionary strategy-based method, which identified the 
best match pollution source based on information from the 
monitoring point and a global heuristic search algorithm. 
Mou et al. [5] simulated the pollution source via sodium 
hypochlorite and compared the results for various input 
parameters. Liu et al. [6] proposed an evolutionary algorithm 
based on the adaptive dynamic optimization technology to 
identify the pollution source pattern (start time, location and 
discharge history); new sensors were continuously added to 
gradually assist convergence and obtain a unique optimal 
solution. Jha and Datta [7] proposed an accurate model to 
solve the problem of groundwater pollution identification. In 
the proposed model, the problem is optimized by differential 
optimization [7]. Hu et al. [8] proposed the MapReduce-based 
parallel microhabitat genetic algorithm to solve the pollu-
tion source positioning problem in which the microhabitat 
genetic algorithm was the optimizer and EPANET was the 
simulator. Yan et al. [9] proposed a hybrid encoding-based 
genetic algorithm to improve the algorithm convergence rate, 

and they proposed a cultural algorithm for this problem [10]. 
They also converted the pollution source positioning prob-
lem into a multimodal optimization problem and proposed 
a niching genetic algorithm to solve it [11]. Considering the 
uncertainty of user water demand, Yan et al. [12,13] applied 
various models to simulate user water demand and then 
employed a genetic algorithm to solve a pollution source 
positioning problem with uncertain water demand. Rasekh 
and Brumbelow [14] proposed dynamic simulation optimi-
zation model taking into account a number of uncertainties 
that lead to unpredictable time-varying system behaviour 
in the real world. In the simulation–optimization method, 
the optimization algorithm is used as the optimizer. In the 
optimization algorithm, each individual requires EPANET to 
simulate the pollution event and then calculate the individ-
ual fitness. BWSN2 [1] is used as an example (this water sup-
ply network contains 12,527 nodes, 2 reservoirs, and 2 water 
pools with 20 sensors) to simulate a pollution accident. Each 
fitness calculation takes 1.2 s. When the genetic algorithm 
(population scale is 100 and generation is 100) is employed to 
calculate a solution, EPANET is called approximately 16,500 
times, which takes 16,500 * 1.2 = 19,800 s or nearly 5.5 h. This 
example shows that during optimization, the EPANET sim-
ulator takes a significant amount of time. To minimize the 
threat of a pollutant on public health, when a certain amount 
of water quality information is available, the pollution source 
should be located as soon as possible. At this moment, more 
searches are required to find the optimal solution, which con-
sumes more computing resources. Therefore, water supply 
network pollution source positioning is an expensive optimi-
zation problem.

The expensive optimization problem has been the focus 
of many studies. In 1998, Jones et al. [15] provided the 
expected value for a non-sampling point using the Gaussian 
random model in a branch-bound algorithm. They also 
analyzed the effectiveness of a random model and proved 
that it was an effective global optimization algorithm for 
an expensive problem. In 2002, Jin et al. [16] introduced 
a random model in an evolution algorithm and created a 

global random model for a global forecast. In 2004, Regis 
and Shoemaker [17] created a local model from a random 
model for a local forecast in an evolution algorithm. In 2007, 
Zhou et al. [18] introduced a random model in an evolu-
tion algorithm and created a global model in tandem with 
a local model to accelerate evolution efficiency. Studies by 
Paenke et al. [19] and Fieldsend and Everson [20] are papers 
on a model based on a single-objective evolution algorithm. 
The study by Liu et al. [21] is a paper on a model based on 
an expensive multi-objective evolution algorithm. Studies 
by Jeong and Obayashi [22], Keane [23], Ponweiser et al. 
[24] and Zhou et al. [25] are papers on a model based on 
a multi-objective evolution algorithm. The study by Tenne 
and Goh [26] is the application of an intelligent comput-
ing method on an expensive optimization problem. In 2010, 
Luo et al. [27] embedded a meta-modelling mechanism in 
a global search algorithm to achieve a balance between the 
forecast model and global search algorithm. In 2014, Singh 
et al. [28] applied the Kriging model and a local search in a 
global search algorithm to create a forecast model. In 2014, 
Liu et al. [29] combined a Gaussian forecast model and 
optimization algorithm to solve a high-dimensional global 
optimization problem. In 2015, Bhattacharjee and Ray [30] 

embedded a selection evaluation strategy in a support vec-
tor machine forecast model to provide a graded forecast for 
a constrained optimization problem. In 2017, Sun et al. [31] 

employed a coordinated particle swarm optimization algo-
rithm to solve a high-dimensional expensive optimization 
problem.

To obtain an optimal solution for a pollution source posi-
tioning problem, a large number of iterative calculations 
and thousands of evaluations are required. If the solution is 
based on a normal optimization algorithm, a large number of 
iterations are required to find an optimal solution using the 
optimization algorithm, which results in frequent use of the 
EPANET simulator and severely affects the algorithm perfor-
mance and efficiency. The key to solving this problem is to 
minimize the EPANET simulator usage without affecting the 
algorithm positioning precision. Therefore, a proper agent 
model is introduced in the expensive optimization algorithm 
to replace the EPANET simulator for the individual fitness 
calculation. There are two major challenges in solving a pol-
lution source positioning problem using an expensive opti-
mization algorithm: one is how to create an agent model with 
a high forecast precision based on a sampling point; the other 
is how to balance the usage of the agent model and expensive 
evaluation function so that the algorithm can find the optimal 
solution in a fast and accurate manner.

In this paper, the pollution source positioning problem 
is converted into an expensive optimization problem to find 
a solution. First, a problem model for the pollution source 
positioning is provided; next, based on the problem model, 
an expensive optimization problem-based solution frame-
work is proposed; then, an agent model is created using 
the Gaussian random process. Due to characteristics of the 
Gaussian random process and the water supply network, a 
sub-model for each node in the supply network is created 
and the effectiveness is verified. Then, a Gaussian agent 
model-based expensive optimization algorithm is proposed 
to solve the pollution source positioning problem. Finally, the 
model’s effectiveness and efficiency are verified.
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2. Materials and methods

2.1. Modelling the expensive optimization-based pollution source 
positioning problem

2.1.1. Model for the pollution positioning problem

The simulation–optimization method converts the pollu-
tion source positioning problem into an optimization prob-
lem. Then, they identify the pollution source location by 
calculating the optimal solution using an evolution method. 
When calculating a solution for the pollution source posi-
tioning problem via a simulation–optimization model, an 
optimization algorithm is used as the optimizer to generate 
the pollution event, and EPANET is used as the simulator 
to simulate the pollution event and generate the predicted 
pollutant concentration at each node. The EPANET simulator 
generates the forward waterpower and water quality state, 
which is compared with the actual water quality measured 
by a sensor. From the perspective of optimization, when 
the minimum variance between the simulated accumu-
lated concentration for a pollution event at the sensor and 
the measured accumulated concentration is 0 or less than a 
threshold, the injection node of this pollution event is treated 
as the actual pollution source. The optimization problem is 
described as shown in Eq. (1).
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where N is the total number of nodes in the supply network; 
Ns represents the number of sensors; Ts represents the sim-
ulation cycle; M represents the pollutant injection vector; n 
represents the sequence number of the node in the supply 
network with a pollution source injection; tI represents the 
start time of the pollutant injection; cj(t) represents the pollut-
ant concentration at time t at sensor j, which is a function of 
(M,n,tI); and cj*(t) represents the measured pollutant concen-
tration at time t at sensor j. The optimization objective is to 
calculate the (M,n,tI) that minimizes the variance.

2.1.2. Expensive optimization-based solution model

When the simulation–optimization model is employed 
to solve a pollution source positioning problem, EPANET 
is used as the simulator, and the optimization algorithm is 
used as the optimizer. Differing from a normal simulation–
optimization model, when calculating the individual fitness, 
either the EPANET simulator or Gaussian agent model can 
be used. Introducing the Gaussian agent model in the opti-
mization algorithm reduces the usage of the EPANET sim-
ulator and improves the algorithm efficiency. An expensive 
optimization algorithm-based solution framework is shown 
in Fig. 1.

The expensive optimization algorithm employs the 
Gaussian random process for modelling and a genetic algo-
rithm for the optimization algorithm. Each individual in 
the population represents a pollution event. The pollution 

event is simulated using the EPANET simulator to obtain 
the pollutant concentration at a node in the supply network. 
The predicted pollutant concentration is compared with the 
actual measurement of a sensor to calculate the individual 
fitness. The individual fitness value can also be predicted 
using the Gaussian agent model. A proper balance of usage 
of EPANET and the Gaussian agent model minimizes the 
usage of the EPANET simulator to reduce the algorithm 
time cost while ensuring positioning precision. Therefore, 
the algorithm has two major challenges: one is how to create 
the proper Gaussian agent model, and the other is how to 
balance the usage of the Gaussian agent model and EPANET 
simulator.

2.2. Pollution source positioning algorithm based on expensive 
optimization

The expensive optimization-based pollution source 
positioning algorithm proposed in this paper has two major 
steps. The first step is to create a proper agent model using 
the Gaussian random process; and the second step is to apply 
the Gaussian agent model in the pollution source positioning 
algorithm to minimize the usage of the EPANET simulator 
while ensuring the algorithm positioning precision.

2.2.1. Modelling based on the Gaussian random process

The forecast simulation has the most direct impact on the 
individual evaluation. Therefore, a proper forecast model is 
the key to an expensive optimization problem. The Gaussian 
random process [32–34] model is a method to create an agent 
model method. The Gaussian random process has a limited 
number of simulation parameters and facilitates finding a 
solution by employing the maximum likelihood probability 
and optimization algorithm. The Gaussian random process 
is employed as an agent model because (1) the Gaussian 
random process can easily overcome over fitting, (2) the 
Gaussian random process model has a limited number of 
adjustable parameters and (3) after modelling, a sample can 
be added to the Gaussian random process model in real 
time to update the model, which helps improve the model 
precision.

Fig. 1. Expensive optimization algorithm-based solution 
framework.
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In this paper, a sub-Gaussian model based on the inter-
node pattern in a water supply network is created for each 
node in the network, as shown in Fig. 2.

As shown in the diagram, each node in the water supply 
network has individual sampling and a sub-Gaussian agent 
model. There are two reasons for this configuration:

1. In the Gaussian random process, modelling is primarily 
based on the correlation coefficient matrix, which consists 
of a correlation coefficient between each sample. Because 
of the complexity of a water supply network, the cor-
relation between most nodes is insignificant. Therefore, 
a model of the entire supply network has a low forecast 
precision for a node outside the sample.

2. Based on the Gaussian random process modelling pro-
cedure described above, the time complexity of the 
Gaussian agent model creation is O(NitK3d) [19]. In the 
expression, Nit represents the number of iterations, K 
represents the size of the sample set and d represents 
the number of variables in the model. The expression 
shows that, as the size of the sample set increases, the 
modelling calculation time increases by a power of 3. 
For a large scale water supply network, when a sample 
set does not cover all nodes, the forecast precision for a 
node outside the sample is low; when all nodes are cov-
ered, the sample set increases and the time cost increases 
significantly (e.g., BWSN2 in Fig. 4 [this supply network 
contains 12,527 nodes, 2 reservoirs, 2 water pools and 20 
sensors] has a sample size of 640 and a modelling time of 
1,030 s ≈ 17 min).

Based on Fig. 2, the Gaussian agent model is created in 
two major steps:

Step 1: Sampling. A model sample is collected at each node. 
Each sample contains individual and corresponding fit-
ness. Individual fitness contains four variables includ-
ing the pollution source position, start time, duration 
and injection quantity vector. In this paper, 10 samples 
are collected randomly for a point at a different node (to 
balance the time cost and precision, and 10 samples are 
collected for each model).

Step 2: Modelling. For each node, based on the 10 samples col-
lected in Step 1, a Gaussian agent model is created using 
the Gaussian random process. For a detailed Gaussian 
random process modelling procedure [32].

2.2.2. Design of the expensive optimization algorithm

Based on the classical expensive optimize solution, the 
Gaussian agent model is applied to the optimization algo-
rithm convergence process to reduce the usage of the actual 

Fig. 2. Sub-model creation.

Fig. 3. Flow chart of the proposed expensive optimization 
algorithm.

Fig. 4. Improved individual selection strategy.
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evaluation function. In the optimization process, a strategy is 
adjusted continuously to balance the usage of the Gaussian 
forecast model and the EPANET simulator so that the algo-
rithm meets the required precision and the usage of the 
EPANET simulator is minimized. Based on the expensive 
optimization algorithm-based pollution source position-
ing solution framework in Fig. 1, a Gaussian random pro-
cess-based expensive optimization algorithm is proposed, 
which is shown in a flow chart in Fig. 3.

Based on the algorithm flow chart, a detailed procedure 
of the algorithm is as follows:

Step 1: Initialize the population. To minimize the EPANET 
usage, the population is initialized directly from the sam-
ple set.

Step 2: Improve the roulette selection.
Step 3: The crossover operator is based on a dual-point cross-

over and real number crossover; the mutation opera-
tor is based on a single point mutation and Gaussian 
mutation [9].
Step 3.1: For a new individual generated from the cross-

over and mutation, the individual fitness μ and error 
σ are forecasted by the Gaussian agent model. If the 
trigger coefficient satisfies 3σ/μ < 0.2 (0.2 is obtained 
based on the test and analysis), the forecast is used as 
the new individual fitness; otherwise, go to Step 3.2.

Step 3.2: A probability P*is generated randomly. If 
P*  < P,P = t/x, the fitness is calculated by EPANET. 
In the expression, t represents iterations, and x is the 
base; otherwise, the individual fitness is calculated 
by the Gaussian agent model.

Step 4: After the completion of each iteration, the popula-
tion is sorted based on fitness. For the first N individu-
als whose fitness values are calculated by the Gaussian 
agent model, the fitness is recalculated by the EPANET 
model for correction.

Step 5: The first M individuals with superior fitness values 
are reserved by an elite strategy and directly selected as 
the next generation.

Step 6: Determine if the termination condition is met. If it is 
met, the algorithm terminates; otherwise, go to Step 2.

As shown in the figure, the expensive optimization algo-
rithm proposed in this paper has two major improvements: 
an improved selection strategy and an improved Gaussian 
agent model usage strategy.

2.2.3. Improved selection strategy

Because of the complexity of a water supply network, 
when a supply network is large, different pollution source 
positions have significantly different individual fitness; 
therefore, a classical roulette selection operator can eas-
ily trap in a local optimal situation. The improved roulette 
selection method is used in this paper to avoid this issue. 
Details of the improved roulette selection method [35] are 
as follows:

Step 1: For population P, a new population np is selected 
using classical roulette.

Step 2: Occurrences of individuals with an identical pollution 
source position in the new population np are counted.

Step 3: For an individual with an identical pollution source 
position and whose occurrence is equal to or exceeds 
n, the individual pi with the best fitness is replicated 
to population P; the remaining n–1 individuals are not 
replicated, and the corresponding positions are reserved 
for population P. If the pollution source position occur-
rence is less than n, the individual in np is directly rep-
licated to the corresponding position in population P (n 
is obtained based on an empirical value from the test). 
For example, population P is the first figure, after clas-
sical roulette selection, np is obtained as the second fig-
ure, then assume that n = 4, the pollution source position 
occurrence is counted. There are four occurrences of the 
pollution source position at 30. Assume that position i = 4 
has the best fitness; therefore, the updated population P 
is shown as the Fig. 4.

2.2.4. Gaussian agent model usage strategy

For the expensive optimization algorithm, the usage of 
the Gaussian model has a direct impact on the algorithm 
efficiency. If the agent model is used excessively, the algo-
rithm may not converge and the pollution source cannot be 
identified. On the other hand, underuse does not reduce the 
time cost. The Gaussian agent model usage strategy maxi-
mizes the usage of the Gaussian agent model while ensuring 
identification of the pollution source. In the pollution source 
positioning problem, which is limited by the number of sen-
sors in a supply network (sensor deployment cannot cover an 
entire network), pollutant detection requires time; due to the 
characteristics of a supply network (a portion of pipes only 
support unidirectional flow), some nodes cannot be detected 
by a sensor or can only be detected by a small portion of the 
sensors. The difference between the sensor measurement 
and actual data at the pollution source (i.e., the fitness in this 
paper) has a small range of fluctuation. At other nodes, espe-
cially those close to the pollution source, the sensor measure-
ment data are sufficient, and the fitness has a wide range of 
fluctuation.

In the pollution source positioning problem, the Gaussian 
agent model is applied to forecast two types of points. One 
is a relatively sensitive point (a slight change in the decision 
variable results in a significant change in the fitness) with 
inferior forecast stability and significant forecast error. The 
other is relatively insensitive point with a high forecast pre-
cision and stability. For these points, the agent model usage 
should be maximized to reduce EPANET usage and save 
time cost.

First, a trigger coefficient is proposed to determine insen-
sitivity. When a point trigger coefficient forecast is below a 
threshold, this point is classified as an insensitive point. The 
formula for the trigger coefficient is as shown in Eq. (2).

3σ/μ<ε  (2)

The Gaussian agent model is applied to each newly 
generated point to create a Gaussian model N(μ,σ)for each 
forecast point. In the expression, μ represents the forecast 
expectation (point forecast value) and σ represents the fore-
cast error or model forecast stability. A smaller σ value means 
a forecast model is more stable and the forecast has higher 
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credibility. In a Gaussian distribution, the probability of fore-
cast within the range of [μ–3σ,μ+3σ] is 0.9973; the probability 
outside this range is rare and is not considered in this paper.

In the expensive optimization algorithm, the individual 
forecast is based on the Gaussian agent model, and individ-
ual  fitness  is μ.  |μ–(μ–3σ)|  or  3σ  is  the maximum  forecast 
deviation. Therefore, the trigger coefficient 3σ/μ is proposed 
as a criterion to measure the error in this paper. Due to the 
complexity of a supply network, a different individual in the 
algorithm has a significantly different fitness; the difference 
between individuals can even reach to the millions. Some 
sensitive points have a large forecast error σ. Therefore, 3σ/μ 
is large and unsuitable for sensitive point determination. In 
this paper, the trigger coefficient 3σ/μ is used as a criterion to 
determine an insensitive point. When this value is less than a 
threshold, the model forecast precision meets the requirement 
and the Gaussian agent model is applied directly. However, 
when the trigger coefficient is used for determination, numer-
ous points still cannot be determined. To maximize the agent 
model usage without affecting the algorithm convergence, 
the agent model is applied in a certain probability. Because a 
sensor is more sensitive at a point close to the pollution source 
and sensitivity at the forecast point is high (large forecast 
error), when an algorithm converges, the population becomes 
closer to the pollution source. Therefore, a linear probability 
formula is proposed in this paper as shown in Eq. (3).

P = t/x (3)

where t represents the algorithm iterations and x represents 
the base, which are defined based on the test and analysis.

3. Results

3.1. Water supply network parameters and algorithm parameters 
setup

To prove the necessity of the agent model, a large-scale 
supply network, BWSN2 [1], is used in this paper for test-
ing. As shown in Fig. 5, the water supply network contains 
12,527 nodes, 2 reservoirs and 2 water pools. In this water 
supply network, 20 sensors are deployed (7626, 8912, 5363, 
6632, 6725, 4889, 10861, 2372, 8820, 3070, 6840, 11550, 3430, 
7959, 6744, 9488, 11330, 7211, 6006, 5890). The total simulation 
time for the water supply network is 48 h. In the simulation, 
the water power time step is 1 h, and the water quality time 
step is 5 min. The actual pollution scenario is a pollutant is 
injected at node 4528 continuously for 2 h after 2 h of simu-
lation. Parameters of the Gaussian agent model-based expen-
sive optimization algorithm are listed in Table 1.

Test platform specifications are an Intel Core i5-6500 
@ 3.20GHZ processor, 8.0GB of memory and a Windows 7 
Professional 64-bit operating system.

Fig. 5. BWSN2 network.
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In this paper, the test is divided into two parts. Part 1 is the 
algorithm parameter analysis. Parameters that directly affect 
the usage of EPANET are analyzed and proper values for the 
parameters are provided. Part 2 is the algorithm performance 
analysis. The algorithm with agent model usage and the 
algorithm without agent model usage are compared and any 
difference is identified. The number of EPANET evaluations 
and algorithm time cost are analyzed to verify effectiveness 
and efficiency of the Gaussian agent model-based expensive 
optimization algorithm.

3.2. Algorithm parameter analysis

3.2.1. Trigger coefficient 3σ/μ threshold analysis

The trigger coefficient 3σ/μ is a criterion to measure the 
forecast error of the Gaussian agent model. A threshold less 
than this value is used to determine a relatively insensitive 
point and it is a factor that directly affects actual EPANET 
usage. When the threshold is oversized, the Gaussian agent 
model is applied more frequently, which continuously 
reduces the time cost, but the algorithm positioning preci-
sion is affected. On the other hand, when the threshold is 
undersized, the algorithm time cost increases. Therefore, this 
threshold is analyzed via a test in this paper to identify the 
proper threshold that minimizes the usage of the EPANET 
simulator and maximizes the usage of the Gaussian agent 
model while ensuring algorithm positioning precision.

As shown in Fig. 6, each threshold is tested for 15 times. 
Fig. 6(a) represents the average usage of the EPANET sim-
ulator for different thresholds. As the threshold increases, 
the usage of EPANET gradually decreases. Correspondingly, 
as shown in Fig. 6(b), the average time cost of the algorithm 
gradually decreases as the threshold increases. In contrast, 
as shown in Fig. 6(c), as the threshold increases, the average 
fitness of the algorithm continuously increases (objective 
function in this paper is to identify the minimal value). This 
means the algorithm accuracy continuously deteriorates as 
the threshold increases. When the threshold is 0.1 or 0.2, the 
fitness is similar. However, when the threshold is 0.2, it takes 
less time. Moreover, as shown in Fig. 6(d), when the thresh-
old is 0.1 or 0.2, the algorithm positioning accuracy is similar. 
Therefore, the test setup in this paper is 3σ/μ<0.2.

3.2.2. Determination of x for the linear probability analysis 
P = t/x

Because there is no explicit method to determine a 
relatively sensitive point, this paper proposes a linear Fig. 6. Trigger coefficient 3σ/μ threshold analysis.

Table 1
Algorithm parameters setup

Parameter Description Value

POP_SIZE Population size 100
NUM_ITRE Number of iterations 100
Pc Crossover probability 95%
Pm Mutation probability 70%
M Individual selected by the elite strategy 5
n Improved roulette parameter 6
N Number of updated individuals 10
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probability-based EPANET simulator usage based on the 
characteristics of pollution source positioning problem 
convergence. This linearity factor is another direct factor 
that affects EPANET simulator usage. When x is larger, 
the EPANET simulator usage probability is lower, and the 
time cost is lower. On the other hand, when x is smaller, the 
EPANET simulator is used more frequently, and the algo-
rithm is more accurate, but it takes a longer time. Therefore, 
it is critical for the algorithm to select a proper value for x that 
minimizes the usage of the EPANET simulator while ensur-
ing algorithm precision.

As shown in Fig.7, x is set to different values and each 
value is tested for 20 times. Test diagrams show the average 
EPANET simulator usage, average time cost and average fit-
ness of the algorithm with different x values. Fig. 7(a) rep-
resents the average EPANET simulator usage. As x increases, 
the EPANET simulator usage decreases, and the time cost 
correspondingly decreases. On the other hand, as shown in 
Fig. 7(b), the fitness increases gradually. When x is 100 or 200, 
the fitness is similar. To minimize the EPANET simulator 
usage while ensuring the algorithm accuracy, x is set to 200 in 
this paper. When x = 200, the fitness is significantly less than 
when x = 300.

To verify the effectiveness of the setup for two param-
eters, the pollutant concentration curve measured by water 

quality sensors corresponding to the algorithm solution when 
3σ/μ<0.2, x = 200 is shown in Fig. 8. The curve measured by 
the water quality sensor at position 7626 in the solution that 
essentially matches the pollution source concentration curve 
measured by the actual water quality sensor. This means that 
the solution is feasible and effective.

3.3. Algorithm performance analysis

The expensive optimization algorithm replaces the orig-
inal time-consuming model with an agent model to reduce 
the time cost. In this paper, the Gaussian agent model-based 
microhabitat genetic algorithm is employed to solve the 
expensive optimization problem. The Gaussian agent model 
replaces the EPANET simulator in the fitness calculation. To 
maintain the pollution source positioning accuracy and min-
imize the time cost, a Gaussian agent model usage strategy 
is proposed in this paper. In this section, a comparative anal-
ysis of the created Gaussian agent model versus EPANET is 
conducted using a simulation test. Next, numerous tests are 
performed to prove the effectiveness of the Gaussian agent 
model-based expensive optimization algorithm proposed in 
this paper.

During algorithm convergence, frequent Gaussian agent 
model usage significantly reduces the time cost. Fig. 9 shows 

Fig. 7. Analysis diagrams for various values of x.
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a comparison of the individual fitness calculation time for 
a single usage of the Gaussian agent model forecast versus 
the case with a single usage of the EPANET simulator. A 
single usage of the Gaussian agent model saves a significant 
amount of time compared with a single usage of EPANET 
simulator. This proves that frequent Gaussian agent model 
usage significantly reduces the algorithm time cost.

The algorithm proposed in this paper is compared with 
the algorithm without using the Gaussian agent model. 
Table 2 lists the calculation results of the algorithm proposed 
in this paper versus the result of the algorithm without the 
Gaussian agent model. Although the optimal solution of the 
algorithm without the agent model has a lower fitness, this 
will not affect the pollution source positioning accuracy. The 
only error in the positioning result is the pollutant injection 
quantity. Both algorithms located the pollution source at 
4528 and the pollutant injection quantity vectors are similar. 
On the other hand, Fig. 10 shows the concentration curve 
measured by the sensor at position 7626. It shows that the 
pollutant concentration curve predicted by the optimal solu-
tion matches the curve measured by the actual sensor 7626. 
This means the solutions of both algorithms are feasible and 

effective because they can accurately locate the actual pollu-
tion source.

When both algorithms are capable of accurate posi-
tioning, the EPANET usage and time consumption of the 
Gaussian agent model-based algorithm versus the algorithm 
without the Gaussian agent model are shown in Figs. 11 and 
12. To achieve an identical result, the usage of EPANET in 
the Gaussian agent model-based algorithm is reduced sig-
nificantly by 2/3, which significantly reduces  the algorithm 
time consumption and improves the algorithm efficiency. 
This proves the effectiveness and efficiency of the algorithm 
proposed in this paper.

4. Conclusions

The water supply network pollution source positioning 
problem is a cross discipline problem that involves environ-
mental science and computer science. In this paper, the pollu-
tion source positioning problem is converted into a function 
optimization problem using the simulation–optimization 
model. Additionally, the pollution source positioning prob-
lem is further converted to an expensive optimization prob-
lem to reduce the computing cost to find a solution. To solve 
this problem, this paper employs the Gaussian agent mod-
el-based expensive optimization algorithm. Based on the 
characteristics of the water supply network, a sub-model is 
created for each node via the Gaussian random process. A 
proper Gaussian agent model usage strategy is proposed 
to maximize the usage of the Gaussian agent model while 

Fig. 8. Concentration measured by sensor 7626.

Fig. 9. Time consumption of a single evaluation.

Table 2
Test results

Time cost EPANET 
usage

Optimal 
solution fitness

Algorithm proposed 
in this paper

88 min 3,550 times 17.81

Algorithm without 
the Gaussian agent 
model

319 min 16,555 times 7.8

Fig. 10. Concentration curve measured by sensor 7626.
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ensuring the algorithm positioning precision. Finally, the 
simulation test analysis proves the effectiveness and effi-
ciency of the algorithm proposed in this paper.

When investigating a pollution source positioning prob-
lem, if the number of nodes in an urban water supply net-
work exceeds 1,000, the user water demand varies in real 
time and this problem is abstracted as a dynamic, expen-
sive and multimodal function optimization problem. This 
requires a solution for a dynamic multimodal expensive 
optimization problem, which is the plan for subsequent 
research work.
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