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a b s t r a c t

Accurate estimation of evapotranspiration (ET) values is of crucial importance in hydrology, agri-
culture and agro-meteorology issues. The objective of this research was to evaluate the use of evolu-
tionary support vector machine (ESVM) to model daily ET using limited climatic data. For this aim, 
the most common evolutionary method, genetic algorithm (GA), was used for optimization of SVM 
variables. For the ESVM, four input combinations of maximum air temperature (Tmax), minimum air 
temperature (Tmin), wind speed (U2), daily solar radiation (Rs), relative humidity (Rhmean) and mean 
temperature (Tmean) were tried. Climatic data covering 3-year period of October 2004–October 2007 
were obtained from the extremely arid and hot region of Haji Abad located in the northern region 
of Hormozgan province, Iran. Artificial Neural Network (ANN) as a base model was also applied 
for evaluating modeling accuracy of the ESVM in estimating ET. The results of the ESVM and ANN 
models were evaluated by comparing their estimates with the measured lysimetric data. The root 
mean square error (RMSE), coefficient of efficiency (CE) and the coefficient of determination (R2) 
were used as comparison criteria. According to the results obtained, the ESVM2 whose input vari-
ables are Tmean and Rhmean was selected as the best model in estimating ET.
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1. Introduction

Evapotranspiration is one of the most important com-
ponents of hydrological cycle, so its precise estimation 
seems quite essential for many research projects, espe-
cially in irrigation and drainage schemes and water 
resources. Evapotranspiration is the process by which 
water is lost from soil surface by evaporation and from 
plant by both evaporation and transpiration to the atmo-
sphere [1]. Evaporation is the process by which liquid 
water changes to vapor water, and transpiration is the 
process of water movement through areal parts of plant 

mainly leaves as vapor to the surrounding atmosphere 
[2]. Since evaporation and transpiration occur simulta-
neously at the field scale and cannot be easily separated, 
the term evapotranspiration has been defined as the sum 
of evaporation and transpiration to describe crop water 
requirement [3]. This is because more than 98% of plant 
water uptake is lost through evapotranspiration. Crop 
evapotranspiration is governed by weather parameters 
including air temperature and relative humidity, solar 
radiation and wind speed, crop characteristics and the 
availability of soil water. Due to the variability of these 
factors over time and space, crop evapotranspiration 
changes spatially and temporally. Therefore, in order 
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to precise planning of irrigation projects such as irriga-
tion scheduling, evapotranspiration needs to be deter-
mined accurately in any location and over time during 
the growth season of crops. Of course, it requires costly 
tools that are hard to be used everywhere. Therefore, 
researchers have always sought applied cheap, and accu-
rate relationships and methods for correct estimation of 
this parameter. Several methods such as the empirical 
equations of Priestley-Taylor, Blaney–Criddle, McGuin-
ness-Bradley, and data-axis methods, like neural-artifi-
cial networks, support vector machine, and tree models 
have been developed for accurate estimation of evapo-
transpiration worldwide. One of the main problems of 
the empirical equations is their low flexibility in dealing 
with various data, which leads to weak results of the 
equations. Due to their higher flexibility, data-driven 
methods have a good ability in modeling different sit-
uations. Many studies have been conducted on the use 
of data-based methods for estimating the evapotranspi-
ration of reference plants, which are referred in this arti-
cle. Using the Penman-Monteith method, Kumar et al. 
[4] identified the use of artificial neural network in pre-
dicting the evapotranspiration of the superior reference 
plant. The studies on prediction of runoff associated with 
atmospheric precipitation in 21 areas in Canada carried 
out by Cannon and Whitfield [5]. They recognized that 
the artificial neural network has a higher efficiency than 
the linear regression model. Neural networks trained 
with Levenberg-Marquardt algorithm in prediction of 
daily reference evapotranspiration used by Kisi [6]. For 
making a comparison between the network results, he 
also used conjugate gradient (CG) algorithm. Compari-
son of the artificial neural network results with those of 
Penman and Hargreaves models showed that the artifi-
cial neural network has a higher accuracy to predict ref-
erence evapotranspiration using meteorological data.

Neural network with minimum meteorological data to 
estimate evapotranspiration in the city of Rio de Janeiro, 
Brazil also used by Zanetti et al. [7]. they used the meteo-
rological data for the period of September, 1996–August, 
2002 to train the network. The results showed that the 
artificial neural network with the maximum and mini-
mum air temperatures inputs can successfully predict 
evapotranspiration. The prediction of reference evapo-
transpiration by self-organizing neural networks evalu-
ated by Adeloye et al. [8]. In this study, the synoptic daily 
data (from 1811 to 1915) obtained from the meteorologi-
cal station of the University of Edinburgh, England were 
used as inputs of the self-organizing map neural network 
and the experimental models. The results showed the 
high ability of the neural networks and the Hargreaves 
empirical equation in predicting the proper amount of 
the potential evapotranspiration. Daily reference evapo-
transpiration (ET0) in the north of Algeria using gener-
alized regression neural networks (GRNN) and radial 
basis function neural networks (RBFNN) was modeled 
by Ladlani et al [9]. Also the empirical Hargreaves-Sa-
mani (HG) and Priestley-Taylor (PT) equations are also 
considered for the comparison. The result showed that 
the GRNN was better than the RBFNN, Priestley-Taylor 
and Hargreaves-Samani models.The accuracy of nine 
solar radiation estimating models (Rs) using data gath-

ered from eight weather stations in Canada to calculate 
evapotranspiration was evaluated by Aladenola et al. 
[10]. The results showed high accuracy of Hargreaves-Sa-
mani (H-S) model and low accuracy of Mahmoud-Hobart 
(M-H) model. The support vector machine (SVM) and 
artificial neural network (ANN) to model the evapotrans-
piration in an area in California were used by Kisi and 
Cimen [11]. In this study, the ET0 data obtained from the 
standard Penman-Monteith FAO 56 equation were used 
as the SVM and ANN inputs. The results revealed that 
the SVM at each level of input data in the model has bet-
ter results than the ANN. 

For modeling daily ET0 with limited climatic data 
the support-vector-machine used by Wen et al. [12]. The 
results of SVM models were evaluated by comparing the 
output with the ET0 calculated using Penman–Monteith 
FAO 56 equation (PMF-56) and Artificial Neural Net-
work (ANN). They found that three climatic parameters, 
Tmax, Tmin, and Rs were enough to predict the daily ET0 
satisfactorily. 3 hybrid models of support vector regres-
sion (SVR) consisting of wavelet transforms (WT), sin-
gular spectrum analysis (SSA), and a chaotic approach 
(CA) were applied to the input time series, evaluated 
for predicting river flow of Kizilirmak River in Turkey 
by Baydaroglu et al. [13]. The result showed that the 
SVR-WT had the highest coefficient of determination and 
the lowest mean absolute error than the other models. 
There have been many studies (Trajkovic et al. [14], Shiri 
et al. [15], Marti et al. [16], Shiri et al. [17], Shiri et al. 
[18], Kim et al. [19], Landeras et al. [209], Shiri et al. [21] 
and Shiri et al. [22]) in the field of evapotranspiration 
estimation. Giving all the related studies is beyond the 
scope of this study and therefore some of them were only 
presented in this section. In the previous studies, refer-
ence evapotranspirations calculated by Penman Monte-
ith FAO 56 were generally used for modeling amount of 
evapotranspiration by artificial intelligence models such 
as (ANN, SVM, GRNN,etc). It is evident from the related 
literature, there is not any work which investigates the 
applicability of SVM (SVM) and ANN in estimation of ET 
measured by lysimeter. Also, for better performance of 
the SVM model, the control parameters were optimized 
using genetic algorithm. Therefore, the main objective of 
this study was to investigate the accuracy of evolutionary 
support vector machine (ESVM) models for estimating 
daily ET measured by lysimeter using various combina-
tions of daily meteorological data including maximum  
air temperature (Tmax, °C), minimum air temperature 
(Tmin, °C), mean air temperature (Tmean, °C), wind speed 
(U, km/month), solar radiation (Rs) and relative humid-
ity (Rh, %) in a humidity area. In addition, the perfor-
mance of the ESVM models was compared with those of 
the ANN.

2. Materials and methods

The purpose of this study was to estimate evapotrans-
piration by using ESVM and ANN models. Thus, MATLAB 
software was used to train models by using the two-thirds 
of the data, and the remaining one- third was used for test-
ing each model.
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3.1. Area of study and data

This research was carried out in Hajiabad area with the 
coordinates of 27º13’ N 55º 22’ E elevated by 920 m in the 
northern region of Hormozgan province for 3 years (Fig. 1). 

In this research, first, a drainage lysimeter, with a dimen-
sion of 3*3*1.9 m, was installed in the center of a 2-ha land 
plot. Then, the Bermudagras cultivar was planted in the 
lysimeter and its surrounding with an area of 900 m2. After 
complete covering was done on the ground and the height 
of the grass reached about 8 cm, its weekly evapotranspi-
ration was calculated for three years (2004-2007) using the 
water balance method (Eq. (1)).

ET = I + P + ΔSW-D (1)

where ET: Evapotranspiration of the reference plant (mm), 
I: irrigation water depth (mm) measured by the waterme-
ter installed in the inlet of irrigation water to lysimeter, P: 
rainfall (mm) measured by rain gauge, D: amount of water 
drained from the lysimeter (mm) measured at the end of 
the weekly period by measuring the amount of water col-
lected in the open-air slab along the Lysimeter range, ΔSW: 
soil moisture changes in the lysimeter at the beginning and 
end of the weekly period (mm) and equal to SW1–SW2 , 
SW1: amount of water in the soil at the beginning of the 
period, SW2: amount of water in the soil at the end of the 
period.

The climatological parameters such as relative tem-
perature, relative humidity, wind speed, and solar radi-
ation, were measured at the meteorological station of the 
experimental site and were also used for weekly periods. 
The actual evapotranspiration in this study were measured 
from Drainage lysimeterfrom October 2005- October 2008. 
Table 1 shows the mean of the variables used for modeling 
daily evapotranspiration during the statistical period for 
the study area.

The dailystatistical parameters of the climatic data are 
given in Table 1; Xmin, Xmax, Xmean, Sxand Cv symbolize the 
maximum, minimum, mean, standard deviation, skewness 
and variation coefficient, respectively.

3.2. Model definition

3.2.1. Support vector machine (SVM)

 The support machine is an efficient learning system 
based on the compact optimization theory, which uses the 
principle of deployment of a structural error minimization 
and leads to an overall optimal response.

In the SVM regression model, a function associated with 
the dependent variable Y is estimated which is a function of 
several independent variables X by itself. Like other regression 
issues, it is assumed that the relationship between indepen-
dent and dependent variables is determined by an algebraic 
function such as f(x) plus some noise (admissible error ε).

f x W Q x bT( ) = ( ) +.  (2)

y f x noise= ( ) +  (3)

If W is the vector of the coefficients, b is the character-
istic of the regression function, and Q is also a kernel func-
tion, the purpose is to find a functional form for f(x). This 
is accomplished by calibrating the SVM model which is 
obtained with a set of samples (the calibration set).

This process involves the sequential optimization of the 
error function. Depending on the definition of this error 
function, two SVM models can be defined: SVM regression 
type I (known as ε-svm regression) and SVM regression 
type II (known as ε-SVM regression). It is worth noting that 
in this research, the regression model ε-SVM has been used 
due to its extensive application in regression studies.

 Therefore, in order to calculate W and b, the error func-
tion (Eq. (4)) in the ε-SVM model must be optimized by con-
sidering the conditions (constraints) in Eq. (5).

1
2 1 1
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In the above equations, c is a positive integer that deter-
mines the fine when calibration error occurs. Q is the kernel 
function, N is the number of samples, and the two attributes 
εi, εi

* are slack variables which determine the upper and 
lower limits of the admissible error ε.

In problems, it is predicted that the data will fall within 
the boundary interval ε. However, if the data is outside 
the interval ε, there will be an error equal to εi

* and εi. It 

Fig. 1. The studied area in Hormozgan province.

Table 1
Statistical characteristics of the data used in the study

CvSxXminXmaxXmean

0.554.0371.2215.207.24Lysimeter evapotranspiration 
(mm/day)

0.348.0118.7235.1623.17Mean temperature (Co)

0.3012.939.2995.8642.83Relative humidity (%)

0.301.161.327.83.81Wind speed (km/h)

0.232.0523.9511.758.68Solar radiation (Rs)
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is also worth mentioning that the SVM model solves prob-
lems caused by under fitting and ultrafine estimate through 
simultaneously minimizing both the two semesters of 

WT·W/2 and the training error, i.e., c i ii

N
ε ε+( )=∑ *

1
 in Eq. 

(3). Thus, with the introduction of two Lagrange coeffi-
cients, ai

* and ai the optimization problem with the numer-
ical maximization of the following quadratic function (Eq. 
(6)) will be solved under the conditions of Eq. (7).

y a a a a a a a a Q x Qi i ii

N

i ii

N

i i j j i

T−( ) − +( ) − −( ) −( ) ( )= =∑ ∑* * * *. .
1 1

0 5ε xxji j

N ( )=∑ , 1  (6)

a a a C a C i Ni i i ii

N
+( ) = ≤ ≤ ≤ ≤ = …

=∑ * * , , .,0 0 0 1 2
1

  (7)

The objective function of Eq. (6) is a convex function; 
thus, the solution of Eq. (6) is unique and optimal. After 
defining the Lagrange coefficients in Eq. (4), the character-
istics of W and b in the SVM regression model are calcu-
lated using the Karush-kuhn-tucker theory conditions [23], 
where. W Q x a ai i ii

N
= ( ) +( )=∑ *

1

As a result, the regression for the SVM model will be:

W a a Q x bi i i

T

i

N
= +( ) ( ) +

=∑ *

1
 (8)

It should be noted that Langrage terms (ai + ai*) can be 
zero or nonzero. Therefore, only the data sets whose coef-
ficients |ai| are non-zero are entered in the final regres-
sion equation, so this set of data is considered as support 
vectors. Simply, the support vectors of those data whose ai 
values are less than C are called marginal support vectors. 
When the ai value of support vectors is equal to C, it is called 
an error support vector or a bounded support vector. Mar-
ginal support vectors are found at the insensitive marginal 
boundary, while vectors supporting the error are out of the 
range. Finally, the regression SVM function can be rewritten 
in the form of Eq. (9):

f x a Q x Q x b
i

N

i i

T( ) = ( ) ( ) +
=
∑

1

. .  (9)

In the above equation, ai  is the mean value of the Lan-
grage coefficients. Calculating Q(x) in its characteristic 
space may be very complicated. To solve this problem, the 
common way in the regression SVM model is choosing ker-
nel function. A support vector machine is usually used with 
three radial basis functions (RBF), and several linear and 
degree polynomials [24,25]. 

Given the fact that the most commonly used kernel 
functions are linear, kernel, radial base, and polynomial 
functions [26–28], the radial basis kernel function is also 
used in this study and its function is mentioned in Eq. (10). 
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2

2
 (10)

Two important SVM parameters, C and gamma (γ) 
values, should be selected appropriately. The C parameter 
represents how much outliers are taken into account. The 
choice of the value of C affects the classification output. 
In other words, if the value of C is too large, the rate of 

classification accuracy in the training phase will be very 
high, whereas at the testing phase, the rate of classification 
accuracy sharply reduces, specifically, too much fitting 
occurs. On the other hand, if the value of C is too small, 
it will reduce the accuracy of the classification, which is 
also inappropriate. The gamma (γ) parameter has a greater 
effect than the C parameter on the output of the classifi-
cation, since its value affects the resulting feature vector. 
A very large amount of this parameter results in exces-
sive fitting and its very small amount reduces accuracy. 
The objective function in optimizing the support vector 
model using the genetic algorithm involves minimizing 
the amount of evapotranspiration error calculated by the 
support vector model and the measured values   using the 
Lysimeter. As this parameter reaches its lowest value, the 
parameters of SVM model (C, γ) will reach their optimal 
values. For this purpose, the genetic algorithm (GA) was 
used. In ESVM modeling, there are three parameters (C, γ 
and ε) whose variation makes changes in the model per-
formance and affects the convergence speed and the qual-
ity of the answers.

3.2.2. Genetic algorithm (GA)

Genetic algorithm, inspired by genetic science and the 
Darwin’s natural selection principles, is based on the sur-
vival of superiors or natural selection. This algorithm is 
also derived from nature and based on the evolutionary 
principle of “Survival of the fittest”. Although proposed 
after the evolutionary strategy algorithm, the most popu-
lar method is evolutionary algorithms. In a genetic algo-
rithm, a population of individuals will survive in their 
desirability in the environment. People with superior 
abilities will find more chances of marriage and reproduc-
tion. So, after a few generations, better-off children will 
be created. In the genetic algorithm, each person in the 
population, as a chromosome, will become more perfect 
over generations. In each generation, chromosomes are 
evaluated, and in proportion to their value, they can sur-
vive and multiply. Generation production is discussed in 
the genetic algorithm with cross over and mutation func-
tions. Superior parents are selected on the basis of a fitness 
function. Likewise, superior chromosomes are selected 
by considering the amount of fitness to be presented in 
the production process of the new generation. More fit-
ted chromosomes have a higher chance of getting chosen 
with methods such as roulettewheeland tournament selec-
tion. The new population is produced regarding the elite 
preservation strategy, and the evolution process continues 
until the exit condition is fulfilled.

3.2.3. Objective function

The objective function of the optimization problem 
is defined as the result of dividing the value of RMSE by 
the Nash coefficient value (CE). Thus, by subtracting the 
numerator RMSE and adding its denominator (CE coeffi-
cient), the objective function will tend toward its minimum 
value, and the performance of the support vector model 
(SVM) will change for more accurate estimation. The deci-
sion variables of this objective are the SVM parameters 
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whose values will be determined optimally by the genetic 
algorithm (GA). The objective function is presented in the 
following equation:

minimize f
O P

O P

O O

i ii

n

i ii

n

ii

n

=
−( )

−
−( )
−( )

=

=

=

∑
∑
∑

2

1
2

1
2

1

1

 (11)

In the above equation, Oi and Pi are respectively the 
observed and the estimated values of evapotranspiration, 
O  is the mean of the observed values, and n is the number 
of data.

3.3. Artificial Neural Network (ANN) with  
Levenberg-Marquardt training

Artificial neural network (ANN) is a distributed infor-
mation processing system whose performance characteris-
tics are similar to the neural structure of the human brain 
and its expansion is based on the following rules:

•	 Processing information is done in single elements called 
nodes, and these nodes are arranged in bunches called 
layers.

•	 Signals are transmitted between the nodes through the 
connections.

•	 Each connection has a weight that indicates its binding 
force.

•	 Each node converts a series of the weighing of signals 
to an output signal by applying a nonlinear transfor-
mation, which is called the activation function [29]. In 
other words, 90% of the neural network models used 
in water resources problems are of the feed forward 
neural networks among which the most important 
is the MLP model with Levenberg-Marquardt (LM) 
training algorithm. The typical architecture of this 
network consists of three sections: input layer, hidden 
layer, and output layer. The number of neurons in the 
input and output layers depends on the type of prob-
lem, but the number of hidden layer nodes is calculat-
ed by trial and error.

In the feed- forward neural networks, there are con-
nections between nodes in different layers. Moreover, the 
inputs are displayed in the network input layer, and the 

stimulation of the input starts from the input to the output. 
Fig. 2 illustrates the overall structure of the artificial neural 
network.

In Fig. 2, X ( x1,x2,…xn) is the input vector, Wij is the 
connection weight of the ith node of the Ith node in the 
next layer, bj is the bias of the jth node, yi is the output 
of each layer, and y is the final output of the ANN. Also, 
f is the stimulus function of each neuron that maps the 
input information of the previous layer’s neurons to 
the next layer’s. In feed forward neural networks, there 
are interconnections between nodes in different layers. 
Moreover, the inputs are displayed in the network input 
layer and the stimulation.

3.4. Input variables of models

In this study, according to input data, including aver-
age temperature, solar radiation, wind speed, and rela-
tive humidity per month, different models were offered 
to select four different patterns. Pattern 1 includes min-
imum and maximum air temperature (Model 1 = f(Tmin, 
Tmax) in the same month, pattern 2 includes average air 
temperature and average relative humidity (Model 2 = 
f(Tmean, Rhmean)), and wind speed in the same month, pat-
tern 3 includes average air temperature, average relative 
humidity and Rs (Model 3 = f(Tmean, Rhmean, Rs)) in the 
same month, pattern 4 includes average air temperature, 
relative humidity, wind speed, and, Rs, Model 4 = f(Tmean, 
Rhmean, Rs, U2) in the same month. Here T: air temperature 
(°C), U: wind speed (km/month), Rs: solar radiation and 
Rh: relative humidity (%). 

To model the evapotranspiration with ANN and 
ESVM, MATLAB software was used. The models were 
trained up to reach a determined value of square error. 
After reaching goal error, the training was stopped and 
models were tested. Thus, we tried to cope with overfit-
ting of the applied models. Various numbers of control 
parameters (The cross over rates from 0.65 to 0.8 and the 
mutation rates between 0.02 and 0.05) were tried using 
GA to get optimal ESVM models. Two-thirds of data were 
used for training the models and the remaining one-third 
was used to test the models.

3.5. Evaluation criteria

The statistical measures including the coefficient of 
determination (R2) which expresses the coordination of data 

     (a)                (b)

Fig. 2. (a) General overview of the three-layer feed forward neural networks; (b) the Jth node structure of the network.
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predicted by the models and the computing data as well as 
the root mean square error (RMSE) that states the error value 
which gives more weight to large errors. They were used to 
check and evaluate the accuracy of the models. The men-
tioned parameters can be calculated using Eqs. (12) and (13)

R

T T T T

T T T T
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O O
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E E
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where Ti
O and Ti

E respectively are the observed and pre-
dicted values at the time step i, and T

O
and T

E
 are the means 

of the observed and predicted values. N also represents the 
number of data.

Another criterion that used in this study is the coeffi-
cient of efficiency (CE). It is calculated by Eq. (14):

CE N
O P

N
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2

1

( )

( )
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where CE: the coefficient of efficiency, N: the number of 
data points, O: observed value and P: predicted value. The 
range of the Nash–Sutcliffe efficiencies is from (–∞ ) to 1. 
An efficiency of 1 (CE = 1) means a perfect match of model 
estimates to the observed data. 

The main evaluation criterion is selected as RMSE. By 
using this criterion, the best model was selected.

4. Results and discussion

To improve the performance of ESVM, numerous trial 
and errors were made to get the best value for C, γ and ε. 
The performance of the ESVM models in estimating lysime-
ter ET is given in Table 2. The values for the parameters C, γ, 
and ε of the optimum ESVM are also provided in this table.
The number of population in the genetic algorithm for all 
ESVM models is 50. The cross over rate ranges from 0.65 to 
0.8 and the mutation rate varies between 0.02 and 0.05 and 
the selection function is Roulette wheel. Fig. 3 shows the 
objective function for the genetic algorithm with 50 itera-
tions. As can be seen from the figure, the ESVM model eas-
ily fit to data with a low number of iterations.

It is obvious from Table 2 that all the applied ESVM 
models can perform similarly in training and test stages, 
since the values of RMSE, R2 and CE do not change signifi-
cantly. During the testing period, it was observed that the 
ESVM2 model was better than the other modes for lysim-
eter ET estimation. Based on the performance statistics, 
ESVM2, whose input combination is Tmean, Rhmean, has the 
smallest value of the RMSE (0.766 mm/day). It also has 
higher values of the CE (0.923) and R2 (0.929) than the other 
models in the testing period. Therefore, it was selected as 
the best fit model for estimating the lysimeter ET. ESVM4 
model whose inputs include (Tmean, Rhmean, Rs, U2) with 
RMSE of 0.780 (mm/ day), CE (0.920) and R2 of 0.942 which 
provides the second best lysimeter ET estimation. However, 
these two models are almost equal accuracy but the ESVM2 
is preferred because it has only two inputs and simpler than 
the ESVM4.

The comparison of the ET values measured by the 
lysimeter and the values estimated by the ESVM2 and 
ESVM4 models are shown in the form of line graphs and 
scatter plots in Fig. 4. 

The ET values which are estimated by the ESVM mod-
els are closely followed the corresponding measured lysim-
eter ET values and both have the same trend. There is a 
slight difference between these two models. Such consis-
tency reveals that both two models show good estimation 
accuracy. In some cases, ESSVM4 performs better than the 
two-parameter model (ESSVM2).

For evaluating the ability of ESVM model relative to 
ANN model, four ANN models were developed using the 
same input combinations for ET modeling. The optimal 
architectures and the performance statistics of the ANN 
models are shown in Table 2. According to the testing 
period results, the ANN4 model with the input combi-
nation (Tmean, Rhmean, Rs, U2), which has the lowest RMSE 
(0.793 mm/day) and the highest R2 (0.927) and the near-
est value of CE to unit, performed the best. ANN3 model 
whose inputs are the Tmean, Rhmean, Rs, with a RMSE of 0.861 
mm/day, R2 of 0.9116 and CE of 0.873 was also ranked as 
the second best in ET estimation. From the comparison of 
Tables 2 and 3, it can be seen that the best ESVM model 
(ESVM2) increased the accuracy of the best ANN model 
(ANN4) by 0.2, 3.4 and 2%with respect to R2, RMSE and 
CE, respectively.

The comparison result of the performance criteria given 
in Table 2 and 3 showed that all the ESVM models could 
perform better than the corresponding ANN models in 
estimating lysimeter ET. The comparison of the best ANN 
model (ANN4) with the lysimeter ET values is also repre-
sented in Fig. 5 in the form of scatterplot and time variation 

Table 2
The best structures and the performance statistics of the ESVM models during training and testing periods

Models Input Parameter Training period Testing period

γ C ε R2 RMSE CE R2 RMSE CE

ESVM1 (Tmin , Tmax) 1.081 49.24 0.08 0.946 0.934 0.946 0.921 0.801 0.916
ESVM2 (Tmean, Rhmean) 2.01 28.43 0.164 0.951 0.894 0.950 0.929 0.766 0.923
ESVM3 (Tmean, Rhmean , Rs) 3.99 13.24 0.199 0.948 0.913 0.948 0.916 0.864 0.902
ESVM4 (Tmean, Rhmean , Rs , U2) 0.335 61.75 0.106 0.951 0.898 0.950 0.942 0.780 0.920
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Fig. 3. Convergence trajectories of genetic algorithm.

 

 

Fig. 4. Comparison of the ET values estimated by ESVM2, ESVM4 and lysimeter ET during testing period.
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graph. Figs. 4-5 reveals that the ANN model has more scat-
tered estimates and inferior results compared to the ESVM 
models.

5. Conclusion

In this study, usability of evolutionary SVM method in 
estimation of evapotranspiration amount has been studied. 
Four models were developed using different combinations 
of six daily climatic data including Tmean , Tmax, Tmin, Rhmean, 
Rs and U2. The ESVM models were tested using the ET 

observed by drainage lysimeter. The results demonstrated 
that the ESVM could be successfully applied to establish 
accurate and reliable lysimeter ET modeling. Particularly, 
ESVM model whose inputs included Tmean, Rhmean provided 
good ET estimate. This is very important especially for the 
developing areas where reliable weather data sets are lim-
ited. The ESVM models were also compared with those of 
the ANN models using same input combinations. Based 
on the comparison, the ESVM models gave more accurate 
results than the ANN models in estimation of lysimeter ET.
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