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a b s t r a c t 
Water disinfection process in a water treatment process results in the formation of disinfection 
by-products (DBPs), including total trihalomethanes (TTHMs). It takes a relatively long time to esti-
mate TTHMs concentration level in the water treatment plants; thereby it is impossible to timely 
control operation parameters to reduce the TTHMs concentration. Here, we developed a predictive 
model to quantify TTHMs concentration using conventional water quality parameters from six water 
treatment plants in Han River. Before the developing the model, self-organizing map (SOM) and 
artificial neural network (ANN) restored missing values in input and output parameters. Then, an 
ANN model was trained to predict TTHMs by using relevant water quality parameters investigated 
from Pearson correlation. Pearson Correlation test selected six significant input parameters such 
as temperature, algae, pre-middle chlorine, post chlorine, total chlorine, and total organic carbon. 
Based on five-fold jackknife cross-validation, the ANN models built using different types of input 
data showed different performance in training (range of R2 from 0.62 to 0.92) and validation (range 
of R2 from 0.62 and 0.80) steps. This study can be a useful tool for predicting TTHMs concentrations 
using conventional water quality data in drinking water treatment plants. Machine learning models 
can be readily developed and utilized by managers working with drinking waters.

Keywords:  Trihalomethanes (THMs); Drinking water treatment plant; Han River; Machine learning 
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1. Introduction 

Chlorine dosing in water treatment plants is one of 
essential processes to achieve water disinfection for reduc-
ing potential risk of exposure to water-borne pathogens. 
Despite the benefit of chlorine dosing, the reaction of free 
chlorine with natural organic matters (NOM) is an issue 
that cause the formation of disinfection by-products (DBPs) 
[1,2]. DBPs pose a serious threat to human health because 
they are carcinogenic and mutagenic to humans [3,4]. In 

particular, the trihalomethanes (THMs) including chloro-
form, bromoform, bromodichloromethane, and dibromo-
chloromethane are the most common DBPs detected in 
chlorinated drinking water [5]. In 1984, the World Health 
Organization reported a health-based guideline value for 
chloroform in the first edition of the Guidelines for Drink-
ing Water Quality [7]. Various institutions from United 
Kingdom, United States, Canada, and Japan contrib-
uted to evaluate the risks for human health to chemicals 
including DBPs in the third edition of the guidelines [7]. 
For example, the United States Environmental Protection 
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Agency (USEPA) regulates the maximum contamination 
limits (MCLs) for total trihalomethanes (TTHMs) at 0.08 
mg/L [8].

Monitoring and modeling THM concentrations are very 
important for understanding variations in THM concen-
trations in drinking water distribution systems. However, 
rapid detection of THMs is difficult because measuring 
THMs requires relatively long time and expertise. That issue 
hinders operators to take quick actions for reducing the risk 
of increase in THMs concentrations. Modeling approaches 
have been used as an alternative rapid monitoring tool and/
or predictive decision-making tools. Formation of TTHMs is 
closely related to water quality and operational parameters 
such as the amount of chlorine dosing, pH, organic matter 
composition, temperature, existence of algal matters, and 
reaction time between chlorine and organic matters [5,8–
10]. Past studies have tried to model THM formation using 
numerical and statistical methods [11–18]. However, those 
methods were limited to accurately predict THM concen-
trations due to the complex interactions between influential 
factors and THMs.

Artificial neural networks (ANNs) are powerful tools to 
reflect the complex interactions using stochastic error mini-
mizing algorithms [19,20]. Various researchers implemented 
ANNs to predict the formation of THMs [21–23]. Kulkarni 
and Chellam [21] predicted the formation of THMs, halo-
acetic acids (HAAs), and total organic halide (TOX) using 
seven input parameters including UV254 absorbance, chlori-
nation conditions, and DOC and Br– concentrations. Lewin 
et al. [22] applied 15 input parameters associated with raw 
water quality and post water quality after clarification. 
Milot et al. [23] used five input parameters such as DOC, 
reaction time, pH, chlorine dose, and temperature.

ANN models need a large number of observed and/
or experimental data to train complex patterns of data, but 
incomplete or missing data is a common problem in water 
treatment plants. In order to deal with the problem, impu-
tation method is applied for generating missing values. 
Francis et al. [24] used the multiple imputation approach to 
understand bromine substitution reaction in a trihaloacetic 
acid class. Bergman et al. [25] also imputed missing input 
data from water quality parameters collected at multiple 
locations in a watershed to predict THMs formation.

Therefore, the objectives of this study was to: 1) impute 
missing values for input and output parameters using ANN 
and Self-organizing map,2) develop an ANN-based predic-
tion model to understand site-specific effects of water qual-
ity and chlorine dose conditions on the formation of THMs 

in finished water at six drinking water treatment plants and 
3) evaluate the performance of the models that were built 
in terms of different types of input dataset. Influent water 
quality and operation conditions of chlorine dose in water 
treatment plants were used as input parameters.

2. Materials and methods

2.1. Site description and data acquisition

This study was focused on six water treatment plants 
in east part of the Han River Watershed; Ttukdo, Young-
deungpo, Guui, Amsa, Gangbuk, and Gwangam. The six 
plants supply tap water to a resident in Seoul city. More 
details on the treatment plants are given in Table 1. Fig. 1 
shows a treatment process for drinking water supplies in 
the six water treatment plants. The process consisted of the 
three stages of chlorination: (1) pre-chlorination (pre-Cl) in 
the receiving well, (2) intermediate-chlorination (inter-Cl) 
before the filtration basin, and (3) post-chlorination (post-Cl) 
in the pure water reservoir. Five water quality parameters 
such as temperature, pH, algae, total organic carbon (TOC), 
and chlorophyll-a (Chl-a) were monthly monitored in intake 
water. THMs were monitored in clear well. In addition, the 
total amount of chlorine dose (Total-Cl) was estimated by 
summing up the amount of injected chlorine in each chlo-
rination process.

2.2. Model development

Fig. 2 describes the process for applying Artificial 
Neural Network (ANN) and Self-Organizing map (SOM). 
ANNs were trained to predict Chl-a and TOC using water 
quality data. SOM was constructed to restore missing data 
for TTHMs concentration. After the process,we investigated 
the significant parameters to predict TTHMs using Pearson 
correlation. Finally, ANNs were trained to predict TTHMs 
with the significant parameters.

2.2.1. Pearson correlation

The Pearson correlation coefficient (PCC) is a measure 
of the linear correlation between two variables X and Y in 
statistics [26]:

Corr
X Y

X Y
X Y,

cov ,( ) =
( )

σ σ
 (1)

Table 1 
Information of six drinking water treatment plants

Name Location Purification method Advanced treatment method Daily capacity† (m3/day)

Gwangam 37°31’10.96” N, 127°10’21.98” E Rapid sand filtration Ozonation and granular 
activated carbon

400,000
Amsa 37°33’47.86” N, 127°08’28.96” E 1,600,000
Guui 37°32’49.73” N, 127°05’33.03” E 500,000
Ttukdo 37°32’22.50” N, 127°02’31.38” E 350,000
Youngdeungpo 37°33’00.60” N, 126°52’51.61” E 600,000
Gangbuk 37°35’44.49” N, 127°11’10.36” E 1,000,000

†Daily capacity was collected from http://data.seoul.go.kr/openinf/fileview.jsp?infId=OA-12880&t Menu=11.
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where Cov is the covariance between X and Y, σX is the 
standard deviation of X, σY is the standard deviation of 
Y, and Corr is the Pearson correlation between X and Y. 
PCC has a value between +1 and −1; 1, 0, and –1 mean 
total positive linear correlation, no linear correlation, and 
total negative linear correlation, respectively [26]. PCC is 
a useful method to investigate the relationship between 
water quality and TTHMs. In this study, we used PCC 
to determine parameters, which have little relationship 
with TTHMs and then to reduce the number of input 
parameters for ANN model to predict TTHMs. X includes 
temperature, pH, algae, TOC, Chl-a, pre-Cl, inter-Cl, and 
post-Cl, and Y is TTHMs.

Fig. 1. Description of the water treatment process in the water 
treatment plants.

Fig. 2. Logical flow for predicting total trihalomethanes using 
two machine learning methods.



J. Park et al. / Desalination and Water Treatment 111 (2018) 125–133128

2.2.2. Artificial neural network

Artificial neural network, inspired by the biological 
neural networks, has performed to predict output by pat-
tern recognition and complex processes [19,27–29]. An 
ANN consists of three layer (i.e., input, hidden, and output 
layers) and neuron (nodes) that are linked by weights in 
each layer [30]. Activation functions adjust signals between 
layers and then transfer signals to the next layer. 
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where xi is input data in the network, y is output data in the 
network, N is the number of neurons in the input vector, wi 
is the connection weight between input and output, f is the 
transfer function, and b is the bias term, f(x) is the tangent 
sigmoid function.

ANN applied a back-propagation algorithm to update 
the weight and bias in each neuron [31]. Weight and bias 
have random values in initial conditions and are updated 
by a back propagation step. A back-propagation algorithm 
has ability to adjust the learning rate by updating the learn-
ing rate’s parameter. Eqs. (4) and (5) illustrate the back 
propagation step that used gradient descent with a momen-
tum algorithm [32]:
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where j is the iteration number, c is the learning rate, and 
a is the momentum constant. ANN stops repeating the 
back-propagation step when the error has smaller than a 
termination criterion for error goal or an iteration number 
has larger than maximum iterations.

To predict THMs concentration, many researchers have 
used various input water quality parameters including 
temperature, pH, TOC, and amount of chlorine dose to pre-
dict trihalomethane in a drinking water treatment plant. 
For instance, Abdullah et al. [33] considered pH, turbidity, 
ammonia, TOC, temperature, Cl2 dosage, Cl2 residue, and 
THM as input. In this study, we used two ANN models; the 
first ANN imputed TOC and Chl-a using seven input data 
such as TTHMs, pH, algae, pre-Cl, inter-Cl, post-Cl, and total 
chlorine. The second ANN model was developed to predict 
TTHMs using significant input parameters among tempera-
ture, algae, pre-Cl, inter-Cl, post-Cl, total chlorine, TOC.

2.2.3. Self-organizing map

Self-organizing map is one of unsupervised machine 
learning methods, which is based on a neural network to 
adjust weight values for matching input vector in training 
datasets [34]. SOM uses a competitive learning method, 
called winner-take-all. Winner-take-all declares a node, 
which is closest with input vector, as winner. And weights 
are updated to take node values nearby input vector. SOM 
repeats this process to relate output node with patterns 

of input data set. At the initial step, SOM initializes each 
node’s weights with a random number between 0 and 
1, and choose random input vector from training data-
set. SOM identifies the best matching unit (BMU) that its 
weights are most similar to the input vector by Euclidean 
distance formula [29,35]: 

c w xj ii= −{ }min  (6)

where cj is the winner unit, wi is the weight vector, x is input 
vector, and ⋅  is the distance measure, typically Euclidian 
distance.

The SOM update rule for the weight vector of unit is 
[36]: 

w t w t t h t x t w ti i ci i+( ) = ( ) + ( ) ⋅ ( ) ⋅ ( ) − ( )( )1 α  (7)

where t denotes time, the x(t) is an input vector randomly 
drawn from the input data set at time t, hci (t) is the neigh-
borhood kernel around the winner unit c, α(t) and is the 
learning rate at time t.

SOM followed above rule to update for weight vectors. 
SOM iteratively develops weight vectors of BMU and its 
neighboring units by using neighborhood function to mini-
mize the distance between them. The Gaussian distribution 
is applied to update the weights, as follow [29,37]:
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where hcj,i(t) is the neighborhood function around winner 
unit cj.

We used two indicators, which are Quantization error 
and topological error, to check the quality of maps. The 
quantization error is given by [38]:

εq i bi

N

N
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where Xi is input data vector, Mb is best matching reference 
vector, and N is the total number of input samples.

The topological error is given by [38]: 
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K
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where Xk is input data vector, η is matching unit, and N is 
the total number of input samples.

In this study, SOM was used to restore all missing 
TTHMs values using input parameters such as TTHMs, 
temperature, pH, TOC, algae, Chl-a, pre-Cl, inter-Cl, 
post-Cl, and total Cl.

2.3. Model performance

We implemented cross validation to verify the perfor-
mance of ANNs [39]. Five-fold jackknife cross-validation 
was conducted for comparing the relative performance 
between ANN models to predict TTHMs. One of fifth of the 
data was implemented to test the models and four of fifth 
of the data was used to train the network of the models. In 
imputing the missing data, the models used the data that 
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were randomly shuffled datasets divided into two groups; 
one group was randomly selected 60% of data for training 
and the other group was the rest of data for validation.

Coefficient of determination (R2) and root mean square 
error (RMSE) are used to estimate accuracy of models [40]: 
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where Yi
obs is the i th observed data, Yi

sim  is i th simulated 
data, and N is the total number of observation.

3. Results and discussion

3.1. Missing data imputation

Input and output data consisted of nine water qual-
ity parameters collected from intake water and clear well. 
Among eight input parameters, a large number of TOC and 
Chl-a had missing data. ANN was constructed to restore 
missing data of TOC and Chl-a, which were used to develop 
prediction model for TTHMs. The ANN model used seven 
input parameters such as TTHMs, pH, algae, pre-Cl, inter-Cl, 
post Cl, and total chlorine and two output parameters, i.e., 
TOC and Chl-a. Five hidden neurons was used in the first and 
second layers, respectively. Activation functions between 
layers were set to be tangent sigmoid and back propagation 
function was set to be traingdm; the iteration number was set 
to be 200,000. 20 of sample data randomly chosen for train-
ing and 16 of sample data left were used for validating. The 
performance of the ANN model for restoring two parameters 
was satisfactory with NSE values ranging 0.90 to 0.99 and R2 
values ranging 0.94 to 0.99 for training and validation steps 
(Fig. 3). In Fig. 3d, the ANN model overestimated Chl-a when 
higher than 25 mg/L. Using the developed TOC and Chl-a 
models, we restored 35 missing data.

Like TOC and Chl-a, approximately 3.5% of TTHMs 
samples had missing data. SOM was applied to restore the 
missing TTHMs data. Final quantization error was 0.883 
and final topographic error was 0.017 as SOM result. The 
performance of the SOM model was satisfactory to restore 
the missing data (Fig. 4).

3.2. Determination of the input parameters

Correlations between input parameters and TTHMs 
were investigated using Pearson Correlation Test to select 
the appropriate input parameters for constructing the ANN 
model. Table 2 presents the result of Pearson Correlation 
Test. Based on the significance values, TOC, total chlorine, 
and pre-Cl-middle chlorine had significant positive correla-
tions with TTHMs (p < 0.05 in Table 2). Temperature and 
algae concentrations were also considered as input param-
eters because p-values were relatively low even though the 
p values were larger than 0.05. Oliver and Shindler [41] 
reported that algae may be potential THM precursors. Water 
temperature had a positive effect on increase in THM for-
mation potential due to increasing the reaction rate between 

chlorine and TOC [8,42]). Saidan et al. [10] documented that 
the formation of THMs was affected by increase in the res-
idence time, temperature, pH, and free chlorine and TOC 
concentrations. On the other hand, pH and Chl-a had rel-
atively high p values (p > 0.5), compared to other parame-
ters. Unlike high p-value for pH, past studies documented 
that pH had an influence on THM formation [9,43]. That 
is, the two parameters had little effects on the formation of 
TTHMs in this study. Therefore, six input parameters were 
determined for input parameters to the ANN model.

3.3. Model performance

Three types of data sets were prepared to evaluate the 
performance of ANN models for predicting TTHMs. One 
was the original data sets that included the missing data 
in both input parameters and TTHMs. Another was the 
revised data sets that included the restored data in TTHMs. 
The other were the revised data sets that included the 
restored data in input parameters. The optimized ANN 
model parameters that were obtained from five-fold jack-
knife cross validation are presented in Table 3. Different 
number of input data were used to develop the models in 
terms of types of input data (see the sixth row in Table 3), 
whereas same input parameters such as temperature,algae, 
pre-middle chlorine, post chlorine, total chlorine, and TOC 
were used to predict TTHM concentrations (see the eighth 
row in Table 3).

Based on comparison of the performance, the ANN 
models showed different R2 and RMSE values in terms of 
types of input dataset in the training and validation steps 
(Table 4). The ANN models (0.918 and 0.876 of R2 values) 
using imputing missing TTHMs and TOC data showed 
better training performance than that (0.617 of R2 value) 
without imputation. However, the model (0.796 of R2 value) 
using imputing TTHMs showed better validation perfor-
mance than other two models (0.689 and 0.627 of R2 val-
ues). Fig. 5 compares the one-to-one relationships between 
the predicted and observed TTHMs concentrations. The 
TTHMs concentrations were obtained from three models 
that were trained with optimized model parameters using 
whole datasets in each type of input. Chaib and Moschan-
dreas [11] modeled the daily variations in volatile THM 
by-products such as chloroform, bromodichloromethane, 
and bromoform in drinking water using Box-Jenkins meth-
ods and the performance using an adjusted R2 ranged from 
0.80 to 0.94. Francis et al. [13] simulated DBPs such as THM, 
trihaloacetic acids, dihaloacetic acid and dihalacetonitrile 
using Bayesian statistical modeling. Their models had 
0.81 of correlation coefficient between the predicted and 
observed bromine incorporation fraction, which was used 
as alternative for the THM class. Hong et al. [14] applied 
multiple linear regressions (MLRs) to predict TTHM, total 
concentrations of bromated THMs, chloroform, and bro-
modichloromethane concentrations in a river and R2 val-
ues of the models ranged from 0.85 to 0.95; the R2 value 
of the TTHM model was 0.90. Rodriguez and Sérodes [15] 
reported that the three tyeps of MLR model to predict the 
seasonal variation in THM showed R2 values of 0.69, 0.92, 
and 0.52. Rodriguez et al. [16] modeled THM levels using 
three types of regression and R2 values for linear, polyno-
mial, and logarithmic models ranged from 0.43 to 0.84, 0.47 
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Fig. 3. Comparison between the predicted and observed TOC and Chl-a restored by ANN; (a) and (b) indicate TOC in training and 
validation steps; (c) and (d) indicate Chl-a in training and validation steps.

Fig. 4. Comparison between the predicted and observed TTHMs 
restored by self-organizing map.

Table 2 
Results of Pearson correlation between input variables and 
TTHMs

Variable Significance value 
(p)

Correlation 
coefficient

Temperature 0.202 0.049

pH 0.536 0.012

Total organic compound 0.034* 0.129

Algae 0.262 0.038

Chlorophyll-a 0.862 0.001

Pre-middle chlorine 0.003* 0.243

Post chlorine 0.203 0.049

Total chlorine 0.002* 0.260

The * sign for the p values indicates that the significance values 
are less than 0.05.
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to 0.85, and 0.52 to 0.87, respectively. Uyak et al. [17] develop 
logarithmic regression model to predict THMs using TOC, 
pH, temperature, and the amount of chlorine dose and R2 
value of the model ranged from 0.98 to 0.99. Overall, the 
performance of our models was found to be satisfactory as 
compared with that of literature (Table 4 and Fig. 5).

4. Conclusions

TTHMs, which are by-product of Chlorine disinfection 
process, are carcinogenic and mutagenic to human. Model-
ing TTHMs concentrations is important for understanding 
variations in TTHMs in drinking water treatment plants. 
This study proposed machine learning methods to predict 
formation of TTHMs in drinking water treatment plants 
using conventional water quality parameters. Self-organiz-
ing map (SOM) and artificial neural network (ANN) models 
were implemented to impute missing values for input and 
output parameters. Another ANN was used to develop a 
model for predicting TTHMs using important input param-
eters that were selected based on significance values from 
Pearson Correlation analysis. The major conclusions are as 
follows: 

•	 SOM and ANN were practical to generate imputation 
data to improve model accuracy. The final quantization 
error of SOM was 0.883 and final topographic error was 

0.017. The restored data for TOC and Chl-a from the 
trained ANN model showed high NSE and R2 values.

•	 Based on Pearson Correlation analysis, significant 
parameters relating to THM formation were selected as 
temperature, algae, pre-middle chlorine, post chlorine, 
total chlorine, and total organic carbon. 

•	 The ANN model was trained using different types 
of input data such as original data with missing val-
ues, with imputing TTHMs data by SOM, and with 
imputing TOC data by ANN. The performance was 
different among three ANN models in the training 
and validation steps. The ANN model using restored 
missing data for TTHMs showed better validation 
performance than that using original data with miss-
ing values and with imputing TOC data. 

This study provided useful tools for reliably predicting 
TTHMs concentrations using available explanatory param-
eters in drinking water treatment plants. It is expected that 
machine learning models can be readily developed and uti-
lized by managers working with drinking waters.
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Table 3 
Optimized ANN model parameters obtained from five-fold jackknife cross-validation and input data for predicting TTHMs

Parameter Original data
with missing values

Original data
with imputing 
missing TTHMs† data

Original data
with imputing missing TOC† 
data

Optimized parameter Learning rate 0.313 ± 0.189 0.312 ±0.128 0.498 ± 0.176
Momentum constant 0.413 ± 0.165 0.597 ± 0.185 0.453 ± 0.200
Number of hidden neurons 3 ± 0.3 8 ± 2.0 4 ± 1.5
Activation function‡ 1 and 2 Tansig–Purelin Logsig–Tansig Logsig–Tansig

Input data Number of input data 35 173 72
Number of training and 
validation data

28, 7 139, 34 58, 14

Input parameter temperature, algae, pre-middle chlorine, post chlorine, total chlorine, and TOC

†Missing TTHM and TOC data were restored by SOM and ANN, respectively. 
‡Activation function presented the most frequently selected active function between layers; function 1 between the input layer and 
hidden layer; function 2 between the hidden layer and output layer. 
The “±” sign separates the mean value and standard error obtained from the cross-validation.

Table 4 
Comparison of performance of ANN models for predicting the TTHMs concentrations using the five-fold jackknife cross-
validation

Types of input data R2 RMSE

training validation training validation

Original data with missing values 0.617 ± 0.049 0.689 ± 0.101 0.0101 ± 0.0002 0.0095 ± 0.0032
Original data with imputing missing TTHMs data 0.918± 0.053 0.796 ± 0.106 0.0201 ± 0.0075 0.1640 ± 0.1337
Original data with imputing missing TOC data 0.876 ± 0.017 0.627 ± 0.061 0.0057 ± 0.0009 0.0095 ± 0.0041

The “±” sign separates the mean value and standard error obtained from the cross-validation.
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