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a b s t r a c t

Artificial neural network (ANN) and genetic programming (GP) models were used to predict rejec-
tion (R) and permeability coefficient of water flux (Lp) with respect to CaCl2 in nanofiltration (NF) 
membrane process. The model inputs were concentration of the poly(ethylene imine) (PEI), p-xylene 
dichloride (XDC) and methyl iodide (MI), coating and crosslinking time of PEI, and pH of the solu-
tion. With this respect, ANN with 3:17:1 and 3:23:1 neurons, the lowest mean squad error (MSE) of 
0.0023 and 0.000028 and the highest coefficient of determination (R2) values of 0.9830 and 0.9990 for 
R and Lp, respectively, was found. In addition, the sensitivity analysis suggested that PEI coating 
time and pH had the significant effect on R and Lp, respectively. GP was used to make a mathemati-
cal function for prediction of R and Lp in terms of the input parameters. The GP model successfully 
described the R and Lp as function of input parameters. The GP results with R2 values of more than 
0.99 had an excellent preciseness.
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1. Introduction

Many industries generate water effluents with harmful 
chemical compounds, and development of techniques to 
address treatment and removal of the pollutants is critical 
[1–4]. Membrane filtration process is considered a simple, 
versatile and efficient separation technique in the removal 
of suspended and/or dissolved substances from a liquid 
or gas phases [5–15]. Based on physical properties such 
as pore size range, molecular weight cut-off range and 
operating pressure, membranes fall into five categories 

of microfiltration (MF), ultrafiltration (UF), nanofiltration 
(NF), forward osmosis (FO) and reverse osmosis (RO) [16]. 
Typically, NF membranes are fabricated by lowering pore 
size of a UF membrane support using chemical modifica-
tion [17]. NF membranes have a composite structure with 
a top layer that is selective and controls solute transfer. The 
selectivity of the top layer in NF membranes is based on the 
pore size and electrostatic interactions (Donnan repulsion) 
[18]. NF membranes typically have a negatively charged 
separation layer to separate negatively charged species [19]. 
However, membranes with a positive charge on the surface 
can enhance the separation of cations in aqueous media. 
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For instance and biotechnological applications, positively 
charged membranes are a good candidate for the removal 
of endotoxins from solutions. Endotoxins are toxic material 
mostly derived from bacterial lysates.

Many efforts have been put to develop models that have 
a reasonably suitable explanation of an NF process and sev-
eral NF models based on extended Nernst–Planck equation 
have been presented. With this respect, Wang et al. [20] and 
Bowen et al., [21,22] proposed the steric-hindrance (ES) 
and Donnan steric-partitioning pore model (DSPM) mod-
els, respectively. These two models demonstrated a better 
agreement with the experimental results as to describe the 
performance of NF membranes for electrolytes, particu-
larly for 1–1 electrolytes, such as NaCl. Nevertheless, when 
these models are applied in NF membranes with respect 
to 2–1 electrolytes (such as CaCl2), the predicted R tends 
to be lower [23], or the charge density tends to be larger 
[24]. Several modifications on DPSM have been performed 
by considering the parameters such as hindrance effect of 
pores to the ions [22], concentration polarization [21], and 
dielectric constant [25]. Aforementioned models typically 
are mathematically and computationally complex and need 
detailed knowledge of the filtration process [26]. Therefore, 
alternative techniques with an accurate description of an 
NF process using available process data and extending it to 
the mathematical models are considered promising. 

Recent studies show that artificial neural network 
(ANN) model has enough simplicity and better estimations 
in comparison with the conventional physics-based models 
[27–30]. Although a considerable number of studies exist 
about the successful application of ANN in the successful 
modeling of different membrane filtration processes, only 
a few studies address modeling of NF. Bowen et al. [31] 
developed ANNs modeling in NF membranes to predict 
rejection (R) rate of single salts and mixtures (MgCl2, NaCl, 
Na2SO4, and MgSO4). Their experimental setup was a spiral 
wound membrane that was not simple to model with phys-
ics-based models. In a similar study by Darwish et al. [32], 
ANNs were employed to model the cross-flow NF of NaCl 
and MgCl2 at seawater concentrations. They have investi-
gated the effects of input salt concentrations and operating 
pressure on R rates by different NF membranes of NF 90, 
NF 270, and NF 30. They showed that ANN model success-
fully predicts the experimental R rates of NaCl and MgCl2 
by NF membranes. Furthermore, many researchers have 
successfully employed black box models for modeling of 
membrane filtration processes, and among them genetic 
programming (GP), as one of the genetic algorithm (GA) 
subcategory. Lee et al. [33] employed GP for modeling the 
fouling rate of MF membrane in a pilot-scale drinking water 
production system. Okhovat et al. [34] successfully applied 
the GP modeling in the removal of As (V), Cr (VI) and Cd 
(II) from wastewater as a function of transmembrane pres-
sure (TMP) and initial pollutant concentration, using NF 
process. They have reported that the results gained from 
proposed GP models show very good agreement with the 
experimental results.

However, although ANN and GP models are effective 
and accurate models which have been used to evaluate the 
excessively complicated non-linear relationships, it seems 
that modeling of NF process using ANN and GP models 
is not given much attention and there is a need to address 

it. Hence, the primary goal of this study is to apply ANN 
and GP models to estimate target response parameters in 
NF process. With this respect, modeling of rejection (R) 
and permeability coefficient of water flux (Lp) with respect 
to the pollutant model CaCl2 as a function of the solution 
concentration of PEI, XDC and MI, coating and crosslink-
ing time of PEI, and pH were investigated using GP and 
ANN.

2. Data attainment

A polymer dope solution made up of PSf, Polyeth-
ylene glycol (PEG), and N-methylpyrrolidone (NMP) (16, 
14, and 70% w/w, respectively) was mixed for the prepa-
ration of the UF support membrane. Subsequently, the 
dope was cast onto a glass plate. Then, this solution was 
immersed in a water coagulant bath at environment tem-
perature. The cast membrane was immersed in water for 
one day to carry out the water exchange with the solvent 
present in the pores. Pure PEI is so efficient for making 
the extra anionic colloidal charges, neutral, particularly 
in PH of 7 or lower. It is usually assumed that the posi-
tively charged amines in PEI raise the surface charge in 
the XDC membrane and MI that are employed for the 
crosslink and quaternization process. Initially, the PEI/
PSf composite was fabricated via coating the PEI aque-
ous solution on the PSf surface during 1 h followed by 
drying for 2 h at environment temperature. Then, it was 
soaked in XDC/n-heptane solution for crosslinking. The 
crosslinking process involving PEI and XDC was per-
formed at environment temperature for 5 h. Then, the 
prepared membrane was washed with ethanol to elimi-
nate unwanted compounds, following the crosslinking 
procedure. Then, the membrane was immersed in NaOH 
solution to remove interfacial H+. Eventually, for the qua-
ternization of PEI on the upper layer, the membrane was 
immersed into a CH3I solution in ethanol for 2 h. The fab-
rication procedure of the PEI coating of the PSf support is 
demonstrated in Fig. 1. 

The membrane pore radius was measured on the basis 
of the PEG molecular weight, which was rejected at 90% by 
the membrane and was calculated as follows [35,36]: 

y x x= − × + × +− −5 10 5 10 0.33198 2 8

 (1)

where y is referred to pore radius (nm) and x is referred to 
the molecular weight of PEG (g/mol).

The size of membrane pore was predicted by the rela-
tionship involving the molecular weight cut-off (MWCO) 
acquired using the PEG solutions and their radius of the 
pores computed by Eq. (1). The MWCO of the PSf NF mem-
branes was investigated with five various feed solutions of 
PEG with MWs of 1500, 2000, 3000, 4000, and 6000 Da. Based 
on the obtained results, for the ultimate membranes, one of 
them was merely crosslinked PEI using (XDC), and second 
one was quaternized by a MI solution, and the MWCOs 
were appraised to be 3670 and 3540 that yields 1.49 nm and 
1.47 nm pore radius, respectively. The experimental proce-
dure and data used in the present study are the same as in 
a previous [37].
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3. Modeling theory

3.1. ANNs

Neural networks are computer algorithms originated 
from the way that data is processed in the biological aspect 
of the nervous system. ANN can be known as a neurocom-
puter with parallel-distributed processors [38]. Fig. 2 shows 
the basic ANN structure that is made up of three layers 
with a number of neurons in each layer. The layers contain 
input layer (independent variables), hidden layer, and out-
put layer (dependent variables). In a typical network, input 

layer is comprised from the original experimental data (Xi) 
that are associated with the neurons or nodes (1, 2…, i,…, 
m) of the input layer. Input data are transferred to the nodes 
of hidden layer (1, 2…, j,…, n) and output layer (1, 2…, 
k,…p) by multiplying connection strength or weights (Wij) 
between two neurons and summing using summation func-
tion. The inputs to a neuron include bias and the sum of its 
weighted input. The outputs of a neuron are depended on 
the neuron’s inputs and on the transfer function of it [39]. 
The kind of transfer functions often employed for solving 
multiple regression issues are summarized in Table 1. The 

Fig. 1. Scheme of the preparation procedure of the PSf NF membrane [37]. Copyright 2015, Reproduced with permission from John 
Wiley and Sons.

Fig. 2. Architecture of a typical ANN with an input layer, a hidden layer, and an output layer.
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most crucial stage for building ANN model is the training of 
the network. In the training process, the weights and biases 
of a feed-forward neural network are modified methodi-
cally in order to decrease the remainder error between net-
work outputs (predictions) and targets (experimental data) 
[40,41]. There are many different training algorithms. The 
most prevalent training algorithms for feed-forward neu-
ral networks are the back-propagation (BP) method [42]. 
Training of ANN using BP algorithm is definitely an iter-
ative optimization process used for performance function 
minimization by modifying the network weights and biases 
correctly. The most applied performance function is the 
mean-squared-error (MSE) and the coefficient of determi-
nation (R2). In the case of a single output neuron, MSE and 
R2 might be written as [43–45]:

MSE =
n

Y - Yq
exp

q
pred

q=

n1 2

1
( )∑

 
(2)

R = -
Y - Y

Y - Y

q
exp

q
pred

q

n

q
exp

qq=

n
2

2

1
2

1

1
( )
( )

=∑
∑  

(3)

where Yq
exp  is the experimental response (target), Yq

pred  is 
the predicted response by ANN (network output), n is the 
number of experimental data points and q is the iteration 
index (positive integer number) and Yq  is the average of the 
observed experimental data acquired by following equation:
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q=

n

1
∑

 
(4)

There are several modifications of BP algorithm. A lot 
of them utilize the gradient descent approach for iterative 
updating of weights and biases before the convergence is 
satisfied. When the ANN was trained the optimal weights 
and biases are stored and the neural network model can be 
utilized for simulation and optimization [40]. 

3.2. GP

GP is a type of genetic-evolutionary algorithms that 
was developed by Koza. He introduced it in his book 
“Genetic Programming” in 1992 [46]. The GP has been 

utilized in fields such as control, robotics, games, and 
symbolic regression. GP is based on rules of biological 
evolution [47]. GP is an advanced method for supplying 
nonlinear input–output empirical models in engineering 
applications [48]. It offers good solutions for several prob-
lems and is a promoted development of GA. The output 
of the GP is a computer program, whilst the output of the 
GA is a value. GP is significantly more powerful than GA 
and is a device learning approach for optimizing a partic-
ular aspect of the system based on a fitness criterion sup-
plied by the user. GP frequency changes a population of 
computer programs right into a novel generation of the 
population. In each generation of the algorithm, closely 
favorable individuals are chosen as “parents” for the next 
generation and create a new reproduction source. A fresh 
generation of solutions grows mutation and reproduction 
that using one of three genetic operations include cross-
over. After many generations, a program would develop 
providing solutions for the issue [49]. Functions connect-
ing nodes of inputs and constants generate a preliminary 
model population, whose convolution is determined by 
the user. The setting of terminals (the independent vari-
ables of the problem and random constants) and original 
functions for every single branch of the program, measur-
ing the fitness of individuals in the population, validating 
the parameters to manage the program being run and the 
technique estimating the goodness of fit are the main four 
fundamental steps necessary in GP. Population size, the 
maximum number of generations and the probability of 
crossover and mutation are determining parameters in a 
GP [50]. Every program in the process of GP is expressed 
as a tree. For example, Fig. 3 illustrates the representation 
of the function exp(X2) + cos(X + 3). This study uses GP 
to discover a mathematical function of six input variables. 
The terminal set includes the independent variables, PEI 
solution concentration, PEI coating time, XDC concentra-
tion, MI concentration, pH and crosslinking time. Thus the 
terminal is set as (x1, x2, x3, x4, x5, x6), the function is set 
as (+,−,×,/ and exp) and the fitness function is the differ-
ence between the developed output and the target output. 
Desired functions are those with lower fitness functions 
values [51]. A software program (Matlab GPTIPS toolbox) 
was employed to utilize GP on a computer.

Table 1
Transfer functions of artificial neurons used for solving multiple 
regression problems

Transfer 
function

Notation Transfer function 
equation

Output 
range

Linear purelin f (A ) = Ai i
[–∞,+∞]

Log-sigmoid logsig
f

+ exo
(A ) =

1
1 -Ai

i( )
[0,1]

Hyperbolic 
tangent 
sigmoid 

tensing
f

- exo

+ exo
(A ) =

1 -A
1 -Ai

i

i

( )
( )

[–1,+1]

Fig. 3. Tree representation of exp(X2) + cos(X + 3).
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4. Results and discussion

4.1. Modeling results and evaluation of ANN prediction

The experimental data used to build the ANN model 
for NF process are summarized in Table 2. In order to pre-
dict the values of flux utilizing the ANN model, 70% of the 
data were employed for training purpose. The remainders 
were used for testing and validation data, equally. Inputs of 
the neural network were six variables, i.e., the PEI solution 
concentration, PEI coating time, crosslinking time, XDC 
concentration, MI concentration, and pH. Lp and R were 
considered as a response (output or target). In order to pre-
vent from overfitting, equally input and output result were 
normalized. The input factors were normalized so that they 

differ in the range of [0–1] based on the subsequent rela-
tionship [40]:

x
z z

z z
j

j j
min

j
max

j
min

=
−( )
−( )

 

(5)

where xj refers to the normalized input variable or parameter, 
while zj, zj

min  and zj
max  are the actual, maximum and mini-

mum values of the input variable. So as to construct the ANN 
model our network was developed applying MATLAB com-
puter software. The normalized values of the inputs and out-
put were applied to feed and train the ANN. In this study, the 
LM back-propagation algorithm was used [52]. All neurons 

Table 2
Experimental data used in ANN modelling [37]

PEI concentration PEI coating time XDC concentration MI concentration pH Crosslinking time R Lp

25 60 5 16 7 300 94 3.78

25 60 7 0 7 300 80.50 2

25 150 5 0 7 300 83.20 3.70

25 60 5 0 7 240 81.10 5.29

25 60 3 0 7 300 77.70 4.20

25 60 5 8 3.30 300 94.10 4.42

15 120 5 0 7 300 82.90 1.50

25 60 5 2 7 300 86 4.70

25 60 5 8 10 300 84.80 4.25

25 60 5 0 7 300 86 5.10

25 60 5 8 7 300 93.60 4.25

10 120 5 0 7 300 73 0.90

25 60 4 0 7 300 84 4.40

25 60 5 0 7 180 79.10 5.76

25 0 5 0 7 300 10 54

30 120 5 0 7 300 86 3.90

20 120 5 0 7 300 84 2.70

25 120 5 0 7 300 87 4.60

25 60 6 0 7 300 84.30 4.16

25 60 5 0 7 30 72 9.23

5 120 5 0 7 300 0 0.57

25 90 5 0 7 300 83 4.70

25 60 5 0 7 300 84.60 4.64

25 60 1 0 7 300 72.30 3.80

25 60 5 0 7 420 87.87 4.53

25 60 5 0 7 300 87.80 5.10

25 30 5 0 7 300 61 9.96

25 120 5 0 7 300 84 4.10

25 60 5 8 7 300 93.40 4.88

25 60 5 4 7 300 93 4.57

25 60 5 0 7 90 73.73 8.61
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Fig. 4. Variation of R2 with number of neurons in models for (a) R, (b) Lp.

Table 3
Weight and bias values of the ANN model for R prediction 

Neuron Hidden layer Output layer

Weights Bias Weights Bias

PEI solution 
concentration

PEI coating 
time

XDC 
concentration

MI 
concentration

pH Crosslinking 
time

1 –0.1883 –0.7687 –1.0031 –1.4509 1.3625 –0.5919 2.0036 0.0563 –0.2867

2 –0.8998 0.1724 –0.3103 –0.8751 0.2837 –1.1435 2.4677 –1.0447

3 –0.3949 0.0133 –1.6019 –0.5459 –1.2074 1.0780 1.4807 0.0250

4 –0.1008 0.6195 0.7541 0.9450 0.7638 –1.2534 1.5267 –0.54549

5 0.7767 –0.6152 1.1201 –0.7795 –0.5753 1.2302 –0.7831 –0.0673

6 –0.8591 0.0227 –0.6379 –1.7136 0.4856 1.1182 0.6379 0.2501

7 0.3311 –0.4661 0.8851 –0.3641 1.0888 –1.4411 –0.6846 –0.1770

8 0.2188 –1.3205 1.0873 –0.1704 1.1855 –1.0378 –0.6484 0.4412

9 –0.7825 0.6169 1.1890 0.5749 –0.8627 –1.1081 –0.1148 0.0792

10 0.7441 0.5873 0.4609 –0.1565 –0.4150 1.3834 0.8707 –0.6279

11 –0.0050 0.4704 –1.1257 –1.1209 1.1766 0.8650 0.5366 –0.0516

12 1.0402 0.1961 –1.1916 1.4055 0.5905 –0.4307 0.6738 0.1839

13 –2.1073 –2.2833 –0.4541 –1.1898 –0.9968 –0.8322 –1.2996 –1.8008

14 0.4291 0.6690 1.1903 1.1104 –1.3383 –0.5866 1.4785 0.4733

15 –1.1801 0.8752 –0.5186 –0.9062 –1.5330 –0.2441 –1.5334 0.4193

16 –0.6449 –0.8711 1.5704 0.5421 0.5601 1.3501 –1.7701 –0.5231

17 2.0186 –0.6909 –0.6639 –0.4886 –0.9051 0.0205 2.8436 0.8839



A. Dashti et al. / Desalination and Water Treatment 111 (2018) 57–67 63

of the hidden layer have the tansig and single neuron from 
the output layer has the linear (purelin) transfer function. 
Among different transfer function in the hidden layer, tan-
sig function offers slightly better predictions than others [30]. 
As a way to optimize the ANN structure, the computations 
began using one neuron in the hidden layer. Figs. 4a and 4b 
and show the variation of R2 with the number of hidden neu-
rons in the hidden layer for R and Lp, respectively. It is obvi-
ous from the figure that the maximum R2 for a structure of R 
and Lp are with 17 and 23 neurons in the hidden layer.

Thus, in this case, the ideal structure of the ANN model 
includes six inputs (i.e., variables), one hidden layer with 17 
and 23 neurons (for R and Lp, respectively) and one output 
layer with an individual neuron. Hence, the best structure 
for R and Lp prediction was 6:17:1 and 6:23:1, respectively. 
The network was evaluated to possess converged once the 
test set error is lowest. Tables 3 and 4 show the weights and 
biases of the optimum architecture.

 The statistical data for training, validation and test data 
for both ANN networks are demonstrated in Table 5. The 

values of R2 for training, validation, test and the overall 
data set (0.9868, 0.8731, 0.9944, and 0.983, respectively) and 
(0.9999, 0.9633, 0.9955, and 0.9995, respectively) for R and 
Lp predictions, respectively represent an efficient network 
prediction using ANN in comparison with experimental 
results. It can be concluded that there is a good accordance 
between experimental data and ANN results.

4.2. Importance of operating factors from ANN

Determination of the relative importance of input vari-
ables is a technique for systematically changing input vari-
ables in a model to determine the effects of such changes on 
the output of the model and showing how the input vari-
ables can be quantitatively apportioned. In order to evalu-
ate the relative importance of various operating variables 
on output variables, a neural net weight matrix [53] was 
used. Fig. 5 shows the importance of various operating vari-
ables on output variables. PEI coating time with a relative 

Table 4
Weight and bias values of the ANN model for Lp prediction

Neuron Hidden layer Output layer

Weights Bias Weights Bias

PEI solution 
concentration

PEI 
coating 
time

XDC 
concentration

MI 
concentration

pH Crosslinking 
time

1 0.8347 –2.6862 0.5813 0.9790 –0.6316 0.3709 –2.7174 1.6015 –0.3487

2 1.1123 –0.5744 0.0962 0.9359 1.7327 0.3155 –2.1438 0.002

3 –1.7161 0.0904 –1.0678 –1.0461 0.7743 0.7373 1.8385 0.6289

4 1.1838 –1.4083 0.0717 –0.0354 –1.1540 –1.4231 –1.9535 0.8974

5 –0.7200 0.3146 0.2035 1.3694 1.4702 –0.8500 1.4711 0.1651

6 –0.7348 0.5959 1.2714 –1.1290 –1.4081 –0.0930 1.1579 0.5651

7 0.8269 –1.5858 0.9384 1.2344 0.7268 –0.6090 –1.1200 0.8505

8 –0.3496 –1.1384 1.6105 1.0702 –0.1827 –0.9895 0.4939 –0.2745

9 –0.4037 0.9654 1.5462 –1.0957 –0.4364 0.1297 0.9030 –0.3352

10 1.3929 –1.0274 –0.7063 1.1887 0.2135 –0.7841 –0.4049 0.0507

11 1.0500 –0.1114 –1.0412 –0.9708 1.2582 1.1230 –0.4183 0.9891

12 –0.1234 –1.8424 –0.6712 0.8237 –1.2713 –1.3781 –0.5079 0.8186

13 0.6454 0.3072 –1.4935 –1.3873 0.2095 –0.9028 0.4055 0.1989

14 –1.0651 –0.5820 –0.8142 –1.3666 –0.8571 –0.8826 –0.2682 –0.1290

15 0.2574 –1.6798 0.8073 –0.0521 –1.1051 0.3983 0.4795 –0.0467

16 –0.9032 –1.0118 –0.4599 0.7479 0.3243 –1.7887 –1.1334 –0.5624

17 –1.1460 –0.8036 0.8996 –1.1135 –1.1103 –0.5217 –1.3394 0.8380

18 –0.3702 0.5584 0.9614 –0.3775 1.5357 –1.3580 –1.6396 –0.8280

19 –1.1558 –2.122 –0.0431 –0.9021 –0.0060 –0.1688 –1.4766 –0.7662

20 –0.9954 1.1070 –0.1044 1.2861 0.5777 –1.1425 –1.7030 –1.0300

21 0.9409 0.9186 –0.6677 –0.8880 –1.2409 1.0282 1.9571 0.5797

22 0.7726 –0.4637 –1.5687 0.2585 1.2992 0.5192 2.3144 –0.7787

23 1.4034 –0.5032 0.3912 1.0349 –0.9130 1.1980 2.3973 –0.5720
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importance of 19.74% was the most influential parameter 
on the R and pH with a relative importance of 73.5% was 
the most influential parameter on the Lp. As observed, the 
contribution of PEI coating time and pH in the membrane 
structure has a significant effect on the membrane perfor-
mance. In other words, this means that the smaller changes 
in PEI coating time and pH make the bigger changes in R 
and Lp values, respectively.

4.3. GP results

248 data was utilized in this model. The population size 
or number of individuals creating a population in each gen-
eration, number of generations to run for including genera-
tion, probability of GP tree mutation (%), probability of GP 
tree crossover (%), maximum depth of trees were set at 1000, 
200, 10%, 85% and 8, respectively. Crossover and mutation 
were selected in this program. The best tree depth number 
was 8 with the lowest runtime, complexity and error values. 

PEI solution concentration (x1), PEI coating time (x2), 
XDC concentration (x3), MI concentration (x4), pH (x5) and 
crosslinking time (x6) were independent variables to acquire 
a model for prediction of R and Lp by using GP. Figs. 6a 
and 6b illustrates the prediction of R and Lp using GP and 
comparison is performed between experimental data and 
results of the model. As observed in Fig. 6, there is great 
agreement between model and experimental results and the 
model demonstrating an excellent prediction of the system 
behaviors. The best-so-far GP model for prediction of R and 
Lp which were obtained after satisfying termination crite-
rion are:

Table 5 
Comparison of performance of optimum ANN model with 
different algorithms

R Lp

R2 MSE R2 MSE

Train 0.9868 0.0011 0.9998 2.09E-06

Validation 0.8731 0.0003 0.9279 9.25E-05

Test 0.9944 0.0096 0.9910 7.21E-05

All 0.9830 0.0023 0.9990 2.80E-05

Fig. 5. The importance of various operating variables on output variables: (a) R, (b) Lp.
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R = (2.15 × (x1 – 9.444) × (3 × x1 + x6 – (x6 + exp(x3))/ 
(x3 + 2 × x4) – 38.27))/(x12) – (2.799 × (x6 + exp(x22/x6) + 
exp(x22/x6) × exp(9.495 × x4/x3) + ((x1+ x6)/((x1 – x2) ×  
(x1 – x2 + x5)))))/(exp(x22/x6) × exp(x4 × (x4 + 9.576)/x5) + 
9.576) + 76.74 (6)

Lp = 53.88 – (0.01132 × (x2 + (x3 – 3.985) × (x3 – x5)) ×  
(x3 – x2 – 3 × x1 + 2 × x4 + x6 + x3 × (x3 – 4.067) +(2 × x1)/ 
(x3) – 3.985))/(exp((x1 – 3.985)/x6) × (x1 – x5 + 0.1001 ×  
x6 – x3 × (x3 – 3.86) + (x6/x12))) – 126.6 × exp(((2 ×  
exp(x1 – x3 + x5) – 2 × x1 + exp(x2) + (x1 – 3.985)/(x3 × x5) 
–2))/(exp(x3 × (x3 – 3.985) – exp(x5)) – exp(x1)  
– exp(x2) + (x1 – x5)/(x1)) (7)

The execution time of running the evolutionary algo-
rithm for this case was approximately 2 min on a Sony PC 
(Core i7, RAM 4GB, Windows Seven). The R-square (coef-
ficient of fitting illustration) value (0.993 and 0.998) for R 
and Lp indicates the GP model results are fitted to the exper-
imental data very well. 

5. Conclusions

PEI solution concentration, PEI coating time, XDC con-
centration, crosslinking time, MI concentration and pH 
closely affected R and Lp. NF process data was successfully 
described with ANN because of the highest determination 
of coefficient values between network prediction and corre-
sponding experimental data. Results of this model showed 

that PEI coating time was the most influential parameter on 
the R and pH was the most influential parameter on the Lp. 
GP model successfully described the NF process as a func-
tion of PEI solution concentration, PEI coating time, XDC 
concentration, crosslinking time, MI concentration and pH 
in a single equation. GP gave a unique model to calculate 
R and Lp at all studied conditions to describe permeability 
and R data. Artificial intelligence indicated that NF process 
could be precisely modeled and well described by GP and 
ANN. These artificial intelligence methods can be used for 
any kind of NF process without any dependence on the 
feed or membrane structure.
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